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Preface

My intention in writing this booklet is to provide an introduction to scientific
computing using MATLAB. I originally wrote the booklet for students in a second
semester calculus class at the University of Southern California, so I assume that
the reader has some familiarity with calculus (about what one would learn in a one
semester class) but need not have any knowledge of linear algebra or any experience
programming.

The booklet consists of six lessons that can each be completed in about an
hour (although more time will be needed practicing the concepts in each lesson).
Each lesson is followed by a worksheet. The lessons were originally written some
years ago based on an earlier version of MATLAB. Later versions of MATLAB
may not behave exactly as described in this booklet. Also, the default MATLAB
settings on the computer on which you are working may be different from the default
settings assumed here. This means that there may be minor differences in how
MATLAB looks, feels, and functions on your computer and what is described here.
For example, some of the error messages may have changed slightly, the command
window may be ’docked’ or ’undocked’, and the icons for changing directories may
look different and be located in a different place. However, these are all minor
differences. Ask your instructor if you are confused about anything.

By learning scientific computing you are opening up many new possibilities for
not only applying mathematics but also doing mathematics. Indeed, you will have
unleashed a powerful new tool for mathematical exploration. I wish you the very
best in the journey you are about to undertake.

Cymra Haskell
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1 Matrices and Vectors

When you think of arithmetic, you probably think of adding, subtracting, multi-
plying and dividing numbers. However, basic arithmetic in MATLAB is concerned
with matrices. In this lesson, we recall what matrices are and what it means to
perform various arithmetic operations with them. This will lay the groundwork for
introducing MATLAB in the next lesson.

1.1 General Terminology

A matrix is a rectangular array of numbers. It is usually written with brackets
enclosing the numbers on either side. The following are all examples of matrices.

a) A =
(

1 4 1 1
−1 0 6 5

)

b) B =

2 −1 0
3 5 4
0 3 −7


c) C =

(
3.2 −2.5 4.0 10.7 −5.4

)
d) D =

0
1
2


e) E =

(
17
)

The number of rows and columns is called the dimension of the matrix. For
instance, the matrix A above has 2 rows and 4 columns and is referred to as a 2× 4
(read, “two by four”) matrix. The matrix B is 3× 3, C is 1× 5, D is 3× 1, and E is
1× 1. Notice that the number of rows is always stated first followed by the number
of columns. Thus, D is a 3× 1 matrix and not a 1× 3 matrix. If a matrix has the
same number of rows as columns then it is called a square matrix. The matrices
B and E above are both square matrices. If a matrix has only one row or only one
column then it can also be called a vector. More specifically, a matrix that has
only one row is called a row vector and a matrix with only one column is called a
column vector. For instance, C, D, and E are all vectors; C is a row vector, D
is a column vector, and E is both a row vector and a column vector. Notice that a
1×1 matrix such as E above is simply a number. It can be written without brackets
surrounding it. It is both a row vector and a column vector, but is most commonly
referred to as a scalar.

The rows of a matrix are numbered from top to bottom and the columns are
numbered from left to right. For example, the first row of A is(

1 4 1 1
)
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and the second column is (
4
0

)
.

The numbers in a matrix are called entries. They can be identified by the row and
column that they are in. For example, the entry in the second row and first column
of A is -1 and the entry in the second row and third column of B is 4. If M is a
matrix, then Mij refers to the entry in its i’th row and j’th column. For example
A21 = −1 and B23 = 4. Notice that, just as the dimension of a matrix is the
number of rows followed by the number of columns, an entry in a matrix is specified
by stating first its row number and then its column number. Thus, A21 = −1 but
A12 = 4. Two matrices are equal if and only if they have the same dimension and
their corresponding entries are equal to each other.

The transpose of a matrix M is the matrix that is obtained when the rows of
M are turned into columns (and vice versa). The transpose of M is denoted M t.
For instance, consider the matrix A above. To form At we take the first row of A(

1 4 1 1
)

and write it as a column, 
1
4
1
1

 .

This is the first column of At. Similarly, we take the second row of A and write it
as a column obtaining 

−1
0
6
5

 .

This is the second column of At. Thus,

At =


1 −1
4 0
1 6
1 5

 .

Shown below are the transposes of B, C, D and E.

Bt =

 2 3 0
−1 5 3
0 4 −7

 , Ct =


3.2
−2.5
4.0
10.7
−5.4

 , Dt =
(
0 1 2

)
, Et = 17.

Notice that if M is an n×m matrix then M t is an m×n matrix and that (M t)ij =
Mji. For example, (Bt)23 = 3 = B32 and (Ct)41 = 10.7 = C14.
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1.2 Adding and Subtracting Matrices

If two matrices A and B have the same dimension then we define A+ B to be the
matrix that is formed when corresponding elements of A and B are added together.
Similarly, A−B is the matrix that is formed when each element in B is subtracted
from its corresponding element in A. For example(

2 −5 0
−1 4 5

)
+
(

0 3 2
1 4 −2

)
=
(

2 −2 2
0 8 3

)
,(

2 −5 0
−1 4 5

)
−
(

0 3 2
1 4 −2

)
=
(

2 −8 −2
−2 0 7

)
,

but (
2 −5 0
−1 4 5

)
+

0 1
3 4
2 −2


is not defined. Notice that addition of matrices, like addition of numbers, is both
commutative and associative. In other words, if A, B and C all have the same
dimension, then

A+B = B +A

A+ (B + C) = (A+B) + C

If all of the entries in a matrix are 0 then it is called a zero matrix. Here are some
examples of zero matrices:

(
0 0 0

)
,

(
0 0 0 0
0 0 0 0

)
,

0 0 0
0 0 0
0 0 0

 ,

0 0
0 0
0 0


A zero matrix will often be written 0 irrespective of its dimension. Zero matrices play
the same role in the arithmetic of matrices as the number 0 does in the arithmetic
of numbers. In particular, they are additive identities. This means that given any
matrix A and the zero matrix 0 that has the same size as A,

A+ 0 = 0 +A = A.

The negative of a matrix A is the matrix that is obtained by multiplying each entry
in A by −1. The negative of A is denoted −A. For example

−
(

2 −5 0
−1 4 5

)
=
(
−2 5 0
1 −4 −5

)
Notice that A + (−B) is the same as A − B. Given any matrix A, the negative of
A is the additive inverse of A. In other words,

A+ (−A) = −A+A = 0.
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1.3 Multiplying Matrices by a Scalar

Recall that a scalar refers to a 1 × 1 matrix which is just a number. Given any
scalar, k, and any matrix A, we define the products kA and Ak to be the matrix
that is obtained when each entry in A is multiplied by k. For example

5.2
(

0 3 2
1 4 −2

)
=
(

0 3 2
1 4 −2

)
5.2 =

(
0 15.6 10.4

5.2 20.8 −10.4

)
Mutliplication by a scalar is distributive over addition. In other words, if k is a
scalar and A and B are matrices that have the same dimension then

k(A+B) = kA+ kB

Notice that the negative of a matrix is obtained by multiplying it by −1. In other
words,

(−1)A = −A

for any matrix A. Also, if k is a positive integer then kA is the same as adding A
to itself k times. For example,

3A = A+A+A.

1.4 The Product of Two Matrices

If A is an n × p matrix and B is an p ×m matrix then the product AB is defined
and is an n×m matrix. Notice that the product is only defined when the number
of columns in A is equal to the number of rows in B. If this is not the case, then
the product is not defined. (There is one exception to this; the product is always
defined if either A is 1 × 1 or B is 1 × 1 since that matrix is then a scalar.) The
definition of the product might seem rather convoluted at first, but you will see later
in this lesson why it is defined the way it is.

We define the product AB by defining its ij’th element, (AB)ij . To find this
element, consider the i’th row of A(

Ai1 Ai2 Ai3 . . . Aip
)

and the j’th column of B 
B1j

B2j

B3j
...
Bpj

 .

Notice that these two vectors have the same number of entries; they both have p
entries. Multiply the first entry in the row vector with the first entry in the column
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vector, the second entry in the row vector with the second entry in the column
vector etc. This yields p numbers each of which is the product of an entry in A and
an entry in B. Add these numbers together to obtain (AB)ij . In other words,

(AB)ij = Ai1B1j +Ai2B2j +Ai3B3j + . . . AipBpj .

To illustrate this definition, consider the matrices

A =
(
−1 3 5
2 −1 −2

)
and B =

 1 3
2 0
−1 2

 .

We will find the product AB. Notice that A is 2× 3 and B is 3× 2, so the number
of columns in A is equal to the number of rows in B. This means that the product
is defined and is a 2 × 2 matrix. We will find each of its entries one at a time. To
find the entry in the first row and first column, consider the first row of A and the
first column of B: (

−1 3 5
)

and

 1
2
−1

 .

Multiply the corresponding entries and add them to obtain

(−1)(1) + (3)(2) + (5)(−1) = 0.

To find the entry in the first row and second column, consider the first row of A and
the second column of B:

(
−1 3 5

)
and

3
0
2

 .

Multiply the corresponding entries and add them to obtain

(−1)(3) + (3)(0) + (5)(2) = 7.

To find the entry in the second row and first column, consider the second row of A
and the first column of B:

(
2 −1 −2

)
and

 1
2
−1

 .

Multiply the corresponding entries and add them to obtain

(2)(1) + (−1)(2) + (−2)(−1) = 2.
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To find the entry in the second row and second column, consider the second row of
A and the first column of B:

(
2 −1 −2

)
and

3
0
2

 .

Multiply the corresponding entries and add them to obtain

(2)(3) + (−1)(0) + (−2)(2) = 2.

Thus the product is

AB =
(

0 7
2 2

)
Here is another example worked out more compactly. Notice that the first matrix

is 4× 2 and the second matrix is 2× 1 so the product is a 4× 1 matrix.
−5 2
0 1
2 3
0 0

( 1
−2

)
=


(−5)(1) + (2)(−2)
(0)(1) + (1)(−2)
(2)(1) + (3)(−2)
(0)(1) + (0)(−2)

 =


−9
−2
−4
0


Matrix multiplication has some of the properties that multiplication of numbers

has but not all of them. Like multiplication of numbers, it is associative and dis-
tributive over addition. In other words, if A and B are both n× p, C is p× q, D is
q × r, and E and F are both p×m then

A(CD) = (AC)D
A(E + F ) = AE +AF

(A+B)E = AE +BE

However, it is not commutative. Indeed, if A is n × p and B is p ×m and n 6= m
then BA is not defined so it certainly cannot be equal to AB. Even when AB and
BA are both defined and have the same size, they are not necessarily equal to each
other. For instance, (

1 2
−1 −2

)(
−2 4
1 −2

)
=
(

0 0
0 0

)
,

but
(
−2 4
1 −2

)(
1 2
−1 −2

)
=
(
−6 4
3 −2

)
In other words,

Matrix multiplication is not commutative.
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With real numbers, we know that if xy = 0 then either x = 0 or y = 0. We use this
property a lot when solving equations. For example, one way to solve the equation

x2 − 4x+ 3 = 0

is to factor the left-hand side obtaining

(x− 1)(x− 3) = 0.

It follows that either x− 1 = 0 (i.e x = 1) or x− 3 = 0 (i.e. x = 3). This property
is not true with matrix multiplication. As shown in the example above it is possible
to have AB = 0 without either A or B being equal to 0.

AB = 0 6⇒ A = 0 or B = 0

Square matrices that have 1’s on the main diagonal and 0’s everywhere else are
called identity matrices. Here are some examples of identity matrices:

I1 =
(
1
)
, I2 =

(
1 0
0 1

)
, I3 =

1 0 0
0 1 0
0 0 1

 , I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


They play the same role in the multiplication of matrices that 1 plays in the mul-
tiplication of numbers. In particular they are multiplicative identities. In other
words, if A is an n×m matrix then

AIm = A and InA = A.

1.5 Interpreting Matrix Products in Applications

The definition of the product of two matrices seems mysterious to most people the
first time they see it. The following examples illustrate why the product is defined
the way it is and how it can be interpreted in different contexts.

Example 1: (Adapted from ‘Finite Mathematics’ by R. A. Barnett, M. R. Ziegler,
and K. E. Byleen)

A company that makes two-person and four-person inflatable boats has two man-
ufacturing plants: one in Massachusetts and the other in Virginia. Each boat is first
cut in the Cutting Department, then assembled in the Assembly Department and
then packaged in the Packaging Department. The time needed in each department
to work on a boat depends on the type of boat and the wages of the workers in each
department depends on the plant in which they work. The matrix T below shows
the time needed (in hours) for each boat in each department.

T =
(

1.0 0.9 0.3
1.5 1.2 0.4

)
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The rows of T show the times for two-person and four-person boats in that order,
whilst the columns show the times spent in the Cutting Department, the Assembly
Department, and the Packaging Department in that order. For instance, notice that
T23 = 0.4. This means that it takes 0.4 hours to package a four-person boat in the
Packaging Department. The matrix W below shows the wages (in dollars per hour)
of the workers in each department at each plant.

W =

17 15
12 10
11 10


The rows of W show the wages for the workers in the Cutting Departments, As-
sembly Departments, and Packaging Departments in that order, whilst the columns
show the wages of the workers at the Massachusetts plant and at the Virginia Plant
in that order. For instance, notice that W21 = 12. This means that a worker in the
Assembly Department at the Massachusetts plant earns $12 per hour.

Notice that T is 2 × 3 and W is 3 × 2. This means that the product TW is
defined and is a 2×2 matrix. In the calculation of TW below we have put labels on
the rows and columns of T and W to remind us of their meaning. We will see why
the rows and columns of the product matrix are labeled the way they are when we
have understood the meaning of the product matrix TW .

TW =
C A P

2
4

(
1.0 0.9 0.3
1.5 1.2 0.4

) M V
C
A
P

17 15
12 10
11 10

 =
M V

2
4

(
31.1 27
44.3 38.5

)

To understand what TW tells us about the manufacture of these boats, consider
first the entry in the first row and first column. This entry was obtained using the
first row of T and the first column of W :

(1.0)(17) + (0.9)(12) + (0.3)(11) = 31.1.

Notice that 1.0 is the number of hours it takes to cut a 2-person boat in the Cutting
Department and that 17 is the number of dollars per hour workers in the Cut-
ting Department are paid at the Massachusetts plant. In other words, (1.0)(17) is
the amount it costs to cut a 2-person boat at the Massachusetts plant. Similarly,
(0.9)(12) is the amount it costs to assemble a 2-person boat at the Massachusetts
plant and (0.3)(11) is the amount it costs to package a 2-person boat at the Mas-
sachusetts plant. Thus, the sum 31.1 is the cost to manufacture (cut, assemble and
package) a 2-person boat at the Massachusetts plant. Similarly the entry in, say,
the second row and second column, is the cost to manufacture a 4-person boat at
the Virginia plant. Thus, the matrix TW indicates the cost of manufacturing each
of the different types of boats at each of the different plants.

Notice that the units of the entries in T are $/hour and the units of the entries in
W are hours. So, it makes sense that the units of TW would be $/hour×hours = $.
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To multiply two matrices A and B you need the number of columns of A to be equal
to the number of rows of B. The dimension of the product is then the number of
rows of A and the number of columns of B. The labels work similarly. When we
multiplied T and W together we saw that the labels on the columns of T matched
the labels on the rows of W . Moreover, the labels on the rows of TW were the
labels on the rows of T and the labels on the columns of TW were the labels on the
columns of W .

On the other hand, consider the product WT . This is defined and is a 3 × 3
matrix:

WT =

M V
C
A
P

17 15
12 10
11 10

 C A P
2
4

(
1.0 0.9 0.3
1.5 1.2 0.4

)
=

? ? ?
?
?
?

39.5 33.3 11.1
27.0 22.8 7.6
26.0 21.9 7.3

 .

However, the column labels of W don’t match the row labels of T and we see, upon
reflection, that the matrix doesn’t really mean anything. For instance, consider the
entry in the first row and second column that was calculated using the first row of
W and the second column of T :

(17)(0.9) + (15)(1.2) = 33.3.

The number 17 in this calculation represents the number of dollars per hour a
worker in the Cutting Department receives at the Massachusetts plant. This is
multiplied by 0.9 which is the number of hours it takes to assemble a 4-person boat
in the Assembly Department. There is no discernible reason to multiply these two
numbers together.

Example 2: (Adapted from ‘Finite Mathematics’ by R. A. Barnett, M. R. Ziegler,
and K. E. Byleen)

A nationwide air freight service has connecting flights between five cities as
illustrated in the diagram below.
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This diagram can be represented by the incidence matrix A below where Aij is
equal to 1 if there is a flight from city i to city j and is equal to 0 otherwise.

A =


0 1 1 1 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 1
1 1 0 0 0


Notice that the row number indicates the city of departure and the column number
indicates the city of arrival.

Let’s consider the product matrix AA = A2:

A2 =

Arrive

D
ep

ar
t


0 1 1 1 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 1
1 1 0 0 0



Arrive

D
ep

ar
t


0 1 1 1 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 1
1 1 0 0 0



=

Arrive

D
ep

ar
t


0 1 1 1 1
0 0 0 1 0
0 1 0 0 1
1 1 1 0 0
0 1 2 1 0

 .

It looks at first as if the column label of the first matrix doesn’t match up with the
row label of the second matrix. However, in a sense it does, since any city that you
arrive at can then be departed from. This is how these labels should be interpreted
in order to make sense of the product matrix. To understand the full product, notice
that AijAjk can take on two possible values: 0 or 1. When it is possible to fly from
City i to City j and from City j to City k both Aij = 1 and Ajk = 1, so the product
is 1. When it is not possible to do this because one of these flights doesn’t exist,
then at least one of Aij and Ajk will be 0 which will make the product equal to 0.
Thus the value of AijAjk tells us whether or not it is possible to fly i→ j → k, and

(A2)ik = Ai1A1k +Ai2A2k +Ai3A3k +Ai4A4k +Ai5A5k

tells us how many ways there are to get from City i to City k if we insist on taking
exactly 2 flights to get there. Thus, each entry in A2 tells us how many ways there
are of getting from the city determined by the row number to the city determined
by the column number by taking exactly two flights. It follows that A + A2 shows
the number of ways of flying from any city to any other by taking at most 2 flights.

