1. (6 points each) Calculate the following limits.
a) $\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}$.
b) $\lim _{x \rightarrow 0} \frac{1-\sqrt{1-x^{2}}}{x^{2}}$.
c) $\lim _{x \rightarrow 8^{-}} \frac{|x-8|}{x-8}$.
d) $\lim _{x \rightarrow 2^{+}} e^{\frac{1}{2-x}}$.
2. (6 points each) Find $\frac{d y}{d x}$.
a) $y=x^{2} \sin 2 x$.
b) $y=\frac{(x-1)(x-4)}{(x-2)(x-3)}$ (You may use logarithmic differentiation).
c) $x e^{-y}+y e^{-x}=3$.
d) $y=\int_{3}^{\sqrt{x}} \frac{\cos t}{t} d t$.
3. (7 points each) Evaluate the following integrals:
(a) $\int\left(\sqrt[3]{x}-x^{3}+\frac{1}{\sqrt[3]{x}}\right) d x$.
(b) $\int_{0}^{1} \frac{5 x^{2}}{x^{3}+2} d x$.
(c) $\int_{0}^{\pi} x \cos \left(\pi+x^{2}\right) d x$
(d) $\int e^{2 x} \sqrt{1+e^{x}} d x$.
4. Consider the following function and its first and second derivative:

$$
f(x)=\frac{x^{2}+3 x+1}{x^{2}+1} \quad f^{\prime}(x)=\frac{3\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}} \quad f^{\prime \prime}(x)=\frac{6\left(x^{3}-3 x\right)}{\left(x^{2}+1\right)^{3}} .
$$

a) (4 points) Find the critical numbers of f.
b) (8 points) Determine where f is increasing, where f is decreasing, and find the local maxima and minima of f.
c) (4 points) Find the asymptotes of f.

$$
f(x)=\frac{x^{2}+3 x+1}{x^{2}+1} \quad f^{\prime}(x)=\frac{3\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}} \quad f^{\prime \prime}(x)=\frac{6\left(x^{3}-3 x\right)}{\left(x^{2}+1\right)^{3}} .
$$

d) (5 points) Find the inflection points of f and determine where f is concave upwards and downwards.
e) (8 points) Draw a rough sketch of the graph of f.
5. (20 points) Find the dimension of the right circular cylinder of greatest volume that can be inscribed in a given right circular cone of height 1 meter and radius 1 meter.
6. a) (10 points) Show that the equation $\ln x-x+2=0$ has at least two solutions.
b) (10 points) Show that it has exactly two solutions.
7. (20 points) Find the linear approximation to $f(x)=\frac{1}{(1+x)^{4}}$ at $a=0$, and use it to approximate $\frac{1}{1.1^{4}}$.
8. (15 points) A cube is increasing in volume at a rate of $10 \mathrm{~cm}^{3} / \mathrm{sec}$. Find the rate of change of the surface area of the cube when one edge has length 2 cm .
9. Let

$$
f(x)= \begin{cases}x^{2} \cot x & x \neq 0 \\ 0 & x=0\end{cases}
$$

a) (10 points) Show that f is continuous at $x=0$.
b) (10 points) Show that f differentiable at $x=0$.

