MATH 125 -- FINAL EXAM -- SPRING 2001

T. Geisser, C. Lanski, V. Scharaschkin, and H. Skogman (in alphabetical order)

1. (30 points) Differentiate the following functions:
a) $\left(1+e^{x^{2}}\right)^{5}$
b) $\frac{x}{1+\sqrt{x}}$
c) $\int_{1}^{x^{3}} \frac{\sin (t)}{1+t^{3}} d t$
2. (30 points) (a) Give the definition of: $f^{\prime}(a)$ is the derivative of f at a.
(b) State the Mean Value Theorem (including its hypothesis).
3. (30 points) Find:
(a) $\int_{0}^{\sqrt{\pi}} x \sin \left(x^{2}\right) d x$
(b) $\int_{\ln 2}^{\ln 3} \frac{e^{x}}{1+e^{x}} d x$
(c) $\int x^{2} \sqrt{1+x} d x$
4. (20 points) Consider the function $f(x)=\left\{\begin{array}{cc}\frac{\left|x^{2}-9\right|}{x-3} & \text { if } x \neq 3 \\ 6 & \text { if } x=3\end{array}\right.$ defined for all $x \in \boldsymbol{R}$.

Describe all the $x \in \boldsymbol{R}$ at which f is continuous. You must justify your answer.
5. (40 points) Let $\mathrm{g}(\mathrm{x})=x^{9} e^{x}$. Complete each statement. Work out the answers below. The work itself and reasons for the answers must appear to get any credit.
i) g is increasing on the intervals \qquad
ii) g is decreasing on the intervals \qquad
iii) g has local maxima at \qquad
iv) g has local minima at \qquad
v) Which answers if any in iii) and iv) are absolute maxima or minima? \qquad
vi) The graph of g is concave up on the intervals \qquad
vii) The graph of g is concave down on the intervals \qquad
viii) The graph of g has points of inflection where $x=$ \qquad
6. (25 points) A rectangle with sides on the positive x-axis and positive y-axis is inscribed in the circle of radius 1 with center at the origin. If $A(x)$ is the area of this rectangle for $3 / 5 \leq x \leq 4 / 5$, so $A:[3 / 5,4 / 5] \rightarrow R$, find those $x \in[3 / 5,4 / 5]$ where A attains a maximum value and where A attains a minimum value, or say no such values exist. The rectangle is pictured just below.

7. (25 points) If $N \geq 2$ is a positive integer, use Riemann sums to show that

$$
(1 / 2)+(1 / 3)+\cdots+(1 / N) \leq \ln N .
$$