Similarly, AAA = A3 shows the number of ways to get between each pair of
cities taking exactly three flights and A + A2 + A3 shows the number of ways of
flying from any city to any other by taking at most 3 flights.
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1.6 The Length of a Vector and the Distance Between Vectors

Most of the matrices you will deal with this semester when you use Matlab will
be vectors. A vector is simply a list of numbers. We think of a vector as small if
all of its entries are close to 0 and large if any of its entries are large (in absolute
value). More precisely, we define the length of a vector x =

(
x1 x2 . . . xn

)
or

x =
(
x1 x2 . . . xn

)t to be the square root of the sum of the squares of all of its
entries and denote the length by ||x||. In other words

||x|| =
√
x2

1 + x2
2 + . . . x2

n.

If x is a row vector then xt is a column vector and xxt is a scalar and is equal to
the sum of the squares of all of the entries in x. Thus

||x|| =
√
xxt.

Similarly, if x is a column vector then

||x|| =
√
xtx.

For example, if x =
(
−3 0 4

)
then

||x|| =

√√√√√(−3 0 4
)−3

0
4

 =
√

(−3)2 + 02 + 42 = 5.

Two vectors x and y that have the same dimension are close to each other if
all of their corresponding entries are close to each other. In other words, they are
close if x− y is small. We think of ||x− y|| as the distance between x and y. For
instance, suppose x =

(
−2 5 4

)
and y =

(
−2.1 30 4.01

)
. Even though the first

and third entries in x and y are close to each other, the second entry is not and we
see that the distance of x from y,

||x− y|| = ||
(
0.1 −25 −0.01

)
|| =

√
0.12 + (−25)2 + (−0.01)2 = 25.000002

is not particularly small.

1.7 Further Study

Linear algebra is the study of matrices and vectors. If you pursue your studies in
science and/or engineering you will undoubtedly see that matrices and vectors are
ubiquitous. For instance, they are used extensively in computer graphics, operations
research, graph theory, differential equations, and geometry. The introduction to
matrices given here is very rudimentary. The goal in this lesson was to cover them
sufficiently to allow you to use Matlab and other high-level scientific programming
languages effectively. In particular, you should notice that we haven’t discussed
what it means to divide two matrices.
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Worksheet 1

1. Consider the following matrices.

A =
(

4 1 3 2
1 4 3 2

)
B =

(
1 2
9 0

)
C =

(
5 0 4

)

D =


−8 2 0 4
−1 2 3 7
1 6 6 5
5 9 7 −3

 E =
(
−3.4

)
F =


2
−1
3
5
6


a) What is the dimension of A?

b) What is the dimension of C?

c) Which of these matrices are vectors?

d) Which of these matrices are scalars?

e) Which of these matrices are square matrices?

f) Find A23.

g) Find B22.

h) Find D32.

i) Find At.

j) Find F t.

k) Find (At)32.

l) Find (Bt)12.

m) Find (Dt)43.

2. Consider the following matrices.

A =
(

4 1
3 −2

)
B =

(
0 2
1 4

)
C =

5 0
1 8
2 3

 D=
(
−1 2 0
1 0 7

)

E =
(
10 4 −1

)
F =

 2
−1
3

 G =

1 −1 0
0 2 −1
0 1 1


Find the sums and products below. If the result is undefined write ‘undefined.’

a) A−B
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b) B +D

c) C +Dt

d) 5A

e) AB

f) BD

g) EC

h) EF

i) FE

j) GD

k) GF

3. (Adapted from an exercise in ‘Finite Mathematics and its Applications,’ by
Goldstein, Schneider, and Siegel.)

A bakery makes three types of cookies: I, II, and III. Each type of cookie is
made using four ingredients: A, B, C, and D. The number of units of each
ingredient used in each type of cookie is given by the matrix M below. The
cost per unit of each of the four ingredients (in cents) is given by the matrix
C. The selling price of each cookie (in cents) is given by the matrix S. An
order is received. The number of each type of cookie that is ordered is given
by the matrix R.

M =

1 0 2 4
3 2 1 1
2 5 3 1

 C =


10
20
15
17


S =

175
150
225

 R =
(
10 20 15

)
For each matrix described below,

i) state the dimension of the matrix; and

ii) explain what the entries in the matrix tell you about the bakery;

(Hint: It would probably be very helpful to label the rows and columns of M ,
C, S and R above.)

a) RM

b) MC

c) RS
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d) R(S −MC)

4. (Adapted from an exercise in ‘Finite Mathematics and its Applications,’ by
Goldstein, Schneider, and Siegel.)

Three professors teaching the same course have entirely different grading poli-
cies. The fraction of A’s, B’s, C’s, D’s, and F’s that each professor gives to
the students in his/her class is shown in the matrix M below. The number
of points a grade of A, B, C, D, and F is worth is shown in the matrix P
below. The number of students that each professor has is shown in the matrix
N below.

M =

.25 .35 .3 .1 0
.1 .2 .4 .2 .1
.05 .1 .2 .4 .25


P =

(
4 3 2 1 0

)
N =

(
240 120 40

)

a) Consider the matrix whose entries show the total number of A’s, B’s, C’s,
D’s and F’s that are awarded. Write this matrix as the product of two
of the matrices M , M t, P , P t, N , and N t.

b) Consider the matrix whose entries show the average grade (in points)
given by each professor. Write this matrix as the product of two of the
matrices M , M t, P , P t, N , and N t.

5. Alice and Betty are doing an experiment to determine how fast a culture of
bacteria grows. Initially, the culture contains one hundred cells, and one day
later it contains two hundred cells. They plan to take measurements every day
for 5 days in a row (giving 6 measurements in all). Alice thinks the culture
will grow linearly, so she predicts that the measurements (in hundreds of cells)
that they get will be

a =
(
1 2 3 4 5 6

)
.

Betty thinks that the culture will grow exponentially, so she predicts that the
measurements will be

b =
(
1 2 4 8 16 32

)
.

The actual measurements turned out to be

d =
(
1 2 3 6 10 20

)
.

Clearly, neither Alice nor Betty was exactly correct. However, who was closer?
Explain.
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2 Using Matlab like a Graphing Calculator

MATLAB is a high level programming language specifically designed for scientific
computation. The advantages of using MATLAB over lower level programming
languages is that it can be used effectively without having a deep understanding
of the inner workings of the computer and it is relatively easy to do sophisticated
graphics.

The easiest way to learn how to use a piece of software is to use it! In these
lessons, please do type in everything as instructed, but don’t feel limited by what is
in the lesson. If you find yourself wondering what MATLAB might do if you typed
in such-and-such, find out by typing it in!

2.1 Goals of this lesson

In this lesson you will learn how to

• use MATLAB interactively to perform calculations as you would on a scientific
calculator;

• create variables in the workspace that can be scalars, vectors, or matrices;

• create patterned vectors and matrices;

• access and change entries in a vector or matrix;

• perform the usual arithmetic operations with matrices;

• perform element-wise operations with matrices; and

• sketch the graph of a function.

2.2 Using MATLAB as a Scientfic Calculator

When you first open MATLAB, the Command Window appears. In this window
you can give commands to MATLAB. The commands are typed at the prompt

>>
and are executed by MATLAB when you type return. For instance, if you want
MATLAB to calculate the value of 0.43−1.5 you can type

>> 0.43^(-1.5)
followed by the return key, just as you would on a calculator. MATLAB responds
with

ans =
3.5465

In these lessons, whatever appears after the prompt >> you should type (DO IT!).
This should always be followed by the return key. After showing you what to type,
we display the output that is produced by MATLAB and that you should see in
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the command window. For instance, here is how you can use MATLAB to calculate
5.65(4.3 + 7− 2)/5.4:

>> 5.64*(4.3 + 7 - 2)/5.4
ans =

9.7306

The number π can be accessed in MATLAB by typing pi and the number e is
accessed by typing exp(1):

>> pi
ans =

3.1416
>> exp(1)
ans =

2.7183
All the standard functions on a calculator are accessed in a predictable way in
MATLAB. Here is a list of functions that are commonly used in calculus and their
MATLAB equivalents.

Name Math notation Matlab
sine sin sin

cosine cos cos
tangent tan tan
cosecant csc csc
secant sec sec

cotangent cot cot
log base e ln log
log base 10 log10 log10
log base 2 log2 log2

exponential exp
square root √ sqrt

absolute value | | abs

When you use these functions, the input should be enclosed in round brackets. Here
are some examples.

>> sin(pi/7)
ans =

0.4339
>> log10(0.001)
ans =

-3
>> log(exp(-10.3))
ans =

-10.3000
>> exp(sqrt(9) - 3)
ans =
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1
You will find that you often want to repeat a command or slightly modify a

command. To save you typing the command out again, you can use the up and
down arrow keys to access previous commands and the right and left arrow keys to
edit them. For instance, if you type the up arrow key, then the last command that
you entered will appear at the prompt:

>> exp(sqrt(9) - 3)
Instead of typing return, type the up arrow key again. This time the command prior
to that one appears:

>> log(exp(-10.3))
Now, let’s edit this command. Using the left arrow key, move the cursor so that it
is between the g of log and the parenthesis, (. (You can also click there with the
mouse if you prefer.) Delete the word log and replace it with sin and then type
return.

>> sin(exp(-10.3))
ans =

3.3633e-05

2.3 Variables, Equals Sign as Assignment, and Suppressing Output

Notice that when MATLAB performs a calculation it stores the result in a variable
called ans. This is a variable in the workspace that can be accessed and used in the
next calculation. You probably have a button on your calculator that accesses the
result of the previous calculation; typing ans has the same effect in MATLAB. For
instance, the following code calculates the value of 1/(5 sin(π/7)) in three steps:

>> sin(pi/7)
ans =

0.4339
>> 5*ans
ans =

2.1694
>> 1/ans
ans =

0.4610
You can also create your own variables. For instance, when you type

>> x = 4
x =

4
MATLAB creates a variable in the workspace called x and stores the value 4 in this
variable. A ‘variable’ for MATLAB is really a location in memory. In other words,
MATLAB has located a block of memory that it refers to as x. Whenever x is typed
now in the workspace, MATLAB will look in that location and read off the value
that is stored there. Right now, the value is 4, so if we type

>> x^2 + x
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ans =
20

MATLAB calculates the value of x2 +x = 42 + 4. We can easily change the value of
x. For instance, suppose we want x to have the value −3. We can do this by simply
typing:

>> x = -3
x =

-3
Now when we calculate x2 + x we are calculating the value of (−3)2 + (−3):

>> x^2 + x
ans =

6
Variables in MATLAB are case-sensitive. In other words, x and X are different.
Since we haven’t introduced a variable X in this lesson MATLAB complains when
we ask it to do a calculation using X:

>> X^2 + X
??? Undefined function or variable ’X’.

It can’t perform the calculation because it doesn’t know what X is.

When we use an equals sign in ordinary mathematics it can mean different things
depending on the context. For instance, when we write

(x+ 3)(x− 2) = 0,

the equals sign indicates that we want to find all those values of x that make the
value of the expression on the left the same as the value of the expression on the
right. In this case, these values are -3 and 2. On the other hand, when we write

(x+ 3)(x− 2) = x2 + x− 6,

the equals sign here indicates that, whatever the value of x, the value of the expres-
sion on the left is the same as the value of the expression on the right. In general,
computers aren’t very good at dealing with ambiguity and in MATLAB an equals
sign can only be used in a very specific way and it has a very specific meaning. In
particular it is an assignment command; whenever you type an equals sign, it should
be preceded, on the left, by the name of a variable and it should be followed, on the
right, by an expression that can be evaluated. MATLAB responds by evaluating
the expression on the right and storing the result in the variable on the left. (If the
variable on the left doesn’t already exist in the workspace then it creates it, if it
does already exist in the workspace then its old value is lost and is replaced with
the value of the expression.) This meaning of the equals sign allows us to type some
expressions that look very weird on paper. For instance, consider what happens
when we type x = x + 3 in the Command Window. On paper, this is nonsense. To
MATLAB however, it makes perfect sense. It calculates the expression on the right
and gets x+ 3 = −3 + 3 = 0 (since the value of x in this lesson is presently −3) and
stores this number in the variable x. So now x has the value 0:
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>> x = x + 3
x =

0
When we use a variable to calculate a quantity and then store the value obtained
back in that same variable, we will say that we have ‘overwritten’ the old value with
the new value. Thus, in the example above, we overwrote x with x + 3. You will
see that it is very common to do this in scientific computing.

If we type a semicolon after a command but before typing return, MATLAB will
execute the command but will suppress the output. In other words, it won’t print
the output to the screen. For example, type:

>> y = 2*x + 5;
>>

It looks like MATLAB hasn’t done anything, but in fact it has. It calculated the
quantity 2x+ 5 = 2(0) + 5 = 5 and stored the result in a variable called y. Thus, if
you ask MATLAB what the value of y is or tell it to perform a calculation with y
it doesn’t complain the way it did with X above:

>> y
y =

5
>> y^2 - 10
ans =

15
Although right now it may seem strange to suppress the output (why would you
want MATLAB to calculate something if you didn’t want to see the result?), you
will see shortly that it is very useful to be able to do this. You will often have
MATLAB perform hundreds or thousands of calculations, and you wouldn’t want
to see hundreds or thousands of numbers being printed out to the screen.

When we create variables in calculus, we often give them suggestive names. For
instance, we might call the radius of a circle r, or the distance travelled d. Similarly,
when you create variables in MATLAB you will want to give them suggestive names.
A name doesn’t have to be a single letter only. It can actually be a name. For
instance, if a variable represents the radius of a circle you might call it radius.
However, it’s a good idea to avoid using names that are English names. This is
because many English names already have a meaning in MATLAB. For instance, if
a variable represented a length you might be tempted to call it length. However,
this is a bad idea, since length is a MATLAB command (see below) that calculates
the length of a vector. So, it’s a good idea to misspell or abbreviate names when
creating variables. For instance, you might call the variable len instead.

2.4 Creating Variables that are Matrices

The basic variable in MATLAB is a matrix rather than a number. For instance, the
variable x that we introduced above is considered by MATLAB to be a 1×1 matrix.
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Higher dimensional matrices can be constructed in MATLAB in several ways. The
simplest way is to type in the entries one by one; square brackets surround all of
the entries, the entries in each row are separated either by a space or by a comma,
and the rows are separated by a semi-colon. For instance, to create the variables

A =

 0 1
4 3
−2 0

 B =
(
1 3 0 −1

)

C =
(

2 −1 0
1 3 2

)
D =

(
4
−1

)
we can type:

>> A = [0 1; 4 3; -2 0]
A =

0 1
4 3
−2 0

>> B = [1 3 0 -1]
B =

1 3 0− 1
>> C = [2, -1, 0; 1, 3, 2]
C =

2 −1 0
1 3 2

>> D = [4; -1]
D =

4
−1

2.5 Creating Patterned Vectors and Matrices

As you will see when we discuss how to graph a function using MATLAB, we often
want to create vectors that are very long (it would not be unusual to have vectors
that have hundreds or thousands of entries) and whose entries start at one number
and increase incrementally until they reach another number. You wouldn’t want to
have to type out all these numbers, so MATLAB has a way of creating such vectors;
if you type a:b (where a and b are numbers) MATLAB interprets this to be the row
vector whose first entry is a and whose entries increase by 1 unit until they get to
b. Here are some examples:

>> 0:5
ans =

0 1 2 3 4 5
>> -2.3:0.7
ans =
−2.3000 −1.3000 −0.3000 0.7000
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>> 4.1:6.7
ans =

4.1000 5.1000 6.1000
If you want a different step size then you can type a:c:b. This is a row vector whose
first entry is a and whose entries increase by c units until they get to b, as illustrated
in the following example:

>> 0:.2:1.5
ans =

0 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000

The commands ones and zeros produce a matrix whose entries are all 1’s or
all 0’s respectively. When you use the command you indicate how many rows and
columns the matrix should have as shown in the examples below.

>> ones(2, 3)
ans =

1 1 1
1 1 1

>> zeros(2, 1)
ans =

0
0

The command eye produces an identity matrix. Since identity matrices are always
square, you only have to specify the number of rows you want the matrix to have
as shown in the example below.

>> eye(3)
ans =

1 0 0
0 1 0
0 0 1

When you create a large matrix (for instance when you create a vector using the
colon notation) it can be difficult to work out exactly how many entries it has. You
can do this with the size command (or length command in the case of a vector).
The size command tells you the number of rows and columns that a matrix has, the
length command tells you how many entries a vector has. Here are some examples
using these.

>> size(A)
ans =

3 2
>> ones(size(A))
ans =

1 1
1 1
1 1

>> length(B)
ans =
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4
>> length(3.2:.01:5.6)
ans =

241

If x is a vector then sum(x) is the sum of all its entries. If x is a matrix, then
sum(x) is a row vector consisting of the sum of the entries in each column. Here are
some examples:

>> sum(B)
ans =

3
>> sum(A)
ans =

2 4

2.6 Accessing and Changing Entries in a Matrix

If M is a matrix variable in MATLAB then M(1, 2) refers to the entry in the first
row and second column, in other words it’s M12. Similarly, M(3, 1) refers to the
entry M31 etc. To illustrate, consider the matrices A, B and D that you have in
your workspace. They should be:

A =

 0 1
4 3
−2 0

 , B =
(
1 3 0 −1

)
, D =

(
4
−1

)

>> A(3, 1)
ans =

-2
>> B(2, 1)
??? Index exceeds matrix dimensions.

Notice that, since B has only one row, there is no element B21, so MATLAB com-
plained when we tried to ascertain its value. Notice also that there is no zero’th row
or column, as illustrated in the following example.

>> A(0,1)
??? Subscript indices must either be real positive integers or
logicals.

If M is a row vector then you don’t need to specify which row the entry is in, since
it must be in the one and only row. In other words you can use M(2) as a short-hand
for M(1, 2). Similarly, if M is a column vector, M(3) means the same thing as M(3,
1). Here are two examples:

>> B(3)
ans =

0
>> D(1)
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ans =
4

We can easily change an individual entry in a matrix by assigning it a new value.
In the first example below, we change A11 so that it has the value 7, in the second
example, we change A21 so that it is the square of its previous value.

>> A(1, 1) = 7
A =

7 1
4 3
−2 0

>> A(2, 1) = A(2, 1)^2
A =

7 1
16 3
−2 0

We can access a whole row or column of a matrix M by using a colon. For
instance M(1, :) is the row vector consisting of all those entries that lie in the first
row and in any column of M . In other words, it is the first row of M . Similarly,
M(:, 2) is the column vector consisting of all those entries that lie in any row and
in the second column of M . In other words, it is the second column of M . Here are
two examples:

>> A(3, :)
ans =
−2 0

>> A(:, 1)
ans =

7
4
−2

In the examples below we use this notation to change a whole row or column of
a matrix. In the first example we return the matrix A to its original value by
reconstructing its first column. In the second example we try to change the first
row of A so that it is equal to the first column of A. However, since the length of
the row is different from the length of the column, MATLAB complains.

