MATH 126 - Fall '09

Final Exam

Name:
Student Number:
Please read all of the following rules carefully before proceeding.

- Check that this Exam contains 11 pages.
- Unless otherwise instructed, please clearly indicate all work involved in the solution of each problem. You will receive partial credit for partial progress toward a solution.
- You may use one 8×11 in letter paper with notes (both sides); you may not refer to any other books or notes during the course of the exam.
- You may not use a calculator on the exam.

Problem	Possible	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total	100	

Please encircle the name of your instructor:
A.Asok
D.Kim,
M.Iovanov
T.Sakai A.Tuffaha

Problem 1 (10 pts.)

Evaluate each of the following integrals
1.

$$
\int x \sin ^{2}(2 x) d x
$$

2.

$$
\int \frac{2 x+1}{x^{2}-7 x+12} d x
$$

Problem 2 (10 pts.)

Evaluate each of the following limits. Use the symbols $+\infty$ and $-\infty$ whenever appropriate. If a limit does not exist, state why.
1.

$$
\lim _{x \rightarrow 0} \frac{\tan ^{2} x+2 x}{x^{2}+x}
$$

2.

$$
\lim _{x \rightarrow \infty}\left(x e^{1 / x}-x\right)
$$

3.

$$
\lim _{x \rightarrow 0} \frac{e^{x}+1}{x^{2}}
$$

Problem 3 (10 pts.)

A region enclosed by $y=\sin x$ and $y=0$ for $0 \leq x \leq \pi$ is rotated about $x=-\pi / 2$. Find the volume of the resulting solid. Sketch the region being rotated, with the coordinate axes and the axis of rotation to support your answer.

Problem 4 (10 pts.)

All the materials required to build a pyramid are located at ground-level. The pyramid is built by laying a foundation and lifting material from the ground onto the part already erected. The base of the pyramid on the ground is a square with side 15 m , and the height of the pyramid is 10 m . Find, but DO NOT EVALUATE, an integral that expresses the total work required to lift the material to build the pyramid. Let ρ (measured in $\mathrm{kg} / \mathrm{m}^{3}$) be the density of the material. Draw a sketch showing the pyramid, the origin and the coordinate axis to support your answer. (Note: you can use $g=10 \mathrm{~m} / \mathrm{s}^{2}$ for the gravitational constant, or you can leave your answer in terms of ρ and g).

Problem 5 (10 pts.)

Determine the value of the integral

$$
\int_{-2}^{14} \frac{d x}{\sqrt[4]{x+2}}
$$

if it exists.

Problem 6 (10 pts.)

Find the sum of the series or show that the series is divergent.

1. $\sum_{n=0}^{\infty} \frac{5^{n}-2}{7^{n}}$.
2. $\sum_{n=3}^{\infty} \frac{1}{n(n-1)}$.

Problem 7 (10 pts.)

Determine whether the series converges or diverges. Justify your answer (state clearly any tests you use).

1. $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{\sqrt{n+9}}$.
2. $\sum_{n=0}^{\infty}\left(\frac{n^{2}+5}{2 n^{2}+1}\right)^{n}$.

Problem 8 (10 pts.)

If $T_{n}(x)$ is the n-th Taylor polynomial for $\sin (x)$ around $x=0$, what n is sufficient for $T_{n}(1)$ to approximate $\sin (1)$ with an error less than 0.001 ?

Problem 9 (10 pts.)

Solve the initial value problem

$$
\frac{d y}{d x}=x y e^{x^{2}} ; y(0)=1 .
$$

Problem 10 (10 pts.)

Find the area of the region enclosed by one loop of the curve $r=\sin (4 \theta)$.

