1. [20] Find the limits if they exist. (You may not use L'Hospital's Rule.)
(a) [5] $\lim _{x \rightarrow 0} \tan 2 x \sin (1 / x)$
(b) $[5] \lim _{x \rightarrow \infty} \frac{e^{3 x}+5 e^{2 x}}{2 e^{3 x}-1}$
(c) $[5] \lim _{x \rightarrow 1} \frac{\sqrt{x+3}-\sqrt{2 x+2}}{x-1}$
(d) [5] $\lim _{x \rightarrow 2} \ln \left(\frac{1}{5} \frac{x-2}{x^{2}+x-6}\right)$
2. [20] Consider

$$
f(x)=\frac{(x-1)(x-2)}{|x-2|} .
$$

(a) [10] Sketch the graph of f.
(b) [10] Describe the set of points on the real axis at which f is continuous, e.g., $x \in(7,9]$ or $7<x \leq 9$.
3. [20] Find the derivatives of the following functions:
(a) $[5] f(x)=\frac{x}{\sqrt{5-2 x}}$
(b) $[5] g(x)=\sqrt[3]{1-x e^{x^{2}}}$
(c) $[10] h(x)=x^{\sin x}$
4. [15] Use implicit differentiation to find the equation of the tangent line to the curve

$$
y \cos \left(x^{2}\right)=x \cos \left(y^{2}\right)
$$

at the point $(0,0)$.
5. [15] If a bacteria population starts with 400 bacteria and doubles every 5 hours, then the number, $f(t)$, of bacteria after t hours is

$$
f(t)=400 \cdot 2^{t / 5}
$$

(a) [5] Find the derivative of $f(t)$.
(b) [5] Find the value of $f^{\prime}(5)$.
(c) [5] Find a linear approximation to $f(t)$ at $t=5$.
6. [15] Consider the polynomial $p(x)=x^{3}+x+1$.
(a) [8] Show that $p(x)$ has a root. Clearly state the reason(s).
(b) [7] Show that $p(x)$ can not have two or more roots. Clearly state the reason(s).
7. [10] Find horizontal asymptotes (if any) of

$$
f(x)=\frac{x+1}{\sqrt{x^{2}+1}+3 x} .
$$

8. [30] For the function $f(x)=\frac{1}{4} x^{4}+x^{3}$, fill in the required information. If none, write NONE.
(a) intervals of increase (if any):
(b) intervals of decrease (if any):
(c) positions of local maxima (if any):
(d) positions of local minima (if any):
(e) intervals where f is concave upward (if any):
(f) intervals where f is concave downward (if any):
(g) positions of inflection points (if any):
(h) Sketch the graph.
9. [15] A cardboard poster containing 512 in 2 of printed region is to have a margin of 2 in . at the top, 2 in . at the bottom, and 1 in . at each side. Determine the dimensions of a rectangular piece of cardboard with the smallest area that can be used to make such a poster.
10. [15] Compute the following integrals:
(a) $[5] \int e^{x} \sin \left(e^{x}\right) d x$
(b) $[5] \int_{1}^{e^{2}} \frac{(\ln x)^{2}}{x} d x$
(c) $[5] \int \frac{2-x^{2}}{6 x-x^{3}} d x$
11. [10] Find the derivative of

$$
F(x)=\int_{0}^{\sin x} \frac{t^{2}-1}{t^{2}+1} d t
$$

12. [15] Let $f(x)=\frac{2 x-1}{x+2}$.
(a) [3] Compute the derivative, $f^{\prime}(x)$.
(b) [6] Show that the function, f, is one-to-one.
(c) [6] Find the inverse function, $f^{-1}(x)$.