>> A(:,1) = [0; 4; -2]
A =

0 1
4 3
−2 0

>> A(1,:) = A(:,1)
??? Subscripted assignment dimension mismatch.

You can also add a whole row or column to a matrix. However, the row or column
you are adding has to be the correct size so that the result is still a matrix. In the
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next example we extend D making it into the 3× 2 matrix 4 2
−1 2
2 2


Notice, however, that the first way we try to do this it complains because the result
would not be a matrix.

>> D(:, 2) = 2*ones(3, 1)
??? Subscripted assignment dimension mismatch.
>> D(:, 2) = 2*ones(2, 1)
D =

4 2
−1 2

>> D(3, :) = 2*ones(1, 2)
D =

4 2
−1 2
2 2

2.7 Performing Arithmetic Operations with Matries

MATLAB interprets the operations +, -, * and ^ to mean matrix arithmetic. To
illustrate, consider the matrices A and C that you have in the workspace. Their
values should be:

A =

 0 1
4 3
−2 0

 and C =
(

2 −1 0
1 3 2

)
.

For instance, since A is 3 × 2 and C is 2 × 3, AC is defined and is a 3 × 3 matrix.
We can get MATLAB to find its value by typing:

>> A*C
ans =

1 3 2
11 5 6
−4 2 0

On the other hand, since A and C have different sizes, A + C is not defined and
MATLAB complains when we try to evaluate it:

>> A + C
??? Error using ==> plus
Matrix dimensions must agree.

Similarly, A2 means A multiplied by itself, which is not defined, since you can’t
multiply a 3× 2 matrix by a 3× 2 matrix. We see that MATLAB complains when
we try to evaluate it:

>> A^2
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??? Error using ==> mpower
Matrix must be square.

There is an exception to this. On paper, the expression A+ 5 is undefined because
you can’t add a 3 × 2 matrix to a 1 × 1 matrix (or scalar). However, MATLAB
allows you to add a scalar to a matrix. It interprets the sum to be the matrix that
is obtained when the scalar is added to each entry in the matrix:

>> A + 5
ans =

5 6
9 8
3 5

An apostrophe is used to indicate the transpose of a matrix:
>> A’ - C
ans =
−2 5 −2
0 0 −2

2.8 Performing Operations on Each Entry in a Matrix Individually

Although it’s wonderful how easy it is to do matrix arithmetic in MATLAB, you will
often find that you don’t want to do matrix arithmetic, but instead want to perform
some kind of arithmetic operation to the individual entries of a matrix or vector. As
a general rule, if you precede an operation with a period, then that tells MATLAB
to perform that operation on each entry of the matrix individually rather than to
perform matrix arithmetic. The examples in this section illustrate this. They use
the matrices A, C and D in the workspace whose values are:

A =

 0 1
4 3
−2 0

 , C =
(

2 −1 0
1 3 2

)
, and D =

 4 2
−1 2
2 2

 .

The expression A*D means the matrix product of A and D. This is undefined
since the number of columns of A is not equal to the number of rows of D. However,
if we precede the * with a period and type A.*D then each entry in A is multiplied
by the corresponding entry in D as shown below:

>> A*D
??? Error using ==> mtimes
Inner matrix dimensions must agree.
>> A.*D
ans =

0 2
−4 6
−4 0

The operation .∗ is only defined if the dimensions of the two matrices are the same:
>> C*A
ans =
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−4 −1
8 10

>> C.*A
??? Error using ==> times
Matrix dimensions must agree.

Similarly, ./ means divide corresponding entries and .^n means raise each entry
to the power of n. The following examples illustrate this. Notice that when we try
to divide by zero MATLAB returns Inf as the answer, but alerts us with a warning
that we may be doing something we weren’t expecting to do.

>> A./D
ans =

0 0.5000
−4.0000 1.5000
−1.0000 0

>> A./C’
Warning: divide by zero.
ans =

0 1
−4 1
−Inf 0

>> A.^2
ans =

0 1
16 9
4 0

You will never need to type .+ or .- since the matrix interpretation of + and -
already is to add (respectively subtract) corresonding entries.

As a general rule, MATLAB functions such as sin or exp will accept a vector and
not just a number as their input. When the input is a vector, MATLAB evaluates
the function at each entry in the vector and returns this whole vector of values. As
you will see in the next section, this is very useful for sketching graphs of functions.

>> x = 0:(pi/6):pi
x =

0 0.5236 1.0472 1.5708 2.0944 2.6180 3.1416
>> sin(x)
ans =

0 0.5000 0.8660 1.0000 0.8660 0.5000 0.0000

2.9 Sketching the Graph of a Function

MATLAB sketches functions the way you learnt to do so many years ago: by plotting
points. To illustrate this, let’s consider the function

f(x) =
x

x2 + 1
.
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If you were to plot this function by plotting points you would start by setting up a
table similar to the one below.

x y
-2 -0.4
-1 -0.5
0 0
1 0.5
2 0.4

You would then plot these points and connect the dots. To do this in MATLAB we
first create a vector with all of the x-coordinates. You can call this vector whatever
you want. We’ll call it x since that seems like a reasonable choice in the context.

>> x = -2:2
x =
−2 −1 0 1 2

Now we need to create the vector that has all of the corresponding y coordinates.
Let’s do this one step at a time. First notice that

>> x.^2
ans =

4 1 0 1 4
is a vector consisting of each coordinate squared. This means that

>> x.^2 + 1
ans =

5 2 1 2 5
is a vector consisting of each coordinate squared plus one. To get the vector of
y-values, we need to take each value in x and divide by its corresponding value in
the vector above. In other words we need to dot-divide each entry in x by each
entry in the vector above. Thus

>> y = x./(x.^2 + 1)
y =
−0.4000 −0.5000 0 0.5000 0.4000

is the vector of y-values. Notice that this looks like the formula for the function
where all of the operations have a dot preceding them. We can then use the plot
command to plot the points:

>> plot(x, y)
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Look for the plot on your screen; it will be in a different window. It’s not a very
detailed plot of the function and it looks a little funny because we only used a few
points. To get a better plot we should use more points that cover a wider range and
are closer together:

>> x = -5:.1:5;
>> y = x./(x.^2 + 1);
>> plot(x, y)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Notice that we used the semicolon to suppress the output when creating the vectors
x and y; there was no reason for us to see all of those numbers.

The hardest part of plotting a graph on a computer or calculator is deciding
what x-values to use in your plot. There are basically two issues; what range of x
values should be used, and how large the spaces should be between the x-values.
There is no easy answer to either question. Calculators often use −10 ≤ x ≤ 10 as
a default range. This may be a good place to start if you don’t otherwise have any
idea of what range to use. To determine the spaces between the x-values, remember
that the smaller the spaces are, the more realistic the graph will look. A good rule
of thumb is to choose the spacing depending on the range, so that there are about
500 points being plotted. In the example below, we sketch the graph of

g(x) = sin(π/x).
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Recall that this graph oscillates infinitely often as x approaches 0. Notice that near
0 we use more points because we want to see these oscillations on the graph, (we’ll
never see all of them though; we’d have to use infinitely many points for that!), and
we don’t attempt to sketch the graph too near to x = 0.

>> x1 = -3:.1:-1;
>> x2 = -1:.001:-.1;
>> x3 = .1:.001:1;
>> x4 = 1:.1:3;
>> x = [x1, x2, x3, x4];
>> y = sin(1./x);
>> plot(x, y)
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Notice that the graph should be oscillating between -1 and +1 but sometimes it
seems to turn around before -1 or before +1. This is because, the x-value where
it achieves the −1 or the +1 is not included in the x-values being plotted. So, the
graph as shown is misleading and doesn’t accurately depict the complete graph of
the function.

Notice that, when you plot a function using Matlab, it connects the dots. This
means that a jump discontinuity in a function will look like a vertical line (or a
nearly vertical line, depending on how much space there is between x values in your
plot) and if a function has a vertical asymptote, then Matlab will connect the pieces
on either side of the asymptote. For instance, consider the function

h(x) =
|x− 3|
x− 3

=
{
−1 x < 3
1 x > 3

The graph of this function consists of two horizontal half-lines:
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However, when we sketch it in Matlab, these two lines are connected by a nearly
vertical line:

>> x = -10.01:.1:10.01;
>> y = abs(x - 3)./(x - 3);
>> plot(x, y)
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Notice the function h isn’t defined at x = 3, so to avoid having 3 as one of the entries
in our x vector, we started the vector at −10.01 instead of at −10. If you did have
3 as one of the entries in your vector it wouldn’t be a big deal though; MATLAB
would simply give you a warning message saying that it was being asked to divide
by 0 when calculating y and omit that point when it does the plot. Indeed, in this
case the plot looks the way it ought to, since MATLAB doesn’t connect the two
horizontal lines!

Every time you create a new plot, the old plot is lost. If you want to keep the
old plot and put the new plot in a new window, type figure before creating the
new plot. This opens up a new figure window and makes it active. When you then
create a new plot, it will appear in this window. Alternatively, if you want the new
plot to appear in the same window as the old plot without losing the old plot, type
hold on. This tells Matlab to superimpose the new plot on the old plot. In the
following example, we plot the graph of y = x2 along with its tangent line at x = 1.
Notice that y = 2x− 1 is the equation of this tangent line.
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>> x = -1:.01:3;
>> y = x.^2;
>> plot(x, y)
>> ytan = 2*x - 1;
>> hold on
>> plot(x, ytan)
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When you use hold on the new plot does not have to use the same x values as the
old plot. If new x-values are used, Matlab will adjust the window to accommodate
the new values. In the next example, we use hold on to plot a graph of the piecewise
function

k(x) =
{

4/(x− 2) x ≤ 1
x2 x > 1

The first command hold off undoes the hold on command. The effect is that the
first plot is created in the active plot window, erasing what was previously there.

>> hold off
>> x = -3:.01:1;
>> y = 4./(x - 2);
>> plot(x, y)
>> hold on
>> x = 1:.01:2.5;
>> y = x.^2;
>> plot(x, y)
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2.10 Miscellany

You may type more than one command on one line. The commands should be sep-
arated by either commas or semicolons. Any command that ends with a semicolon
will have its output suppressed.

>> x = 2, y = cos(.3), z = 3*x*y
x =

2
y =

0.9553
z =

5.7320
>> x = 5; y = cos(.5); z = x*y^2
z =

3.8508

Although MATLAB performs calculations to a very high precision, by default it
only prints out 4 decimal places to the screen. If you want to see the results to a
higher degree of precision you can type

>> format long
To return to 4 decimal places, you can type

>> format short
MATLAB generally leaves a blank line between the commands you type and its
response. If you want to omit this line, you can type

>> format compact
To reinstate the blank lines, type

>> format loose

MATLB provides online help. One way to get help is to click on the Help menu
in the command window. If you know the name of the command you want to use,
but are having trouble remembering exactly how to use it or exactly what it does,
you can type help followed by the name of the command.
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When working with MATLAB you will see that you create many variables and
may not be able to keep track of all of them. To see what variables you have created
in the workspace type

>> who
Your variables are:
ans x y

For more information about these variables you can type
>> whos
Name Size Bytes Class
ans 1x1 8 double array
x 1x1 8 double array
y 1x1 8 double array

Grand total is 2 elements using 16 bytes
If you want to clear one or more of these variables from the workspace, you can use
the clear command. If you type clear followed by the name of the variable(s) you
would like to remove then MATLAB will remove only those variables. If you type
clear followed by nothing, then MATLAB will clear all of the variables from the
workspace.

>> clear x
>> who
Your variables are:
ans y
>> clear
>> who

MATLAB doesn’t appear to respond because there are no variables in the workspace
to report.
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Worksheet 2

1. Use Matlab to calculate the following quantities.

a)
π2

41.6 − 3 ln(3.5)

b) esin(13π/7)

c)
√

log2(58)

d) (A+B)tC where A, B and C are the matrices

A =
(

1.23 −5.41 0.05
−10.02 3.14 5.34

)
B =

(
0.54 −32.16 4.34
4.12 −32.10 6.12

)
C =

(
5.42 33.11
−10.20 6.14

)

e) AB where

A =

 1 2 3 . . . 100
1 3 5 . . . 199

1.1 4.1 7.1 . . . 298.1

 and B =


1 100
1 99
1 98
...

...
1 1



f) The number of entries in the vector -345:pi:1035.

2. Try to answer each of the following questions first without using MATLAB.
Then, check your answers using MATLAB.

a) Suppose you type the following code in the command window.
>> x = 1 - 5*2 + 13;

>> x + 5;

A) What is the value of ans? Circle your answer.
i) −60
ii) −55
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iii) 4
iv) 9
v) There’s not enough information to determine its value.

B) What is the value of x? Circle your answer.
i) −60
ii) −55

iii) 4
iv) 9
v) There’s not enough information to determine its value.

b) Suppose you type the following code in the command window.
>> x = 5/4 + 1;

>> x = x + 4;

A) What is the value of ans? Circle your answer.
i) 2.25
ii) 6.25

iii) 1
iv) 5
v) There’s not enough information to determine its value.

B) What is the value of x? Circle your answer.
i) 2.25
ii) 6.25

iii) 1
iv) 5
v) There’s not enough information to determine its value.

c) Suppose you type the following code in the command window.
>> x^2 - 1 = 0

How will MATLAB respond? Circle your answer.

i) x =
1

ii) x =
−1 1

iii) ??? x^2 - 1 = 0
Error: The expression to the left of the equals sign is not
a valid target for an assignment.
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d) Suppose a and b are variables in the workspace and you type the following
code in the command window.
>> temp = a; a = b; b = temp;

Describe, in words, what effect this has on the values of a and b.

3. Try to answer each of the following questions first without using MATLAB.
Then, check your answers using MATLAB.

a) Suppose x =
(
1 2 3 4 5

)
is a row vector in the workspace. Consider

the following commands that could be typed in the command window.

A) >> x*x

B) >> x*x’

C) >> x’*x

D) >> x.*x

In each case, choose which of the following would be Matlab’s response.

i) ans =
55

ii) ans =
1 4 9 16 25

iii) ans =
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25

iv) ??? Error using ==> times
Matrix dimensions must agree.

v) ??? Error using ==> mtimes
Inner matrix dimensions must agree.

b) Suppose x is a column vector in the workspace. Which of the following
calculates the value of ||x||? Circle your answer(s).

i) >> sqrt(x*x)

ii) >> sqrt(x*x’)

iii) >> sqrt(x’*x)

iv) >> sqrt(sum(x.*x))

c) Suppose

A =
(
−2 5
1 −3

)
is a matrix in the workspace. Find the value of B in each case.
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i) >> B = A*A

ii) >> B = A.*A

iii) >> B = A(2, 1)

iv) >> B = A(:, 2)

v) >> B = A(1, :)

4. Use MATLAB to help you understand what the graph of each function looks
like. Once you have understood what the graph looks like, sketch it by hand in
the space provided, showing all of its important features: intervals where it’s
increasing, intervals where it’s decreasing, any horizontal and vertical asymp-
totes, any holes, and any jump discontinuities. Find all of the quantities
indicated in parts i) through v) in each case. If the function has none, simply
say none.

i) lim
x→∞

f(x)

ii) lim
x→−∞

f(x)

iii) The location of any vertical asymptotes.

iv) The location of any jump discontinuities.

v) The location of any holes.

a) f(x) =
sinx
|x|

b) f(x) =
9x − 7x

10x − 1

c) f(x) =
x√

x2 + 1

d) f(x) =
tanx− x

x3
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3 Programming in Matlab - Scripts and For Loops

3.1 Goals of this lesson

In this lesson you will learn how to:

• change folders in MATLAB so that you can save files in an appropriate place
and organize your work,

• write m-file scripts, and

• write for loops.

You will also further develop your familiarity with MATLAB and start getting a
feel for how you can get MATLAB to do things that you might not at first think
that you could do.

3.2 Changing Folders in MATLAB

In this lesson you will start programming with MATLAB. This means that you
won’t just be using MATLAB interactively, but will be creating files that need to be
saved. Most of you probably don’t have MATLAB on your own personal computer,
so when you are using MATLAB you’ll be working on a public machine. Rather
than save your files on the hard drive of a machine that is not your own, we strongly
suggest that you purchase a little flash drive (if you don’t already have one) that
will plug into a USB port on the machine you are working on. You can then save
your files on the flash drive and you will always have them with you.

To get MATLAB to save files to your flash drive, first put the flash drive in the
USB port and create a folder (or directory) in it called, say, learnmatlab and a folder
inside that called Lesson3. Then open up MATLAB. In the top right hand corner
of the command window you will see a little square with 3 dots in it. Click on that
square and a browser window will open up. In the browser window, navigate to your
flash drive and then to the folder in it called learnmatlab and then to the folder in
that called Lesson3. Select this folder. You should see its path name written out
in the top of the command window. This is now your working folder in MATLAB.
Any file that you create in MATLAB will be saved here, and you will also be able
to access any of the files that are here.

3.3 Writing an M-file Script

Let’s see how we can get MATLAB to draw the smiley shown below.
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Notice that the smiley is essentially one circle for the face, a circle for each eye
and an arc of a circle for the mouth. To plot all of these circles and the arc on the
same plot we’ll use the hold on command. However, if we make a mistake, say,
in plotting the third circle, we’ll have to go back and start all over with plotting
the first circle again. This could involve a lot of typing and be frustrating. For
this reason, it’s useful to be able to edit a whole sequence of commands without
executing them. You can do this by creating what is known as an m-file script.
An m-file script is simply a sequence of commands that are saved in a file. (The file
is saved with a .m extension. That is why it’s called an m-file.) When you type the
name of the file at the prompt in the command window, MATLAB looks for a file
with that name and, if it finds one, executes the commands in sequence. So to get
MATLAB to draw the smiley above, we’ll create an m-file script that does this.

In the command window, click on File→ New→M-file. This opens up a new
window that looks rather like the command window. However, it’s not a command
window. Actually, it’s just an edit window. You can type in the window in the
same way you would in a simple word processor: inserting, deleting, moving up and
down, cutting and pasting, etc.

