Math 125 - Final(Common) - Fall 2003

1. [20 points] Find the limits, if they exist, of the following expressions (you may not use L'Hospital's rule).

1a. $\lim _{x \rightarrow 0} x \cot x$
1b. $\lim _{x \rightarrow \infty}(\sqrt{x}-x)$
1c. $\lim _{x \rightarrow 0} \frac{\frac{1}{2+x}-\frac{1}{2}}{x}$.
2. [20 points] Consider

$$
f(x)= \begin{cases}\frac{x^{2}-x}{|x-1|} & \text { if } x \neq 1 \\ 2 & \text { if } x=1 .\end{cases}
$$

2a. Sketch the graph of $f(x)$.
2b. Find the numbers at which $f(x)$ is discontinuous. If none, write NONE.
You must justify your answer.
3. [15 points] If a snowball melts so that its surface area $\left(S=4 \pi r^{2}\right)$ decreases at a rate of $1 \mathrm{~cm}^{2} / \mathrm{min}$, find the rate at which the radius decreases when the radius is 10 cm .

4a. [10 points] Find the linear approximation to $f(x)=e^{x}$ near $x=0$.
4b. [5 points] Sketch the graph of f and its linear approximation in the x interval of $[-1,1]$.
5. Find the derivatives of the following functions:

5a. [5 points] $f(x)=\frac{x^{3}+1}{x^{2}+5}$
5b. [5 points] $f(x)=3 e^{2 x^{2}+1}$
5c. [5 points] $f(x)=\ln \left(1+x^{2}\right) \sin x$
6. [10 points] Use implicit differentiation to find the slope of the tangent line to the curve

$$
x^{2}+x y+y^{2}=3
$$

at the point $(1,1)$.
7. [25 points] Given $f(x)=2(\ln x)^{2}, x>0$, find (state the complete answer)

7a. vertical and horizontal asymptotes (if any);
7 b . intervals of increase and decrease;
7c. local minimum and maximum values (if any);
7d. intervals of concavity and inflection points (if any). 7e. Sketch the graph.
8. [25 points] Suppose you wish to make a rectangular box with a square base from two different materials. The material for the top and four sides costs $\$ 1 / \mathrm{sq} . \mathrm{ft}$. while the material for the base costs $\$ 2 / \mathrm{sq} . \mathrm{ft}$. Find the dimensions of the box of greatest volume if you are allowed to spend $\$ 144$ for all the material.
9. [10 points] A piecewise linear function is given by

$$
f(x)=\left\{\begin{array}{rll}
-3 & \text { if } & x \leq-2 \\
3 x / 2 & \text { if } & -2 \leq x \leq 4 \\
6 & \text { if } & x \geq 4
\end{array}\right.
$$

Evaluate the following definite integrals: [HINT: draw a graph, think of areas of triangles and rectangles.]

9a. $\int_{-10}^{-2} f(x) d x$
9b. $\int_{-2}^{2} f(x) d x$
9c. $\int_{-10}^{2} f(x) d x$
9d. $\int_{0}^{4} f(x) d x$
10. [10 points] Express the area, under the curve $y=3 x^{2}+4 x-2$, above the x-axis, and between the lines $x=1$ and $x=2$, as a definite integral. Evaluate, and simplify - the area is a whole number.

11a. [5 points] Consider $G(x)=\int_{0}^{x} t^{3} \sin t d t$.
Find $G^{\prime}(x)=$
11b. [5 points] Consider $H(x)=\int_{0}^{x^{2}} t^{3} \sin t d t$.
Find $H^{\prime}(x)=$
12. Evaluate the following integrals (give your answers in a simplified form).

12a. [10 points] $\int\left(2 x^{3}+5 \sqrt{x}+3 \cos (x)-10 x^{-1}+8 e^{-2 x}\right) d x$
12b. [5 points] $\int_{0}^{\pi / 4} \cos (2 x)(\sin (2 x))^{3} d x$
12c. [5 points] $\int \frac{3 x}{\left(x^{2}+2\right)} d x$
12d. [5 points] $\int \frac{3 x}{\left(x^{2}+2\right)^{5}} d x$