To draw the smiley let’s start by drawing the face. This is simply a circle.
We know that the command plot(x, y), where x = (x1, x2, . . . xn) and y =
(y1, y2, . . . yn) are vectors, will plot the point (x1, y1) and connect it with a straight
line to (x2, y2) and connect that with a straight line to (x3, y3) etc. So, to plot a
circle, we want the points (xi, yi), i = 1, 2, . . . n to lie on a circle and rotate around
it. The size or location of the circle is irrelevant since MATLAB will scale every-
thing to fit in the figure window, so we’ll just draw the unit circle centered at the
origin. In other words we should have (x1, y1) = (1, 0), (x2, y2) = (cos θ, sin θ),
(x3, y3) = (cos(2θ), sin(2θ)) etc. where θ is a small angle. We can produce this with
the following code. Type this code in the edit window. If you make a mistake typing
it, don’t worry, simply go back and edit it as you would in a word processor.

t = 0:.05:2*pi;
x = cos(t);
y = sin(t);
plot(x, y)
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Notice that the commands aren’t executed when they are typed in. Consciously
make a mistake while typing them in and go back and edit it. To check that this
code does indeed draw a circle we need to execute the code in the file. To do this
we first need to save the file. Do this by clicking on File → Save As and save
the file as smiley.m. It will be saved in your working folder (learnmatlab/lesson3).
Depending on how MATLAB is set up, you will probably see it appear in a section
of the command window that lists all the files in your current folder. Now type

>> smiley
at the prompt in the command window. Matlab searches for the file smiley.m. When
it finds it, it executes the sequence of commands that are in it and produces a circle.
If you typed the four lines in with no mistakes then Matlab should open up a figure
window and plot the circle. However, it doesn’t look quite like a circle. It looks like
an ellipse. This is because the default scales that MATLAB uses on the x and y
axes are not the same. To correct this, go back to the edit window and add the line

axis equal
at the end. This tells MATLAB to use the same scale for the x and y axes. Save
the file again, by clicking on File → Save and type

>> smiley
again at the prompt in the command window. Now the figure should be replaced
by a figure that looks like a circle. Close the figure window.

Next, let’s add the eyes. Since we’ll be adding more plots to the same plot, the
first thing we need to do is tell Matlab to put the new plots on the same axes as the
old plot. Recall that we do this with the command hold on. Add the line

hold on
as the next line in your m-file. To make the eyes we’ll draw little circles of radius
.1 centered at (±.35, .2). To do the right eye we multiply x and y above by .1 and
then shift x by .35 and shift y by .2. The following code does this. Add these lines
at the bottom of the m-file.

x = .1*x + .35;
y = .1*y + .2;
plot(x, y)

Save the file again and type
>> smiley

again at the prompt in the command window. You should see the face with one eye
(the right one). Close this figure window before proceeding.

To make the left eye we need to undo the shift we just made to x and then shift
it another -.35. In other words, we need to shift x by −.7. We don’t need to change
y. Add the following lines at the bottom of the m-file:

x = x - .7;
plot(x, y)

Save the file again and type
>> smiley

again at the prompt in the command window. You should see the face with two
eyes now. Close the figure window before proceeding.
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We’ll make the mouth by drawing an arc of the circle that has radius .5 and
whose center is at the origin. Add the following lines at the bottom of the m-file.

t = (7*pi/6):.05:(11*pi/6);
x = .5*cos(t);
y = .5*sin(t);
plot(x, y)

Save the file again and type
>> smiley

again at the prompt in the command window. You should see the face with two eyes
and a mouth. Close the figure window before proceeding. One final touch will make
the smiley even cuter; the command axis off removes the axes from the plot. Add
this command at the end of your m-file and save the file again. The complete file
should now look like:

t = 0:.05:2*pi;
x = cos(t);
y = sin(t);
plot(x, y)
axis equal
hold on
x = .1*x + .35;
y = .1*y + .2;
plot(x, y)
x = x - .7;
plot(x, y)
t = (7*pi/6):.05:(11*pi/6);
x = .5*cos(t);
y = .5*sin(t);
plot(x, y)
axis off

Save the file and execute it as before by typing smiley at the prompt in the command
window. You should see a smiley face just like the one above.

3.4 Adding Comments to Your M-files

Anything on a line that appears after a % sign (be it in an m-file or in the command
window) is called a comment and is ignored by MATLAB. For instance, when you
type

>> x = 3 % This assigns the value 3 to the variable x.
x =

3
then MATLAB ignores everything that appears after the % sign and just ‘sees’ the
command x = 3 so it executes this command assigning the value of 3 to the variable
x.
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Comments are used in m-files to explain how the code works. Computer code
can be very difficult to read; you would be surprised how you can write code one
day and not be able to decipher it the next day. So, it’s a really good idea to get
into the habit of inserting comments that explain the purpose of each piece of code.
MATLAB will also ignore blank lines in m-files, so you can use blank lines to group
pieces of code together. Go to the window that contains the smiley file. Here is one
way that you might insert comments and use blank lines to make the code more
readable and to explain how it works:

% This file creates a smiley face.

% The following code produces the outline of the face. The
% outline is the unit circle centered at the origin.
t = 0:.05:2*pi;
x = cos(t); % x is the x-coordinate of each point to be plotted
y = sin(t); % y is the y-coordinate of each point to be plotted
plot(x, y)

% The next command makes the circle look like a circle instead
% of an ellipse.
axis equal

% The next command ensures that the subsequent features are added
% to the picture instead of replacing it.
hold on

% Next we plot the right eye. The right eye is a circle of radius
% .1 and center (.35, .2)
x = .1*x + .35;
y = .1*y + .2;
plot(x, y)

% Next we plot the left eye. The left eye is a circle of radius
% .1 and center (-.35, .2)
x = x - .7;
plot(x, y)

% Next we plot the smile. This is an arc of the circle that has
% radius .5 and whose center is at the origin.
t = (7*pi/6):.05:(11*pi/6);
x = .5*cos(t);
y = .5*sin(t);
plot(x, y)

axis off % this removes the axes from the picture
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Notice that MATLAB has a very nice editor that recognizes comments and colors
them in green so that they stand out. After typing in the comments, save the file
and type

>> smiley
at the prompt in the command window. The file should work exactly as before
producing a frowning smiley face.

It’s painful to write comments in your files because it’s hard to describe what
you’re doing. Also, in the beginning, you’ll probably find that your comments aren’t
very helpful because you don’t understand them when you try to read the code later.
However, with practice you’ll get much better at it, and it’s so important to put
comments in your code that you must start practicing it now.

3.5 Introduction to For Loops

One of the great strengths of computers is that they can do repetitive tasks very
quickly. One of the easiest ways to tell MATLAB to repeat a task a fixed, prede-
termined, number of times, is to use a for loop. The structure of a for loop is as
follows:

for variable = expression
statements

end
where variable is the name of a variable, expression is usually a vector, and the
statements are one or more MATLAB commands. MATLAB executes the loop by
first setting the variable equal to the first entry in the vector. It then executes the
commands. When it comes to end it returns to the for line and sets the variable
equal to the next entry in the vector. It then executes the commands again. It
continues until the variable is equal to the last entry in the vector after which it
will proceed with any commands that appear after the end or will wait for another
command. In addition, a for loop is often preceded by one or more commands that
initialize the quantities in the loop.

Although this may seem confusing right now, it will hopefully become clear after
a few examples.

Example 1: As a first example, consider the following code that consists of an
initialization statement, som = 1, followed by a for loop, followed by a request for
the value of the variable som.

>> som = 1;
>> for i = 2:100
som = som + 1/i;
end
>> som
som =

5.1874
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Let’s look closely at how this code works. As you know, the first command,

som = 1;

creates a variable called som and sets it equal to 1. This initializes the loop. The
for statement in the next command tells MATLAB that it is entering a loop (a
sequence of commands that will be performed over and over again). It creates a
variable called i and sets it equal to the first entry in the vector 2:100, namely
2. It then performs the commands that occur between the for statement and the
end line. In this case there is only one, namely som = som + 1/i;. This is an
assignment command; it evaluates the expression on the right and sets it equal to
the variable on the left. Since the value of som at this point is 1 and the value of
i is 2, the expression on the right has the value 1 + 1/2 = 1.5, so the variable som
is assigned the value 1.5. When MATLAB comes to the end statement, it returns
to the for line, and sets i equal to the next entry in the vector 2:100, namely 3.
It then performs the command som = som + 1/i. This time, som has the value 1.5
and i has the value 3, so the variable som is assigned the value 1.5 + 1/3 = 1.8333.
MATLAB then goes back to the for statement and sets i equal to the next entry
in the vector 2:100, namely 4. This time, when it comes to the command som =
som + 1/i, som has the value 1.8333 and i has the value 4, so the variable som is
assigned the value 1.8333+1/4 = 2.0833. MATLAB continues looping and updating
the value of som each time until i = 100. After performing the command som = som
+ 1/i when i = 100 the loop ends, since there are no more values left for i, and
MATLAB waits for another command. The following table summarizes this process:

Initialization som = 1
i = 2 som = 1 + 1/2
i = 3 som = (1 + 1/2) + 1/3
i = 4 som = (1 + 1/2 + 1/3) + 1/4
i = 5 som = (1 + 1/2 + 1/3 + 1/4) + 1/5
...

...
i = 100 som = (1 + 1/2 + 1/3 + . . .+ 1/99) + 1/100

We see that when the code has been executed the value of som is the sum of the
reciprocals of the first 100 integers. In other words

1 + 1/2 + 1/3 + . . .+ 1/100 = 5.1874.

When you write for loops in an m-file, it is a good idea to write them as we did
above, with the for statement on the first line, followed by the commands, followed
by end on a line on its own. Moreover, it’s really good to respect the indentation
that MATLAB suggests to you as you type it in. However, if you are writing a for
loop in the command window, you can type it all on one line if you wish. In this
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case, a comma follows the for statement, the commands are separated as usual with
either a comma or a semicolon (depending on whether or not you want the output
to be suppressed) and end is typed at the end. For instance, we could have typed
the example above as:

>> som = 1;
>> for i = 2:100, som = som + 1/i; end
>> som
som =

5.1874

Notice that the variable i used in the code above, could have had any name at
all. It is a dummy variable, in the sense that it doesn’t really have any intrinsic
meaning in and of itself; it is only used to determine what the next calculation
should be. This variable is commonly called i, j, k, ii, jj, kk, n or m. Other choices
are also fine. However, be careful not to call it something that already has some
other meaning (for example, it would have been a really bad idea to call it som in
the example above). Also notice that there are many different ways to write a for
loop for the same calculation. In particular, there are different ways to initialize the
calculation and there are many choices for the vector, expression . The code below
illustrates another valid way to get MATLAB to calculate the sum of the reciprocals
of the first 100 integers. In this code the loop is initialized with som = 0 and the
dummy loop variable is called n instead of i:

>> som = 0;
>> for n = 1:100, som = som + 1/n; end
>> som
som =

5.1874
Here is the summary table showing how the loop progresses in this version of the
code.

Initialization som = 0
n = 1 som = 0 + 1/1 = 1
n = 2 som = 1 + 1/2
n = 3 som = (1 + 1/2) + 1/3
n = 4 som = (1 + 1/2 + 1/3) + 1/4
...

...
n = 100 som = (1 + 1/2 + 1/3 + . . .+ 1/99) + 1/100

Example 2: In the next example, consider the following code. Type this code in an
m-file and save the file as rx.m in the folder learnmatlab/lesson3 on your flash drive.
Notice that the code consists of two initialization statements followed by a for loop.

len = length(x);
r = ones(1, len - 1);
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for i = 1:(len - 1)
r(i) = x(i+1)/x(i);

end
When you type

>> rx
at the prompt in the command window the first thing MATLAB is asked to do is
find the length of the vector x and assign that length to the variable len. It will
return an error message if there is no variable x in the workspace or if x is not a
vector. So, to understand the code, let’s create a vector x in the workspace:

>> x = 1:6;
Now let’s see what happens when we execute the m-file:

>> rx
>> r
r =

2.0000 1.5000 1.3333 1.2500 1.2000
We can see that r is a vector of length five and we see what its entries are, but how
is it related to x? Let’s work through the commands in the m-file to find out. In
the first line the variable len is set equal to the length of x which in this case is 6:

>> len
len =

6
In the second line, r is set equal to a 1 × (6 − 1) matrix (in other words a row
vector of length 5) whose entries are all equal to 1. So at this point in the execution,
the variable r has the value (1, 1, 1, 1, 1). In the next line MATLAB enters a for
loop. The dummy loop variable is called i and it will take on the values 1, 2, 3,
4, 5 as MATLAB progresses through the loop. The first time through the loop,
the value of i is 1. The next command is an assignment command. The value of
the expression on the right-hand side is x(2)/x(1) which is 2/1 = 2 and this is
assigned to r(1). So the vector r now has the value (2, 1, 1, 1, 1). The next line is
end, so MATLAB returns to the for line and sets the dummy variable i equal to
the next value in the vector, namely, 2. It then executes the assignment command
assigning the value x(3)/x(2) = 3/2 = 1.5 to r(2). So the vector r now has the
value (2, 1.5, 1, 1, 1). The next time through the loop, r(3) gets assigned the value
x(4)/x(3) = 4/3 = 1.333. The next time through the loop, r(4) gets assigned the
value x(5)/x(4) = 5/4 = 1.25, and the last time through the loop, r(5) is assigned
the value x(6)/x(5) = 6/5 = 1.2. Thus we see that the entries in r are the ratios of
the successive entries in x.

In summary, what the file rx.m does, is create a vector r whose entries consist
of the ratios of successive elements in the vector x. Let’s check that this is correct
by starting with a different vector x:

>> x = 10:-2:2
x =

10 8 6 4 2
>> rx
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>> r
r =

0.8000 0.7500 0.6667 0.5000
Looks correct!

3.6 Guidelines for Writing Your Own For Loops

As we have seen, when you want MATLAB to repeat a task a fixed, predetermined
number of times it might be appropriate to use a for loop. When you write a for
loop, you have to choose:

1. how to initialize the loop (if necessary), and

2. what the dummy vector should be.

When choosing the dummy vector you need to pay attention to:

1. how the values in the dummy vector are related to the calculation you want
to be performed at each iteration in the loop, and

2. what the first and last values in the dummy vector should be.

We illustrate these ideas with the following two examples.

Example 3: In this example we will see how to write a for loop that will calculate
the following sum:

(1 + 1/2)(1 + 1/4)(1 + 1/6)(1 + 1/8)(1 + 1/10) . . . (1 + 1/100).

Notice that to calculate this by hand we would start by calculating 1+1/2 = 1.5.
Then, we’d multiply this number 1 + 1/4 = 1.25 to get 1.5 × 1.25 = 1.875. Then
we’d multiply this number by 1 + 1/6 = 1.1667 to get 1.875 × 1.1667 = 2.1875.
This process continues until we’re done. This is a repetitive process that will be
performed a fixed number of times. This tells us that the way to get MATLAB to
do this calculation is with a for loop.

What we are calculating is a product so let’s call it prod for a lack of better name.
Our first ‘estimate’ of prod is (1 + 1/2). This could be our initialization outside of
the loop. Then, the first time through the loop, the value of prod will be updated
by multiplying it by (1 + 1/4), so that it’s new value becomes (1 + 1/2)(1 + 1/4).
The next time through the loop its value will be updated again by multiplying it by
1 + 1/6 so that it becomes (1 + 1/2)(1 + 1/4)(1 + 1/6), etc. Let’s summarize this in
a table.
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Initialization prod = 1 + 1/2
1st time prod = prod ∗ (1 + 1/4) = (1 + 1/2)(1 + 1/4)
2nd time prod = prod ∗ (1 + 1/6) = (1 + 1/2)(1 + 1/4)(1 + 1/6)
3rd time prod = prod ∗ (1 + 1/8) = (1 + 1/2)(1 + 1/4)(1 + 1/6)(1 + 1/8)
...

...
last time prod = prod ∗ (1 + 1/100) = (1 + 1/2)(1 + 1/4)(1 + 1/6) . . . (1 + 1/100)

At this point we have chosen how to initialize the loop, so what we need to
do next is choose what the dummy vector is going to be. Each time through the
loop one command is executed, namely, ‘replace prod by prod times an appropriate
quantity.’ In other words, the code will look as follows:

>> prod = (1 + 1/2);
>> for k = expression
prod = prod*quantity
end

where expression is the dummy vector that we are trying to determine, and quantity
changes each time MATLAB goes through the loop, so it needs to be expressed in
terms of the dummy vector. The first time through the loop quantity should be
1 + 1/4. The second time it should be 1 + 1/6, the third time by 1 + 1/8 etc. So,
a simple choice for the dummy vector would be k = (4, 6, 8, . . . 100). The value of
quantity would then simply be 1 + 1/k. With this choice the code becomes:

>> prod = (1 + 1/2); % the initialization
>> for k = 4:2:100, % the dummy vector (4, 6, 8, . . . 100)
prod = prod*(1 + 1/k); % the calculation
end
>> prod
prod =

8.0385
It looks like the product is equal to 8.0385.

How can we be sure that MATLAB is doing the correct calculation? There are
a number of ways we can check our loop. One way is to do the same loop with fewer
terms, then compare the result with those few terms explicitly calculated by hand:

>> prod = (1 + 1/2);
>> for k = 4:2:8, prod = prod*(1 + 1/k); end
>> prod
prod =

2.4609
>> (1 + 1/2)*(1 + 1/4)*(1 + 1/6)*(1 + 1/8)
ans =

2.4609
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Looks like that’s okay. Another way is to remove the semi-colon from the calculation
of prod so that you can see the result of the calculation each time through the loop.
You can check if these are correct.

>> prod = (1 + 1/2);
>> for k = 4:2:100, prod = prod*(1 + 1/k), end
prod =

1.8750
prod =

2.1875
prod =

2.4609
prod =

2.7070
...

prod =
8.0385

Notice that the value of prod the first time through the loop is 1.8750 and that
(1 + 1/2)(1 + 1/4) = 1.8750 so this is correct. Similarly, the (1 + 1/2)(1 + 1/3)(1 +
1/4) = 2.1875 which is the value of prod the second time through the loop. So, it
looks like the program is doing the correct thing. Be careful doing this if your loop
contains many terms; your screen will be overrun with numbers! Finally, to check
your code you can write out a summary table of the loop as below.

Initialization prod = 1 + 1/2
k = 4 prod = (1 + 1/2)(1 + 1/4)
k = 6 prod = (1 + 1/2)(1 + 1/4)(1 + 1/6)
k = 8 prod = (1 + 1/2)(1 + 1/4)(1 + 1/6)(1 + 1/8)
...

...
k = 100 prod = (1 + 1/2)(1 + 1/4)(1 + 1/6) . . . (1 + 1/100)

It looks like it is doing what we want and we have confidence that the complete
product is indeed 8.0385.

Remember that the code we wrote above isn’t the only way to get MATLAB
to do this calculation. Indeed, when a loop is supposed to calculate the product of
many terms it is typical to initialize the value of the product to be 1 outside of the
loop. Also, the dummy vector is often taken to be a vector that starts at 0 or 1 and
increases by 1 each time, so that it is either (0, 1, 2, . . .) or (1, 2, 3, . . .). In this case,
you can think of the value of the dummy variable as the number of times the loop
has been iterated. So, let’s see what the code would look like if we initialized prod
to be 1 outside of the loop and had k = (1, 2, 3, . . .). The table showing how the
loop should progress would look as follows:
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Initialization prod = 1
k = 1 prod = prod ∗ (1 + 1/2) = (1 + 1/2)
k = 2 prod = prod ∗ (1 + 1/4) = (1 + 1/2)(1 + 1/4)
k = 3 prod = prod ∗ (1 + 1/6) = (1 + 1/2)(1 + 1/4)(1 + 1/6)
...

...
k =? prod = prod ∗ (1 + 1/100) = (1 + 1/2)(1 + 1/4)(1 + 1/6) . . . (1 + 1/100)

Notice that here we need to work out how the multiplicative factors are related to
the value of k and what the final value of k should be. When k = 1 the factor is
(1 + 1/2), when k = 2 it is (1 + 1/4), when k = 3 it is (1 + 1/6) etc. It looks like
the multiplicative factor is always (1 + 1/(2k)). At the last iteration the factor is
(1 + 1/100), so on this iteration 2k = 100 so k = 50. Thus, we get the following
code:

>> prod = 1;
>> for k = 1:50, prod = prod*(1 + 1/(2*k)); end
>> prod
prod =

8.0385

Example 4: In this next example we will use a for loop to get MATLAB to draw the
picture shown below that illustrates the right hand rule with 20 intervals to evaluate∫ π

0
sinx dx

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

We’ll create this code in an m-file where we can test it piece by piece as we
develop it. Recall that to do this you need to click on File → New → M-file in
the command window. This opens up a new edit window.

First we need to draw the graph of sinx from x = 0 to x = π. We do this by
creating a vector of x-values, the corresponding vector of y=values and then using
the plot command. Type the following commands in your edit window.

x = 0:.05:pi;
y = sin(x);
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plot(x, y)
Click on File→ Save As and save the file as rhr.m. Check that the file does indeed
do what you want it to do by typing

>> rhr
at the prompt in the command window. You should see the graph of sinx from
x = 0 to x = π.

Now we need to draw the 20 rectangles. First notice that the rectangles will be
added on top of the graph, so before drawing them we need to add the command

hold on
as the next line in the m-file. Notice that drawing the rectangles is a highly repetitive
task; first we draw the first rectangle, then we draw the second rectangle, then we
draw the third rectangle etc. Thus, it would be appropriate to code this with a for
loop.

Each rectangle consists of three lines: a vertical line to the left, a vertical line
to the right and a horizontal line across the top. The first rectangle stretches from
x = 0 to x = π/20 and has height sin(π/20). The second rectangle stretches from
x = π/20 to x = 2π/20 and has height sin(2π/20). The third rectangle stretches
from x = 2π/20 to x = 3π/20 and has height sin(3π/20) etc. The last rectangle
stretches from x = 19π/20 to x = π and has height sinπ = 0. Each iterate of the
loop will draw a rectangle. Let’s summarize this in the table below:

1st time Draw the vertical line from (0, 0) to (0, sin(π/20))
Draw the horizontal line from (0, sin(π/20)) to (π/20, sin(π/20))
Draw the vertical line from (π/20, 0) to (π/20, sin(π/20))

2nd time Draw the vertical line from (π/20, 0) to (π/20, sin(2π/20))
Draw the horizontal line from (π/20, sin(2π/20)) to (2π/20, sin(2π/20))
Draw the vertical line from (2π/20, 0) to (2π/20, sin(2π/20))

3rd time Draw the vertical line from (2π/20, 0) to (2π/20, sin(3π/20))
Draw the horizontal line from (2π/20, sin(3π/20)) to (3π/20, sin(3π/20))
Draw the vertical line from (3π/20, 0) to (3π/20, sin(3π/20))

...
...

last time Draw the vertical line from (19π/20, 0) to (19π/20, sin(20π/20))
Draw the horizontal line from (19π/20, sin(20π/20)) to (20π/20, sin(20π/20))
Draw the vertical line from (20π/20, 0) to (20π/20, sin(20π/20))

To choose the dummy vector, look at the pattern of x and y coordinates at each
iteration. In the first iterate the x-coordinates being used are 0 and π/20 and the y
coordinates are 0 and sin(π/20). In the second iterate the x-coordinates being used
are π/20 and 2π/20 and y coordinates are 0 and sin(2π/20, etc. So let’s take the
dummy vector to be xr = (π/20, 2π/20, 3π/30 . . . 20π/20). Then at each iterate the
x-coordinates being used will be xr− π//20 and xr and the y coordinates will be 0
and sin(xr). Thus the loop will look like the following. Type it in your m-file.
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for xr = (pi/20):(pi/20):pi
xl = xr - pi/20;
y = sin(xr);
plot([xl, xl], [0, y])
plot([xl, xr], [y, y])
plot([xr, xr], [0, y])

end
Save the file and type

>> rhr
at the prompt in the command window. You should see the full picture shown
above.

3.7 Nesting For Loops

You can nest two (or more) for loops inside of each other. For instance, suppose we
want to construct the matrix

A =


2 21/2 21/3 21/4 . . . 21/50

3 31/2 31/3 31/4 . . . 31/50

4 41/2 41/3 41/4 . . . 41/50

...
...

...
...

...
20 201/2 201/3 201/4 . . . 201/50


Notice that A is a 19 × 50 matrix whose ij’th entry is Aij = (i + 1)1/j . We will
construct A by assigning the value i1/j to each entry Aij for each value of i =
1, 2, . . . 19 and j = 1, 2, . . . 50. To do this, we need A to already be a matrix of the
correct size; it doesn’t matter what its entries are, since we will reassign all of those,
we just need it to be the correct size. So we start by typing

>> A = zeros(19, 50);
to set A to be a 19 × 50 matrix. (It would have been equally good to type A =
ones(19, 50).) Now, if we were to assign the values individually we could type:

>> A(1,1) = 2;
>> A(1,2) = 2^(1/2);
>> A(1,3) = 2^(1/3);

etc. until we got to
>> A(1,50) = 2^(1/50);

Then we would continue with the second row and type:
>> A(2,1) = 3;
>> A(2,2) = 3^(1/2);
>> A(2,3) = 3^(1/3);

etc. until we got to
>> A(2,50) = 3^(1/50);

Then we would continue with the third row etc. Notice that in the first set of
commands we would assign the values of A1j for j = 1, 2 . . . 50. In the second set of
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commands we would assign the values of A2j for j = 1, 2, . . . 50. In the third set of
commands we would assign the values of A3j for j = 1, 2, . . . 50. This continues until
the last set of commands where we would assign the values of A20,j for j = 1, 2, . . . 50.
Thus, we would be repeating an action 19 times, so instead of this we code this with
a loop where the dummy variable goes from 1 to 19 in steps of size 1:

>> for i = 1:19
statements;
end

where statements are the commands that assign the correct values to Aij for j =
1, 2, . . . 50. We could type these commands out one by one. They would be:

A(i,1) = (i+1);
A(i,2) = (i+1)^(1/2);
A(i,3) = (i+1)^(1/3);

etc. until
A(i,50) = (i+1)^(1/50);

However, again we see that this is essentially an action that is repeated 50 times, so
it could be compactly coded with a for loop:

for j = 1:50
A(i,j) = (i+1)^(1/j);
end

Thus, the complete code consists of two nested for loops as shown below.
>> A = zeros(19,50);
>> for i = 1:19
for j = 1:50
A(i,j) = (i+1)^(1/j);
end
end

The summary table below shows how MATLAB cycles through the nested loops.
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i = 1 j = 1 A11 = 21/1 = 2
j = 2 A12 = 21/2

j = 3 A13 = 21/3

...
...

j = 50 A1,50 = 21/50

i = 2 j = 1 A21 = 31/1 = 3
j = 2 A22 = 31/2

j = 3 A23 = 31/3

...
...

j = 50 A2,50 = 31/50

...
...

...
i = 19 j = 1 A19,1 = 201/1 = 3

j = 2 A19,2 = 201/2

j = 3 A19,3 = 201/3

...
...

j = 50 A19,50 = 201/50
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Worksheet 3

1. First try to answer these questions without using MATLAB. Then use MAT-
LAB to check your answers.

a) Consider the code below.

s = 0;

for n = 0:100, s = s + 1/2^n; end

i) Fill in the blanks in the summary table of the loop below.

Initial s = 0

n = 0 s =

n = 1 s =

n = 2 s =

n = 3 s =
...

...

n = 100 s =

ii) Which of the following is the value of s after the loop has been
completed? Circle your answer.
I) 1/1002

II) 1 + 1/4 + 1/9 + 1/16 + . . . 1/10, 000

III) 1/2100

IV) 1 + 1/2 + 1/4 + . . .+ 1/2100

V) 1/2 + 1/4 + 1/8 + . . .+ 1/2100

b) Suppose x = (x1, x2, . . . xn) is a vector in the workspace. Consider the
code below.

n = length(x);

s = 0;

for i = 1:(n - 1), s = s + abs(x(i) - x(i+1)); end

i) Fill in the blanks in the summary table of the loop.
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Initial s = 0

i = 1 s =

i = 2 s =

i = 3 s =

i = 4 s =
...

...

i = n− 1 s =

ii) What would the final value of s be if x = (1, 3, 5, 7, 9, 11)?

iii) What would the final value of s be if x = (2, 8, 4, 1, 7)?

2. First try to do these problems without using MATLAB. Then, use MATLAB
to check your answers.

a) Consider the codes shown in i) to iv) below. In which one(s) will the
variable s finish with the value

(1)(2) + (3)(4) + (5)(6) + . . . (299)(300)?

Circle all those that apply.

i) s = 0;
for i = 1:300, s = s + i*(i + 1); end

ii) s = 0;
for dv = 1:2:299, s = s + dv*(dv + 1); end

iii) s = 0;
for n = 2:300, s = s + (n-1)*n; end

iv) s = 0;
for k = 1:150, s = s + (2*k - 1)*2*k; end

v) s = 2;
for j = 1:150, s = s + (2*j + 1)*2*(j+1); end
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b) Suppose x is a row vector in the workspace. Which of the following codes
will result in the variable norm taking on the value ||x||? Circle all those
that apply. Hint: Recall that if x = (x1, x2, . . . xn) then

||x|| =
√
x2

1 + x2
2 + . . . x2

n.

i) norm = 0;
for i = x, norm = norm + i^2; end
norm = sqrt(norm);

ii) norm = 0;
for i = 1:length(x), norm = x(i)^2; end
norm = sqrt(norm);

iii) norm = x(1)^2;
for i = 1:(length(x) - 1), norm = norm + x(i)^2; end
norm = sqrt(norm);

iv) norm = x(1)^2;
for i = x(2:length(x)), norm = norm + x(i)^2; end
norm = sqrt(norm);

v) norm = sqrt(x*x’);

c) Suppose A is a 10× 20 matrix in the workspace. Which of the following
codes will assign the value

1 2 3 4 . . . 20
2 4 6 8 . . . 40
3 6 9 12 . . . 60
...

...
...

...
...

10 20 30 40 . . . 200


to A? Circle all that apply.

i) for i = 1:10, for j = 1:20, A(i,j) = i*j; end, end

ii) for i = 1:10, A(i,:) = i:i:(20*i); end

iii) for n = 1:20, A(:,n) = n:n:(10*n); end

iv) A = 0;
for n = 1:20, for m = 1:10, A = A + n*m; end, end

v) x = 1:20;
for i = 1:10, A(i,:) = i*x; end

3. a) Write a script m-file to estimate the value of∫ 1

0
e−x

2
dx
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using the trapezoidal rule with n = 20. What is the estimate of the value
of the integral?

b) Consider the curve y = x2 between x = 0 and x = 1 shown below. In
this problem we want to estimate the length of this curve.

-

6

s
s

s

0 1/2 1

1/4

1

Notice first that the length of this curve is greater than
√

2 = 1.4142 (the
length of the straight line connecting (0, 0) and (1, 1)) and is less than
2 (the sum of the horizontal distance between (0, 0) and (1, 0) and the
vertical distance between (1, 0) and 1, 1)). To find the length of the curve
more precisely, we could divide the curve into two pieces; the piece from
(0, 0) to (1/2, 1/4) and the piece from (1/2, 1/4) to (1, 1) (see the picture
above). The length of the first piece is approximately the length of the
straight line between (0, 0) and (1/2, 1/4):√

(1/2− 0)2 + (1/4− 0)2 = 0.5590.

Similarly, the length of the second piece is approximately√
(1− 1/2)2 + (1− 1/4)2 = 0.9014.

Thus, the sum of these two lengths,

0.5590 + 0.9014 = 1.4604,

is an estimate of the length of the curve. We would expect the true length
of the curve to be slightly larger than this. To get a better estimate we
could divide the curve into more pieces.

i) Imagine dividing the curve up into 10 pieces given by the points
(0, 0), (.1, .01), (.2, .04), . . ., (1, 1). Write a script m-file that finds
the sum of the straight line distances between the successive points:√

(0− .1)2 + (0− .01)2

+
√

(.1− .2)2 + (.01− .04)2

+ . . .

+
√

(.9− 1)2 + (.81− 1)2
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What estimate does this give you for the length of the curve?

ii) Now imagine dividing the curve up into 100 pieces given by the points
(0, 0), (.01, .0001), (.02, .0004), . . ., (1, 1). Modify your m-file in part
a) to find the sum of the straight line distances between these suc-
cessive points: √

(0− .01)2 + (0− .0001)2

+
√

(.01− .02)2 + (.0001− .0004)2

+ . . .

+
√

(.99− 1)2 + (.9801− 1)2

What estimate does this give you for the length of the curve?



c© C. Haskell. Draft 7/2010. Duplication for commercial purposes prohibited. 62

4 Function M-files

4.1 Goals of this lesson

In this lesson you will learn

• what a function m-file is;

• how to write function m-files;

• how variables are handled in function m-files;

• how to include help lines in your function m-files;

• how to make your function m-files work when inputs are vectors; and

• techniques for debugging and testing your code.

In this lesson you will be creating files that you will need to save somewhere. So,
insert your flash drive into the USB port and inside the learnmatlab folder create a
folder called Lesson4. In MATLAB, navigate, as shown in the last lesson, so that
this is your working folder.

4.2 Introduction to Function M-files

In the last lesson you learnt how to write script m-files. If you recall, a script m-file
is simply a file that contains a list of MATLAB commands that are executed in the
order that they appear when the name of the file is typed at the prompt in the
command window. In this lesson you will learn about another type of m-file called
a function m-file. Like a script m-file, a function m-file is simply a list of MATLAB
commands. What is different about script and function m-files is the way they treat
variables. Script m-files have full access to all of the variables in the workspace, and
the commands that are executed can use these variables and modify them. Function
m-files are called functions because they have inputs and outputs. In this sense they
are just like the functions you work with in calculus. The only way a function m-file
can access or modify variables in the workspace is through its inputs and outputs. If
this doesn’t make much sense yet, hang in there! All of these ideas will be explained
further in the rest of the lesson.

Example 1: An m-file for a rational function

Let’s start by creating a simple function m-file of the rational function

y =
10x
x2 + 1

.

In the MATLAB command window click on File → New → M-file just as you
would if you were going to create a script m-file. In the window that pops up type
the following:
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function y = myf(x)
y = 10*x/(x^2 + 1);

Save the file by clicking on File → Save. MATLAB suggests that you should save
the file as myf.m. Go ahead and do that.

The first line of this file is called the function definition line. It is telling MAT-
LAB that the file called myf (this is shorthand for ‘my function’) is a function m-file
as opposed to a script m-file and that it has one input that will be referred to, in
the file, as x and one output that will be referred to, in the file, as y. The code
inside the file shows how the value of y is obtained from the value of x.

Before we see how to use this file, recall that when we type an expression at
the prompt in the command window, we are telling MATLAB to evaluate that
expression and assign the value to the variable ans. For example, if we type:

>> 5^2 - 2
ans =

23
MATLAB evaluates the expression 52−2 and assigns this value to the variable ans.
Having recalled this, let’s see how we can use our function m-file myf. Type:

>> myf(2)
ans =

4
Notice that myf(2) is an expression that has a value. By typing it at the prompt we
are telling MATLAB to find its value and assign that value to the variable ans. To
find the value of myf(2) MATLAB looks for a file called myf. This file is a function
m-file that has one input which is referred to in the file as x and one output which
is referred to in the file as y. It sets the value of x to 2 and executes the code in
the file. Whatever value y has when all of the code has been executed becomes the
value of the expression myf(2). In this case the value of y is

10(2)/(22 + 1) = 4

so this becomes the value of ans. As another example of how to use myf, type
>> temp = myf(3);

In this case we are telling MATLAB to find the value of myf(3) and assign that
value to a variable called temp. To find the value of myf(3) MATLAB sets the
variable x in the myf function file to 3 and executes the code in the file. The code
in the file assigns the value 10(3)/(32 + 1) = 3 to the variable y. Since y is the name
of the output variable, this is the value of myf(3). This value is assigned to the
variable temp:

>> temp
temp =

3
Notice that the file myf is acting just like the function defined by the formula:

myf(x) =
10x
x2 + 1

.
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A box picture of this function is:

HH
��

HH
��

Call the input x.
Find the value of

y =
10x
x2 + 1

.

Output y.

input output

myf

The file myf plays the role of the box. It takes an input and creates an output from
it. The commands in the file tell MATLAB how to create the output from the input.

The functions you study in beginning calculus have only one input and one
output. However, more general functions can have more than one input and output.
In the next example, the function m-file has one input and two outputs.

Example 2: Properties of a Sphere

In the command window pull down File→ New→M-file. In the window that
pops up type the following:

function [a, v] = sphereprops(r)

a = 4*pi*r^2;
v = (4/3)*pi*r^3;

Save the file by clicking on File → Save. MATLAB suggests that you should save
the file as sphereprops.m. Go ahead and do that.

Notice that the function definition line in this file tells MATLAB that sphere-
props is a function m-file that has one input that is referred to as r in the file and
two outputs that are referred to as a and v respectively in the file. The code inside
the file shows how the values of a and v are obtained from the value of r. We rec-
ognize from the formulae that a and v are the surface area and volume of a sphere
that has radius r. A box picture of this function is:

HH
��

HH
��

Call the input r.
Find the values of
a = 4πr2 and
v = (4/3)πr3.
Output (a, v).

radius (area, volume)

sphereprops

Suppose we want to find the surface area and volume of a sphere of radius 2. We
can use sphereprops to do this by typing at the prompt in the command window
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>> [area, volume] = sphereprops(2);
This command instructs MATLAB to find the value of the expression on the right
and assign that value to the variables on the left. To find the value of the expression
on the right, MATLAB looks for a file called sphereprops. It finds it, and sees that
it is a function m-file that has one input which is referred to in the file as r and two
outputs that are referred to in the file as a and v respectively. It sets the value of
r to 2 and executes the code in the file. In this case, the code assigns a the value
4π(22) = 50.2655 and assigns v the value (4/3)π(23) = 33.5103. Thus the value
of sphereprops(2) is the pair of numbers (50.2655, 33.5103). These numbers are
assigned to the variables area and volume respectively. To check this type:

>> area
area =

50.2655
>> volume
volume =

33.5103

4.3 Function M-files as Black Boxes

The function myf in example 1 above was a generic rational function. We constructed
it with no particular application in mind, so our focus was on the formula by which
the output was obtained from the input. However, in example 2, the input and
the outputs had meaning; the input was the radius of a sphere and the outputs
were the corresponding volume and surface area. The person that wrote the m-file
had to know the formulae for the surface area and volume of a sphere, but once
the m-file is written it can be used by anybody without their having to know these
formulae. This is why m-files are so important; once they are written you only have
to remember the meanings of the input and output variables; you don’t need to
remember the details of how the output is calculated from the input.

To emphasize this, we have created an m-file that is a mortgage calculator; given
the loan amount, the number of years over which the loan will be payed back, and
the annual interest rate, the mortgage calculator calculates the monthly payments.
Your instructor should have made the file available to you. Access the file and save
it in your working MATLAB folder (probably the learnmatlab/Lesson4 folder on
your flash drive). The file is called mortgage.p. The reason it has a .p extension
instead of a .m extension is that it has been saved in a pre-compiled form so that
you can’t see the code inside it. This was done on purpose to emphasize that you
don’t need to see the code in order to use the file. All you need to know is what the
inputs and outputs represent. A box picture of mortgage is shown below:
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HH
��

HH
��

(loan, period, rate) monthly payment

mortgage

Notice that, in this case, we haven’t filled in what’s going on inside the box because
we don’t know. This won’t prevent us from using the function though; to find out
what your monthly payments would be if you borrowed $200,000, at an annual rate
of 5% and paid it back over 30 years type

>> mortgage(200000, 30, 5)
ans =

1.0727e+3
The monthly payments would be $1,073.

You have actually used many MATLAB functions already without realizing it.
For instance when you type

>> sin(pi/6)
ans =

0.5000
you are using a MATLAB function called sin. This function has one input that is
interpreted as the radian measure of an angle and one output that is the sine of
that angle. We don’t know the details of how MATLAB calculates the output from
the input, but we don’t need to know them (provided we trust that MATLAB is
doing it correctly). Some other MATLAB functions that you have used are size,
length, abs etc. Thus, in essence, when you write your own function m-file, you
are extending MATLAB’s language to include another function. You can give your
m-file to other people and they can use it without having to understand the details
of how the output is obtained from the input.

4.4 Writing a Function M-File

As you saw in Examples 1 and 2 above, to create a function m-file you click on File
→ New → M-file in the command window just as you would if you were creating
a script m-file. MATLAB distinguishes a function m-file from a script m-file by the
very first line in the file which is called the function definition line. This line tells
MATLAB that this file is a function m-file instead of a script m-file and it shows
how many inputs and outputs the function has and what they are called inside the
file. This line must have the form

function [output1, output2, ...] = name(input1, input2, ...)
where output1, output2, etc. are the names used inside the file for the output
variables, input1, input2 are the names used inside the file for the input variables,
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and name is the name of the function. After this line you type the code that, when
executed, will use the values of the input variables to find the values of the output
variables.

Examples 1 and 2 illustrate how function m-files can be written. Here are two
more examples.

Example 3: Number of roots of a quadratic function

In this example we will write a function m-file that calculates how many (real)
roots the quadratic function f(x) = ax2 + bx + c has. Let’s call the function
quadroots. Click on File → New → M-file in the command window. The in-
puts to our function will be the coefficients a, b, and c and there will be one output
whose value is the number of roots that the function f(x) = ax2 + bx+ c has. Let’s
call the inputs a, b and c and let’s call the output numroots. This means that the
first line of the file should be:

function numroots = quadroots(a, b, c)
The code following this line must use the values of a, b and c to find the number of
roots of the function. We know that the number of roots depends on the discriminant
∆ = b2 − 4ac. If ∆ > 0 then the function has two roots, if ∆ = 0 then it has one
root, and if ∆ < 0 then it has no roots. So, the first line of code finds the value of
∆:

delta = b^2 - 4*a*c;
We would like to know the sign of ∆. MATLAB has a function that will calculate
this; it is called sign. You can get details of how to use this function by typing
help sign at the prompt in the command window:

>> help sign
SIGN Signum function.
For each element of X, SIGN(X) returns 1 if the element
is greater than zero, 0 if it equals zero and -1 if it is
less than zero. For the nonzero elements of complex X,
SIGN(X) = X ./ ABS(X).
See also abs.
Reference page in Help browser
doc sign

Notice that if x is a number then sign(x) is 1 if x > 0, it’s 0 if x = 0 and it’s
−1 if x < 0. Thus, to get the number of roots of the function we want to find
sign(delta) and add one to it. Thus, the second (and final) line of our code is:

numroots = sign(delta) + 1;
The complete m-file should look like the following:

function numroots = quadroots(a, b, c)
delta = b^2 - 4*a*c;
numroots = sign(delta) + 1;

Save the file. To check the file, consider the quadratic function f(x) = (x−1)(x+4) =
x2 + 3x− 4, which has two roots, 1 and −4. To test our quadroots function, type,
in the command window:
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>> quadroots(1, 3, -4)
ans =

2
We see that quadroots produced the correct answer. Now we’ll try it on the function
f(x) = x2 + 1 that has no real roots. Type

>> quadroots(1, 0, 1)
ans =

0
Again, we got the correct answer. As a last test, we’ll try it on the function f(x) =
3(x− 1)2 = 3x2 − 6x+ 3 which has one real root. Type

>> quadroots(3, -6, 3)
ans =

1
Again, it produced the correct answer.

Example 4: Finding the sum of the squares of the first n odd integers

In the next example we write a function m-file that finds the sum of the squares
of the first n odd integers where n is an input to the file. Click on File → New
→M-file in the command window. Let’s call the function sumofsqrs. It will have
one input that we’ll call n and one output that we’ll call s, so the first line should
read:

function s = sumofsqrs(n)
Given, n, the output should be the value of

12 + 32 + 52 + . . .+m2

where m is chosen so that there are n terms in the sum. Notice that to get 1 term
in the sum, m should be 1, to get 3 terms in the sum m should be 3, to get 3 terms
in the sum m should be 5 etc. Summarizing this in a table we get

n 1 2 3 . . .

m 1 3 5 . . .

Observing the pattern (write in more terms if you need to) we see that m = 2n− 1.
Having found m there are a number of ways that we could find the sum. One way
would be to write a for loop as follows:

m = 2*n - 1;
s = 0;
for i = 1:2:m
s = s + i^2;
end

Another way would be:
n = 2*n - 1;
x = 1:2:n;
s = sum(x.^2);
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Yet another way would be:
n = 2*n - 1;
x = 1:2:n;
s = x*x’;

Using the last way (which is probably the quickest since MATLAB is written to
work fastest on matrix operations) the complete file looks like:

function s = sumofsqrs(n)
n = 2*n - 1;
x = 1:2:n;
s = x*x’;

Save the file. To test it, we’ll use it to find, 12 + 32 + 52 + 72 = 84. In the command
window type:

>> sumofsqrs(4)
ans =

84
It worked!

4.5 Variables in Function M-files

As we have seen, function m-files can be used without the user knowing or under-
standing the code that was used to write them. All the user needs to know is what
the inputs and outputs represent. It is important, therefore, that the m-file doesn’t
change the values of variables in the workspace since the user might not even know
that this is happening.

For example, consider the function sumofsqrs that we wrote above. When the
function is called, the command x = 1:2:n; is executed. This command creates a
variable x (if it doesn’t already exist) and assigns it the value (1, 3, 5, . . . n). If you
executed this command in the command window and you already had a variable
called x in the workspace then its value would be lost and replaced by (1, 3, 5, . . . n).
If the m-file worked the same way this could be highly problematic. In particular,
suppose you were using the m-file without having looked at the code inside of it.
Then you wouldn’t even know that your value of x had been written over, and all
future calculations that you did using x would be wrong!

The way MATLAB (and other programming languages) get around this problem
is they give a function its own workspace. The only way a function can access the
value of a variable in the main workspace is if that value is passed as an input
to the function. The only way it can change the value of a variable in the main
workspace is if one of its output variables is assigned to that variable. Any other
variables it creates or uses as it executes the code in the file are in the function’s
own workspace. Thus, when the function sumofsqrs is called and the command x =
1:2:n is executed, it won’t matter if there is a variable x in the main workspace or
not. Only the variable x in the function’s workspace will be modified and assigned
the value (1, 3, 5, . . . n).
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To check that you understand this, recall the function sphereprops that we
created in Example 2. For easy reference here’s what the m-file looks like:

function [a, v] = sphereprops(r)
a = 4*pi*r^2;
v = (4/3)*pi*r^3;

Type
>> clear

in the command window to clear the main workspace of all variables. Now, type
the following line in the command window

>> [area, volume] = sphereprops(2);
There are now two variables in the main workspace area and volume. You can see
this by typing

>> who
Your variables are:
area volume

Their values are the area and volume of a sphere of radius 2 respectively:
>> area
area =

50.2655
>> volume
volume =

33.5103
Notice that the variables a and v that appear in the m-file are not listed as variables
in the main workspace. This is because these variables are local to the function. To
illustrate with another example let’s clear the workspace again:

>> clear
Now type the following lines of code:

>> a = 5;
>> v = 7;
>> [a, volume] = sphereprops(2);
>> a
a =

50.2655
>> volume
volume =

33.5103
>> v =
v = 7

Notice that in the first two lines MATLAB creates variables a and v in the main
workspace and assigns them the values 5 and 7 respectively. Then, the function
sphereprops is called which has two outputs; the surface area of a sphere of radius
2 and the volume of a sphere of radius 2. The first is assigned to the variable
a in the workspace overwriting its previous value and the second is assigned to a
variable volume that is created in the workspace. Notice that the variable v in the
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function sphereprops is local to the function and does not change the value of v in
the workspace. As a final example let’s return to the function sumofsqrs. First,
clear the workspace:

>> clear
Now type in the following code.

>> n = 4;
>> sumofsqrs(n);
ans =

84
Notice that when sumofsqrs is called, the variable n in the function’s workspace is
set equal to the value of n in the main workspace, namely 4. In the first line of code
in the m-file, the value of the local variable n is changed to 2 ∗ 4− 1 = 7. However,
this only changed the variable n that was local to the function; the variable n in the
workspace remained unchanged. In particular, if we ask MATLAB what the value
of n is:

>> n
n =

4
we see that it still has the value 4.

4.6 Comments and Help Lines in a Function M-file

As with script m-files it is always a good idea to fully comment your function m-
files explaining what each piece of code does. (This really isn’t necessary in our
four examples because the files are so short, but you should try to make a habit of
it anyway.) In addition, function m-files can and should be commented with what
are known as help lines. These are comment lines that appear directly after the
function definition line and before the first line of code. In these lines you should
describe what the function does and what its inputs and outputs are. When the
user types, at the prompt in the command window,

>> help functionname
where functionname is the name of the function, these lines will appear, showing
the user what the function does and how it should be used. For example, consider
the function sphereprops in Example 2. Click on the function in the edit window
and add the comment lines shown below.

function [a, v] = sphereprops(r)
% The function [a, v] = sphereprops(r) calculates the surface area
% and volume of a sphere from its radius.
% Inputs:
% r (number): The radius of the sphere.
% Outputs:
% a (number): The surface area of the sphere.
% v (number): The volume of the sphere.
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a = 4*pi*r^2;
v = (4/3)*pi*r^3;

Save the file. Now, in the command window at the prompt type
>> help sphereprops
The function [a, v] = sphereprops(r) calculates the surface area
and volume of a sphere from its radius.
Inputs:
r (number): The radius of the sphere.
Outputs:
a (number): The surface area of the sphere.
v (number): The volume of the sphere.

This tells the user exactly how to use the file without them having to understand
or even see the code that was used to write it. As another example, here are good
help lines to include in the m-file quadroots of Example 3.

function numroots = quadroots(a, b, c)
%
% The function numroots = quadroots(a, b, c) finds how many real
% roots the quadratic function f(x) = ax^2 + bx + c has.
% Inputs:
% a (number): the coefficient of x^2 in the quadratic
% b (number): the coefficient of x in the quadratic
% c (number): the constant term in the quadratic
% Output:
% numroots (number): the number of real roots (either 0, 1, or 2)

delta = b^2 - 4*a*c;
numroots = sign(delta) + 1;

4.7 Vectorizing Your Code

Recall that to sketch the graph of, say, sin(x) in MATLAB, we first create a vector
of x-values, then create the corresponding vector of y-values, and then plot the two
vectors against each other:

>> x = -10:.1:10;
>> y = sin(x);
>> plot(x, y)

Notice what happened when we typed y = sin(x). The vector x = (−10,−9.9, . . . 10)
was fed into MATLAB’s sin function. The way the function worked was that it
found the sine of each entry in x. In other words sin(x) was the vector

(sin(−10), sin(−9.9), . . . sin(10)).

Suppose now that we wanted to sketch the graph of the function myf in Example
1. If we did the same thing as above MATLAB would complain:

x = -10:.1:10;
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>> y = myf(x);
??? Error using ==> mpower
Matrix must be square.

Error in ==> myf at 3
y = 10*x/(x^2 + 1);

MATLAB didn’t know how to work out what x2 was because x was a vector, so it
couldn’t be multiplied by itself with regular matrix multiplication. What we wanted
y to be was the vector of values(

−100
102 + 1

,
−99

9.92 + 1
,
−98

9.82 + 1
, . . . ,

−100
102 + 1

)
.

In other words, we wanted MATLAB to do pointwise operations ./ and .^ instead
of the regular matrix operations / and ^. Go back to the myf m-file and replace the
matrix operations with point-wise operations:

function y = myf(x)
y = 10*x./(x.^2 + 1);

Save the file. Now, let’s try again to sketch the graph of the function:
x = -10:.1:10;
>> y = myf(x);
>> plot(x, y)

It works!
Since variables in MATLAB are so often vectors and matrices, you should always

think about how you would like your function to behave should the inputs be vectors
or matrices and you should write the code in such a way that it behaves like that. As
another example, consider the function sphereprops that we constructed in Example
2. If the input r = (r1, r2, . . . rn) were a vector then probably a good way for the
function to behave would be for it to find the area and volume of each of the spheres
of radius (r1, r2, . . . rn). Thus, it would be good if both a and v in the file were
vectors. We can achieve this easily by replacing each operation in the file with its
corresponding dot-operation. Notice that we also changed the help lines to reflect
this.

function [a, v] = sphereprops(r)
% The function [a, v] = sphereprops(r) calculates the surface area
% and volume of a sphere from its radius.
% Inputs:
% r (vector): The radii of spheres.
% Outputs:
% a (vector): The surface areas of the spheres with radii given
% in r.
% v (vector): The volumes of the spheres with radii given in r.

a = 4*pi*r.^2;
v = (4/3)*pi*r.^3;
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4.8 Calling one M-file From Another M-file

One m-file can use another m-file. As an example, we’ll create a function m-file that
plots the graph of the myf function. We’ll call the function plotmyf. Its inputs will
be the least and greatest values of x used in the plot as well as the step size between
adjacent points. It will have no output. Click on File → New → M-file in the
command window and type the following in the edit window that opens up:

function plotmyf(xmin, xmax, step)
x = xmin:step:xmax;
y = myf(x);
plot(x, y)

Save the file as plotmyf.m. Notice that the code in plotmyf.m calls the function
myf. To use plotmyf to plot the function myf, type

>> plotmyf(-10, 10, .1)
at the prompt in the command window. It worked.

4.9 Testing and Debugging Your Code

Remember when you write m-files that you should write one little piece at a time,
save the file and run the file to check that it’s doing what you expected. Then, build
on it and write another little piece, save and test it again. If at any point you are
getting something different from what you expected, think about what is happening
at each stage. To see what’s happening try removing the semicolons from the ends
of the lines so that MATLAB will print what it’s doing to the command window.
This can really help you decipher what’s going on. Once you’ve worked out what’s
going on you can put the semicolons back in again, since you don’t normally want
to see the guts of an m-file.
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Worksheet 4

1. (Using function m-files when you don’t know the code inside them.)

a) i) Using the function mortgage.p that you accessed when working
through Lesson 4, plot a graph of monthly payment as a function
of the amount borrowed when the mortgage is paid over 30 years
with an annual interest rate of 5%. Sketch your graph by hand here.

ii) From your graph determine a formula for the monthly payment as a
function of the amount borrowed under these conditions.

b) The concentration of drug in a patient’s bloodstream depends on when
the drug was administered, how much was administered, and on the pa-
tient’s weight. Your instructor should have made the file happacine.p
available to you. Save the file in your working MATLAB folder (proba-
bly learnmatlab/Lesson4 on your flash drive). This function determines
the concentration of the drug Happacine in the blood of a patient. The
function has three inputs. The first input is the weight of the patient in
pounds. The second input is a vector of length two that indicates when
and how much drug was administered to the patient. The first entry of
this vector is the size of the doses (in mg) and the second entry is the
number of hours between doses. The third input is the number of hours
that have passed since the first dose was administered. The output of
the function is the concentration of the drug in the bloodstream of the
patient at this point in time, measured in mg/liter. For example, if you
type
>> happacine(125, [5, 8], 60)

ans =

0.7588

then you see that when a person who weighs 125 lb is administered 5 mg of
the drug every 8 hours, the concentration of the drug in the bloodstream
after 60 hours (or 2.5 days) is 0.7588 mg/liter. The third input may also
be a vector. In this case, the function will give the concentrations in the
bloodstream at each of the times listed in the vector. For example, if you
type
>> happacine(125, [5, 8], [1, 9, 17])

ans =

0.1446 0.2732 0.3873

then you see that when a person who weighs 125 lb is administered 5 mg of
the drug every 8 hours, the concentration of the drug in the bloodstream
after 1 hour is 0.1446 mg/liter, after 9 hours is 0.2732 mg/liter and after
17 hours is 0.3873 mg/liter.
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Use MATLAB to draw a graph of the concentration of drug in the blood-
stream as a function of time when a person who weighs 125 lb is admin-
istered 5 mg of the drug every 8 hours. Describe the graph and explain
why it looks the way it does. In particular, describe

i) the overall general shape of the graph,
ii) why and when the graph has points of discontinuity,
iii) what happens to the concentration in the long run, and
iv) how long it takes for the concentration to reach a ‘steady state.’

2. (Writing your own function m-files.)

a) Write a function m-file for the function y = x2 + 3. The input should
be a number, x, and the output should be the corresponding number y.
Name the function myquad. Test that your m-file works by typing
>> myquad(5)

at the command line. MATLAB should respond with
ans =

28

Make sure that your m-file works when the input is a vector. Test that
it works by typing
>> myquad(1:4)

at the command line. MATLAB should respond with
ans =

4 7 12 19

b) Write a function m-file whose inputs are the length, width, and height of
a rectangular solid block, and whose outputs are the volume and surface
area of the block. Name the function solidprops. Test that your m-file
works by typing
>> [volume, surfacearea] = solidprops(2, 5, 6)

at the command line. MATLAB should respond with
volume =

60

surfacearea =

104

c) Recall the script m-file you wrote for Worksheet 3 to estimate the value
of ∫ 1

0
e−x

2
dx

using the trapezoidal rule with n = 20. Modify this m-file so that it is a
function m-file that has one input and one output. The input should be
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the number of intervals used in the trapezoidal approximation and the
output should be the estimated value of the integral.

d) Write a function m-file that calculates the value of

(1)(2) + (2)(3) + (3)(4) + . . . (n− 1)(n)

where n is an input to the function. Name the function sumprod. Test
your function by noticing that sumprod(2) should be equal to (1)(2) = 2
and sumprod(4) should be equal to (1)(2) + (2)(3) + (3)(4) = 20.

3. (Variables in function m-files.) Try to answer each of the following questions
first without using MATLAB. Then, check your answers using MATLAB.

a) Suppose you have the following two function m-files saved in your working
directory.
function y = myf1(x)

x = x^2;

y = 5*x + 3;

Suppose, moreover, that you type the following commands at the prompt
in the command window:
>> clear, x = 6; z = myf1(x);

In each case, determine which response MATLAB will give when the
variable shown is typed at the prompt in the command window. (Blank
lines have been ignored in the responses.)

i) >> z

I) z = 33

II) z = 183

III) ??? Undefined function or variable ’z’.

ii) >> x

I) x = 6

II) x = 36

III) ??? Undefined function or variable ’x’.

iii) >> y

I) y = 33

II) y = 183

III) ??? Undefined function or variable ’y’.

b) Suppose you have the following function m-file saved in your working
directory.
function y = myf2(x)
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x = x^2

y = 5*x + 3

Notice that myf2 is almost the same as myf1. The only difference is
that the semicolons after the commands are left out in myf2. Suppose,
as above, that you type the following commands at the prompt in the
command window:
>> clear, x = 6; z = myf2(x);

Notice that in this case, MATLAB responds with
x =

36

y =

183

In each case below, determine which response MATLAB will give when
the variable shown is typed at the prompt in the command window.
(Blank lines have been ignored in the responses.)

i) >> z

I) z = 33

II) z = 183

III) ??? Undefined function or variable ’z’.

ii) >> x

I) x = 6

II) x = 36

III) ??? Undefined function or variable ’x’.

iii) >> y

I) y = 33

II) y = 183

III) ??? Undefined function or variable ’y’.



c© C. Haskell. Draft 7/2010. Duplication for commercial purposes prohibited. 79

5 Boolean Expressions and While Loops

5.1 Goals of this lesson:

In this lesson you will learn

• what a Boolean expression is,

• why we want MATLAB to be able to determine if a Boolean expression is true
or false,

• what relational operators are,

• the difference between == and =,

• what the Boolean operators & and | do,

• what a while loop is and when to use one, and

• techniques for writing a while loop.

In this lesson you will be creating files that you will need to save somewhere. So,
insert your flash drive into the USB port and inside the learnmatlab folder create a
folder called Lesson5. In MATLAB, navigate so that this is your working folder.

5.2 Introduction to Boolean Expressions

A statement that may be true or false is called a Boolean expression. For instance,
the statements, “5 > 3” and “An apple is not a fruit,” are Boolean expressions.
The first statement is true and the second is false. (These examples taken from
Wikipedia.) Boolean expressions can contain a variable. In this case they may be
true for some values of the variable and false for other values. For instance, the
statement ”x > 3” is true when x is equal to 5 but is false when x is equal to 1.

Why do we want MATLAB to determine whether a statement is true or false?
This is because often what we do next depends on whether a statement is true or
false. For instance, suppose we want to evaluate

lim
x→0+

2x − 1
sinx

.

correct to 5 decimal places. As you know, we can do this numerically by creating a
table of values using values of x that get closer and closer to 0 as shown below:

x (2x − 1)/ sinx
1 1.188395
.1 0.718932
.01 0.695567
.001 0.693388
.0001 0.693171

...
...
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If we want to know the limit to 2 decimal places, we look at the table above and
see that the last two entries haven’t changed when rounded to 2 decimal places, so
we conclude that the value of the limit is 0.69 when rounded to 2 decimal places.
If we want to know the limit to 5 decimal places, then we haven’t gone far enough;
we have to fill in the table with more values of x.

It is easy enough to get MATLAB to evaluate the expression at progressively
smaller values of x, but how can MATLAB know when to stop without having a
human intervene and say, “stop now?” For MATLAB to know when to stop it needs
to be able to ascertain at each stage whether or not it is true that the values have
stopped changing in the fifth decimal place. For this reason, it is important that
MATLAB be able to determine if a statement is true or false.

After we have discussed and understood Boolean expressions a little better we
will return to this example to see explicitly how we could implement it in MATLAB.

5.3 Boolean Expressions and Relational Operators

Boolean expressions in MATLAB are characterized by the six relational operators:

== equal
˜= not equal
< less than
> greater than
<= less than or equal
>= greater than or equal

For instance, the expression 3 > 5 is a Boolean expression that is false. When
a Boolean expression is typed at the prompt in the command window, MATLAB
evaluates the expression. In other words, it determines whether the expression is
true or false. If it is true then the value of the expression is 1 and if it is false
then the value is 0. For instance type the following at the prompt in the command
window:

>> 3 > 5
ans =

0
When a Boolean expression contains the value of a variable, MATLAB will use the
current value of the variable to determine whether the expression is true or false.
For instance type the following at the prompt in the command window.

>> x = 5;
>> x < 7
ans =

1
Since x was assigned the value 5 in the first command, it was true that x was less
than 7, so the Boolean expression x < 7 had the value 1 (True). Now type the
following to check your understanding of what each relational operator means:
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>> x == 3
ans =

0
>> x ˜= 3
ans =

1
>> x^2 - 16 < 9
ans =

0
>> x^2 - 16 <= 9
ans =

1
>> 2*x + 6 > 3*x
ans =

1
>> 2*x + 6 >= 3*x
ans =

1

5.4 The Difference Between = and ==

Recall that a single equals sign = is an assignment command. For instance, when
you type

>> x = 7;
at the prompt in the command window, the expression on the right is evaluated
(its value is 7) and its value is assigned to the variable on the left. In other words,
the variable x is assigned the value 7. In contrast, a double equals sign == is a
relational operator. For instance, when you type

>> x == 5;
at the prompt in the command window, you are asking MATLAB to find the value
of this Boolean expression (and assign the value to the variable ans). In other words
you are asking MATLAB to determine if the statement is true or false. In this case,
the right hand side has value 5 while the left hand side is x which has the value 7,
so the statement is not true. Thus, when MATLAB evaluates the expression it gets
0 (false) and this value is assigned to the variable ans:

>> ans
ans =

0

5.5 The Boolean Operators & and |

Sometimes we want to know if two things are both true or if at least one of them is
true. We can tell MATLAB to ascertain this by combining the two expressions with
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either an ampersand sign & (signifying and) or a vertical line | (signifying or). In
particular, if A and B are both Boolean expressions then A&B is another Boolean
expression that is true if both A and B are true and otherwise is false. On the other
hand, A | B is a Boolean expression that is true if either one or both of A and B
are true and is false only in the case when both A and B are false. Here is a table
that summarizes this:

A B A&B A | B
T T T T
T F F T
F T F T
F F F F

For instance, type the following at the prompt in the command window:
>> x = 3; y = 5;
>> x + y > 0
ans =

1
>> x - y > 0
ans =

0
Since x = 3 and y = 5, notice that x + y = 8 which is greater than 0, so the first
Boolean expression is true and evaluated to 1. On the other hand, x−y = −2 which
is not greater than 0 so the second Boolean expression is false and evaluated to 0.
Now type:

>> (x + y > 0) & (x - y > 0)
ans =

0
This Boolean expression is false and evaluated to 0 because it is not true that both
x+ y > 0 and x− y > 0. On the other hand, if we type:

>> (x + y > 0) | (x - y > 0)
ans =

1
then this Boolean expression is true since it is true that x+ y > 0, so the expression
evaluated to 1.

5.6 While Loops

Computers are particularly well-suited to perform repetitive tasks. We have seen
that one way to get MATLAB to perform a repetitive task is to use a for loop.
Recall that the structure of a for loop is:

for variable = expression
statements
end
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where expression is a vector. When MATLAB executes the loop, it sets the variable
equal to each element in the vector successively, and executes the commands in
statements each time. Thus, the number of times the commands in statements are
executed is known beforehand and is equal to the length of the vector. For this
reason a for loop is only useful if you know beforehand how many times the task
is to be repeated. However, many times you don’t know this; you only know when
to stop when you see the results of the calculations that are being performed. In a
situation like this you can use a while loop. A while loop in MATLAB has the form:

while expression
statements
end

where expression is a Boolean expression that is either true or false. Typically
expression has a variable in it and it is true for some values of the variable but
not for others. When MATLAB comes upon the while statement, it determines
whether expression is true or false. If it is false, it skips the loop altogether and
continues with any commands that appear after end or it stops if there are no such
commands. On the other hand, if expression is true, then it executes the code in
statements. After executing that code, it returns to expression to determine if it is
still true. If it is not true, then the loop is finished and MATLAB continues with
any commands that appear after end or stops if there are no such commands. On
the other hand, if expression is still true, then it executes the code in statements for
a second time and then returns again to expression to determine if it is still true. It
continues like this until finally expression is false at which point the loop has been
completed.

The examples below illustrate how while loops work.

Example 1: Find the sum of the reciprocals of the first 99 integers.

Click on File→ New→M-file to create a new m-file. Type the following code
in the m-file.

i = 1;
s = 0;
while i < 100
s = s + 1/i;
i = i + 1;
end
s

Save the file as ex1.m. Notice that ex1.m is a script m-file. To understand what
the commands do when ex1 is typed at the prompt in the command window, let’s
go through them step by step. In the first two lines of code, two variables i and s
are created and they are assigned the values 1 and 0 respectively. When MATLAB
comes upon the while statement, i has the value 1 so the expression i < 100 is true.
So, the statements in the body of the while loop are executed. The first statement
in the body of the loop is an assignment statement. The value of the expression on
the right hand side is s + 1/i = 0 + 1/1 = 1 and this is assigned to the variable s.
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So s now has the value 1. The second statement is also an assignment statement.
The value of the expression on the right hand side is i + 1 = 1 + 1 = 2 and this
is assigned to the variable i. So i now has the value 2. MATLAB then returns to
the while statement. At this point i has the value 2 so the expresion i < 100 is still
true so the statements in the body of the while loop are executed again. In the first
statement s is assigned the value 1 + 1/2 and in the second statement i is assigned
the value 2 + 1 = 3. MATLAB then returns to the while statement. This time
i = 3 so the expression i < 100 is true again. So, the statements in the body of the
loop are executed once again resulting in s being assigned the value (1 + 1/2) + 1/3
and i being assigned the value 3 + 1 = 4. The loop continues in this way until i
is assigned the value 99. When i = 99 the expression i < 100 is still true so the
statements in the body of the loop are executed resulting in s being assigned the
value (1 + 1/2 + . . . 1/98) + 1/99 and i being assigned the value 99 + 1 = 100. This
time when MATLAB returns to the while statement the expression i < 100 is false,
so MATLAB skips to the statement that appears after end and prints out the value
of s. This procedure is summarized in the table below.

i < 100 s i

0 1
True 0 + 1/1 = 1 1 + 1 = 2
True 1 + 1/2 2 + 1 = 3
True (1 + 1/2) + 1/3 3 + 1 = 4
True (1 + 1/2 + 1/3) + 1/4 4 + 1 = 5
...

...
...

True (1 + 1/2 + 1/3 + . . . 1/98) + 1/99 99 + 1 = 100
False

Thus, the value of s that is printed out in the command window is the sum of the
reciprocals of the integers from 1 to 99:

s = 1 + 1/2 + 1/3 + . . . 1/99.

Type
>> ex1
s =

5.1774
in the command window to execute the code in ex1. We see that

1 + 1/2 + 1/3 + . . . 1/99 = 5.1774.

Notice that another way to find this sum would be to use a for loop as in the code
below:

>> s = 0;
>> for i = 1:99, s = s + 1/i; end
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>> s
s =

5.1774
Yet another way wouldn’t use a loop at all as in the code below:

>> s = sum(1./(1:99))
s =

5.1774

Example 2: How many times do you have to roll a die before you roll a 6?

How many times do you have to roll a die before you roll a 6? Well, it varies.
You might roll a 6 the first time, or you might have to roll the die 50 times (or
more) before you roll a 6! In this example we’ll use a while loop to have MATLAB
simulate the process of rolling a die until a 6 is obtained and count the number of
times the die is rolled.

The code uses two MATLAB functions that we haven’t seen yet, so let’s explore
these first. The function rand can be used to generate a random number chosen
from the interval [0, 1]. Type

>> help rand
at the prompt to see how this function works. To explore it, type

>> rand(1)
ans =

0.4565
>> rand(1)
ans =

0.0185
>> rand(1)
ans =

0.8214
Notice that every time you type it you get something different. This is because the
number you get is random. The other function we’ll use is ceil.

>> help ceil
at the prompt in the command window to see how this function works. This function
rounds its input to the next highest integer. To test it out, type the following at
the prompt in the command window:

>> ceil(3.42)
ans =

4
>> ceil(3)
ans =

3
>> ceil (-2.65)
ans =

-2



c© C. Haskell. Draft 7/2010. Duplication for commercial purposes prohibited. 86

Now let’s create the m-file that simulates throwing a die until a 6 is obtained and
counting how many times it is thrown. Click on File → New → M-file to create
a new m-file. Type the following in the m-file.

d = 0;
count = 0;
while d ˜= 6
d = ceil(6*rand(1))
count = count + 1;
end
count

Save the file as die.m. To understand how the code works when >> die is typed
at the prompt in the command window, let’s run through it step by step. Initially
variables d and count are created whose values are both 0. When MATLAB comes
upon the while statement, it evaluates the Boolean expression d ˜= 6 and finds that
it is true since d = 0 6= 6. So it executes the statements in the body of the loop.
The first statement is an assignment statement. To find the value on the right it
generates a random number between 0 and 1 and multiplies it by 6. This gives a
random number between 0 and 6. It then rounds this number up to the nearest
integer obtaining either 1, 2, 3, 4, 5, or 6. Each integer is as likely as any other
integer, so this has simulated a roll of the die. The value obtained is assigned to
d and the value of d is printed out to the command window. Thus, the value of
d is what is obtained on the first roll of the die. The next statement is also an
assignment statement. The value on the left is 0 + 1 = 1 and this is assigned to the
variable count. MATLAB then returns to the while statement. If a 6 was rolled
then the Boolean expression d ˜= 6 is false and MATLAB will go the statement
after end and print out the value of count which is 1. Otherwise, if a 6 was not
rolled, then the Boolean expression is true and the statements in the body of the
loop will be executed once again. The first statement simulates rolling the die again
and assigns the value rolled to d and prints this out to the command window. The
second statement assigns the value 1 + 1 = 2 to count. MATLAB then returns to
the while statement. If a 6 was just rolled then the Boolean expression is false and
MATLAB goes to the statement after end and prints out the value of count which
is 2. Otherwise it executes the statements again. This continues until finally a 6
is rolled. Notice that when MATLAB finally stops, the value of d will be 6 and
the value of count that is printed out to the command window is the number of
times the die was rolled to get a 6. Type >> die a few times at the prompt in the
command window in order to see the program work.

>> die
d =

3
d =

4
d =

5
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d =
6

count =
4

>> die
d =

3
d =

6
count =

2
Notice that every time you run the program it’s different. This is because it’s
random! If you were to do this experiment by actually rolling a die it would be
different every time too. Let’s go back and edit the file to find the distribution of
the number of times we need to roll a die in order to obtain a 6. To do this we
want to run the program many times and keep track of the value of count each
time. Let’s run it fifty thousand times. Then we’ll draw a histogram of the values
obtained. Edit your file so it looks like the file below. Notice that we’ve embedded
the while loop inside a for loop that performs the while loop fifty thousand times.
Each time it is performed we store the value of count, so count is now a vector
of length fifty thousand. Notice also that we’ve put a colon where d is assigned its
new value and we’ve removed the statement that prints the value of count to the
command window; we don’t want to see tens of thousands of values being printed
out to the command window!

count = zeros(1, 50000);
for i = 1:(50000)
d = 0;
while d ˜= 6
d = ceil(6*rand(1));
count(i) = count(i) + 1;
end
end

Save the file and type
>> die

at the prompt in the command window to run it. It will take a moment; you are
asking MATLAB to do a lot of calculations! When the prompt appears again you
will know that it’s done. Now, to draw a histogram of the number of rolls needed
type

>> bar(histc(count, .5:70.5))
Notice that the most commonly occurring number of times that you have to roll the
die is 1 and that this decreases as time goes on. Type

>> die
>> figure
>> bar(histc(count, .5:70.5))
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again to get another histogram based on 50000 rolls of the die. Notice that the two
histograms look very similar. Although every time you repeat the experiment it will
look different, when you roll the die 50000 times the histogram of the number of
rolls needed to get a 6 looks very similar.

5.7 Techniques for Writing Your Own While Loops

When you want MATLAB to repeat a task over and over again, but you don’t know
a-priori how many times it will need to repeat it, it is probably appropriate to use
a while loop. When you write the while loop you need to think about four things.

1. You need to determine what exactly is being repeated. The commands for
this will go in the body of the loop.

2. Under what conditions should the loop stop. This will be expressed using a
Boolean expression that goes in the while statement.

3. What needs to be initialized before entering the loop?

4. What exactly do you want the value of everything to be when you exit the
loop.

To illustrate the process of writing a while loop let’s consider the example in the
first section of this lesson in which we want MATLAB to evaluate

lim
x→0+

2x − 1
sinx

correct to 5 decimal places. We’ll write an m-file script to do this.
We know that to do this numerically we can plug in values of x that get closer

and closer to 0 and evaluate the function at each value. This is a repetitive action,
but we don’t know a-priori how many times we will need to repeat it. This indicates
that a while loop is an appropriate way to code this. We want to stop when the
present value and the previous value are the same to 5 decimal places; in other
words, when the absolute value of the difference between the present value and the
previous value is less than 10−6. So, our m-file script should consist of commands
that tells MATLAB to do the following:

1. Choose an initial value of x (we used 1 in the table above).

2. Evaluate the function at this value.

3. Choose another value of x that’s closer to 0 (we used .1 in the table above).

4. Evaluate the function at this new value of x.

5. Find the absolute value of the difference between the two values of the function.
If it is less than 10−6 then use this new value as the value of the limit and
stop.
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6. Otherwise, if the difference is greater than 10−6, choose another value of x
that’s closer to 0 (we used .01 in the table above).

7. Evaluate the function at this new value of x.

8. Find the absolute value of the difference between this new value of the function
and the previous value. If the difference is less than 10−6 then use this new
value as the value of the limit and stop.

9. Otherwise, if the difference is greater than 10−6, choose another value of x
that’s closer to 0 (we usesd .001 in the table above).

10. Evaluate the function at this new value of x.

etc.

Notice that steps 5, 6, and 7 are the same as steps 8, 9 and 10 which are the same
as steps 11, 12 and 13 etc. So, these are the steps that will be inside the while
loop. The criterion for continuing with the loop is that the difference between the
new function value and the old function value be greater than 10−6. When the loop
is finished, the value of the limit should be set equal to the newest value of the
function. Thus, our m-file script should be a translation of the following commands
into MATLAB code:

1. Choose an initial value of x (we used 1 in the table above).

2. Evaluate the function at this value.

3. Choose another value of x that’s closer to 0 (we used .1 in the table above).

4. Evaluate the function at this new value of x.

5. While the absolute value of the difference between the new value and the old
value is greater than 10−6

5a Choose a new value of x (we used one tenth of the previous value in the
table above).

5b Evaluate the function at this new value.

6. The limit is equal to the newest value of the function.

Now, to translate this into code is relatively simple. The only thing we have to
worry about is what the ‘new value of x’ and the ‘old value of x’ are because these
keep changing; what was the new value becomes the old value as soon as a yet newer
value of x is chosen. So, we’ll have to insert commands telling MATLAB to change
them exactly like that. We’ll do a similar thing for the ‘new’ and ‘old’ values of the
function. So, now we’re ready to create the m-file. Click on File→ New→M-file
to create a new m-file. Type in the following code. The comments are there for
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you to see that the code is really a direct translation of the steps listed above into
MATLAB .

xold = 1; % Step 1
yold = (2^xold - 1)/sin(xold); % Step 2
xnew = 0.1*xold; % Step 3
ynew = (2^xnew - 1)/sin(xnew); % Step 4
while abs(ynew - yold) > 10^(-6) % Step 5

% In the next two commands the new values of x and y
% become the old values respectively.
xold = xnew;
yold = ynew;
xnew = 0.1*xold; % Step 5a
ynew = (2^xnew - 1)/sin(xnew); % Step 5b

end % end of Step 5
lim = ynew; % Step 6

Save the file as limit1.m. Test it by typing
>> limit1

at the prompt in the command window. It looks like MATLAB didn’t do anything.
This is because we put semi-colons after each line in the code. To see what the value
of the limit is, type

>> lim
lim =

0.69314720407832
at the prompt in the command window. Well, we got a number for the limit,
0.69315, but how do we know it’s right? To check that MATLAB is doing what you
expect it to be doing, you can go back to the m-file and remove some appropriately
chosen semi-colons. That way you can see those calculations as they are performed
to check that MATLAB is doing the calculations you expect. So, let’s go back to
the m-file and remove all those semi-colons where a new value of x or a new value
of y is calculated. The m-file (without the comments) should now look like:

xold = 1
yold = (2^xold - 1)/sin(xold)
xnew = 0.1*xold
ynew = (2^xnew - 1)/sin(xnew)
while abs(ynew - yold) > 10^(-6)

xold = xnew;
yold = ynew;
xnew = 0.1*xold
ynew = (2^xnew - 1)/sin(xnew)

end
lim = ynew

Save the file and then type >> limit1 again at the prompt in the command window.
Here is what comes out (in a more compressed form).

>> limit1
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xold = 1
yold = 1.18839510577812
xnew = 0.10000000000000
ynew = 0.71893224680670
xnew = 0.01000000000000
ynew = 0.69556659839056
xnew = 1.000000000000000e-03
ynew = 0.69338757814533
xnew = 1.000000000000000e-04
ynew = 0.69317120492028
xnew = 1.000000000000000e-05
ynew = 0.69314958283152
xnew = 1.000000000000000e-06
ynew = 0.69314742079396
xnew = 1.000000000000000e-07
ynew = 0.69314720407832
lim = 0.69314720407832

Sure enough, it looks like the values of x are decreasing as expected: 1, 0.1, 0.01,
0.001, . . .. Similarly the y-values look good. In particular, the first few of them
match the values in the table given at the beginning of the lesson. Also, the value
of lim was correctly assigned to the last value of the function.

Let’s look at another way to code the same process. When we constructed the
code above in limit1.m we did it by noticing that steps 5, 6 and 7 were the same
as steps 8, 9 and 10 etc. However, looking at it from a different point of view we
see that, in essence, steps 3, 4 and 5 are the same as 6, 7 and 8 which are the same
as 9, 10 and 11 etc. In this case we would have the following pseudo-code:

1. Choose an initial value of x (we’ll use 1).

2. Evaluate the function at this value.

3. While the absolute value of the new value and the old value is greater than
10−6

3a Choose a new value of x (we used one tenth of the previous value in the
table above).

3b Evaluate the function at this new value.

4. The limit is equal to the newest value of the function.

The only problem with this pseudocode is that when MATLAB comes upon step
3 the first time, it won’t be able to test whether or not the absolute value of the
difference between the new value and the old value is greater than 10−6 because
there isn’t a new value and an old value; the function has only been evaluated once.
This will produce an error message. So, what you need to do is create a variable
whose value will be this difference, and initialize the variable before step 3 to any
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number that is bigger than 10−6 so that the loop will definitely be executed at least
once. Here is code that works. Click on File → New → M-file to create a new
m-file and type in the code.

xold = 1; % Step 1
yold = (2^xold - 1)/sin(xold); % Step 2
diff = 1;
while diff > 10^(-6) % Step 3

xnew = 0.1*xold; % Step 3a
ynew = (2^xnew - 1)/sin(xnew); % Step 3b
diff = abs(xnew - xold);
% In the next two commands the new values of x and y
% become the old values respectively.
xold = xnew;
yold = ynew;

end % end of Step 3
lim = yold; % Step 4

Save the file as limit2 and type
>> limit2

at the prompt to see that it works.

5.8 Quitting a Program that is Caught in an Infinite Loop

When you write m-files that contain while loops, sooner or later you will run a
program and it will never stop. This can happen because the Boolean expression
in the loop never becomes false. This is inconvenient (to say the least). To stop a
program in midstream type Ctrl+C on Windows machines and Command+. (the
command key with the period key) on Macs.
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Worksheet 5

1. First try to answer this question without using MATLAB. Then, use MATLAB
to check your answers.

Consider the following code.

>> s = 0; n = 1;

>> while n <= 5

s = s + n^2;

n = n + 2;

end

a) What is the value of s immediately after this code has been executed?
Circle your answer.

i) s = 12 + 22 + 32

ii) s = 12 + 22 + 32 + 42

iii) s = 12 + 22 + 32 + 42 + 52

iv) s = 12 + 32

v) s = 12 + 32 + 52

vi) s = 12 + 32 + 52 + 72

b) What is the value of n immediately after this code has been executed?
Circle your answer.

n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

2. Albert wanted to calculate the value of

lim
x→0+

2− 2cosx

sin2 x

correct to 6 decimal places and to that end wrote the following m-file.

xold = 1;

yold = (2 - 2^cos(xold))/sin(xold)^2;

diff = 1;

while diff > 10^(-7)

x = 0.1*xold;

y = (2 - 2^cos(x))/sin(x)^2;

diff = abs(y - yold);

end
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a) When Albert runs the program, however, MATLAB doesn’t appear to
do anything. Why? Circle your answer.

i) There is an error in the m-file, so MATLAB can’t execute the code.
ii) MATLAB is executing the code but it never stops because the crite-

rion diff > 10^(-7) is always satisfied.
iii) The code is okay and MATLAB is executing the code. It just takes

a while because there are a lot of calculations to do.

b) If the code needs to be fixed indicate how it should be fixed.

c) Use the corrected m-file to find the value of the limit. Write your answer
correct to 6 decimal places. (You can use the command format long to
get MATLAB to print out more than 4 decimal places to the command
window.)

3. Recall the m-file script you wrote in Worksheet 3 and the function m-file you
wrote in Worksheet 4 to find the value of∫ 1

0
e−x

2
dx

using the Trapezoidal rule. Modify your function m-file so that its input is the
accuracy to which you want the integral to be calculated and the output is
the value of the integral calculated to that accuracy. Your m-file should start
by estimating the value of the integral using 2 sub-intervals, then it should
estimate the value of the integral using 4 sub-intervals. If the two estimates are
the same to the desired accuracy then it should return this value as the output.
Otherwise, it should estimate the value of the integral using 8 sub-intervals,
etc. Attach a copy of the m-file when you hand in this worksheet. What is
the value of the integral correct to 6 decimal places? Write your answer here.
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6 Function Handles and If Statements

6.1 Goals of this lesson:

In this lesson you will learn

• what a function handle is;

• how to use a function handle to pass a function as an argument to a function
m-file;

• how to use a function handle to create a function in-line; and

• how to write an if statement.

In this lesson you will be creating files that you will need to save somewhere. So,
insert your flash drive into the USB port and inside the learnmatlab folder create a
folder called Lesson6. In MATLAB, navigate, so that this is your working folder.

6.2 Review of how Function M-files Work

To understand function handles we need to recall how function m-files work. So,
let’s create a simple function m-file of the function y = 1/(1 + x2). We’ll call this
function myf. By this time you know how to create such a file; click on File→ New
→ M-file, and type the following in the window that appears.

function y = myf(x)
y = 1./(1 + x.^2);

Remember to save the file before proceeding. Here is a box picture of this function.

HH
��

HH
��

Call the input x.
Find the value of

y =
1

1 + x2
.

Output y.

input output

myf

If we type, say,
>> temp = myf(2)
temp =

0.2000
at the prompt in the command window, then MATLAB looks for an m-file called
myf. When it finds it, it sees that it has one input x. Before executing any commands
in the m-file it assigns the value 2 to the variable x. In other words, it executes the
statement
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x = 2;
in the function workspace. It then executes the commands in the m-file. In this case
there is only one and this command tells MATLAB to assign the value 1/(1 + 22) =
0.2 to the variable y in the function workspace. Since y is the output variable, this
value is assigned to the variable temp in the main workspace. If, on the other hand,
we simply typed

>> temp = myf
??? Input argument "x" is undefined.

Error in ==> myf at 3
y = 1./(1 + x.^2);

MATLAB complains because it is supposed to assign the output of myf to the
variable temp, but it hasn’t been given an input, so it can’t produce an output.

6.3 Why We Need Function Handles

We perform many operations on functions. For instance, we take derivatives and
integrals of functions, we sketch graphs of functions, and we find zeros of functions.
If we want to write an m-file that performs one of these actions and that can be
used without modification on any function, then we need the m-file to be a function
m-file that has an input that is itself a function.

For instance, suppose we want to write a function m-file slopesec that calculates
the slope of a secant line. The inputs to the m-file will be the function whose secant
line we are interested in and the x-coordinates of the two points on the graph of
the function that define the secant line. A box picture of this function m-file would
look like:

HH
��

HH
��

Call the first input f .
Call the second input a.
Call the third input b.
Find the value of

s =
f(b)− f(a)

b− a
.

Output s.

(function, 1st coord, 2nd coord) slope

slopesec

It is easy enough to write this m-file. Click on File→ New→M-file and type the
following in the window that appears:

function s = slopesec(f, a, b)
s = (f(b) - f(a))/(b - a);

Remember to save the file. Now, let’s try to use this file to find the slope of the
function f(x) = 1/(1 + x2), that we coded in the m-file myf, between x = 2 and
x = 3. It might seem, at first, that we should be able to do this by typing
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>> slopesec(myf,2,3)
??? Input argument "x" is undefined.

Error in ==> myf at 3
y = 1./(1 + x.^2);

but MATLAB complains. Let’s carefully understand why it complains. When
slopesec(myf,2,3) is typed at the prompt in the command window, MATLAB
looks for the m-file slopesec. When it finds it, it sees that it has three inputs, f , a
and b. The first thing it does, before executing any of the commands in the m-file,
is attempt to assign myf to the variable f , 2 to the variable a, and 3 to the variable
b. In other words, it attempts to execute the commands f = myf, a = 2, and b
= 3. The last two, a = 2 and b = 3 are no problem, but the first one f = myf is
different because myf is a function m-file and not a variable in the workspace with
a value assigned to it. MATLAB interprets the command f = myf as, ‘ assign the
output of myf to the variable f .’ As we saw above, it cannot do this because there’s
no input to create this output. This is why it complains.

What we want MATLAB to do when it comes across the command f = myf is
to make f into a function that is the same as the function myf. We can get this
effect by using what is called a function handle.

6.4 Introduction to Function Handles

All the variables that we have seen so far in these lessons have had values that were
either numbers or, more generally, matrices. A function handle is a variable (i.e.
a location in memory) whose value is a function. Before we look at how to create
function handles, let’s see how to use them. First, clear your workspace by typing

>> clear
at the prompt in the command window. Your instructor should have made the file
lesson6vars.mat available to you. Save this file in the learnmatlab/Lesson6 folder on
your flash drive (or in whatever folder you are using in MATLAB). This file contains
MATLAB variables. To access these variables you need to load the file into your
workspace. You can do this by typing

>> load lesson6vars
at the prompt in the command window. To see the name of the variables that have
been loaded, type

>> whos
Name Size Bytes Class

myhandle1 1x1 16 function-handle array
myfhandle 1x1 16 function-handle array

Grand total is 2 elements using 16 bytes
Notice that there are two variables called myhandle1 and myfhandle. They are
function handles as indicated in the Class column. In other words, they are variables
whose value is a function. As we shall see later, the value of myhandle1 is the
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function f(x) = sin(x2) and the value of myfhandle is the function defined by the
function m-file myf, namely f(x) = 1/(1 +x2). We can use the variables to evaluate
these functions in the same way that we would if they were m-files. For instance, if
we type

>> myhandle1(2)
ans =

-0.7568
then MATLAB calculates the value of sin(22). Similarly, we can plot the graph of
f(x) = sin(x2) by typing

>> plot(-5:.01:5, myhandle1(-5:.01:5))
Although in these ways myhandle1 and myf behave just as if they were function
m-files, they are, in fact, variables. In particular, if you type

>> temp = myhandle1;
then MATLAB doesn’t complain. It simply finds the value of the variable myhandle1,
which in this case is the function f(x) = sin(x2), and assigns this value to the vari-
able temp. This means that temp is also a function handle. To see this type:

>> whos
Name Size Bytes Class

myhandle1 1x1 16 function-handle array
myfhandle 1x1 16 function-handle array
temp 1x1 16 function-handle array

Grand total is 3 elements using 48 bytes
To see that the value of temp is the same as the value of myhandle1 type the following

>> myhandle1(4) == temp(4)
ans =

1
>> figure
>> plot(-5:.01:5, temp(-5:.01:5))
Now, let’s see how we can use a function handle to solve our problem of passing

the function myf as an input argument to the function slopesec. Instead of typing
slopesec(myf, 2, 3) at the prompt in the command window, we should type
slopesec(myfhandle, 2, 3). Since myfhandle is a function handle whose value
is the function myf, when MATLAB executes the command f = myfhandle this
makes sense; the variable f becomes a function handle whose value is the same as
the value of myfhandle, namely myf.

>> slopesec(myfhandle, 2, 3)
ans =

-0.1000
Notice that this is the correct value since

1
1+32 − 1

1+22

3− 2
= −0.1.
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6.5 Creating Function Handles

It is easy to create function handles. First, let’s consider the case when we have a
function m-file and we want to create a function handle whose value is that file. We
can do this simply by preceding the name of the file with an @ sign. For instance,
@myf is a function handle whose value is the function m-file myf. Thus, if we type

>> @myf
ans =

@myf
at the prompt in the command window, then the variable ans becomes a function
handle whose value is the m-file myf. So, for example, it makes sense to type

>> ans(2)
ans =

0.2000
Having typed this the variable ans has now become a regular variable whose value
is a number so now MATLAB complains when we type ans(2) again:

>> ans(2)
??? Index exceeds matrix dimensions.

More usually, when we create a function handle, we will want to give it a name
rather than assign it to the variable ans. We do this in the same way as any other
variable. For instance, the function handle myfhandle was created by typing:

>> myfhandle = @myf;
Notice that, typing myfhandle(2) has exactly the same effect as typing myf(2),

>> myfhandle(2)
ans =

0.2000
>> myf(2)
ans =

0.2000
but myfhandle is a variable and myf is an m-file, so temp = myfhandle makes sense
whereas temp = myf does not:

>> temp = myfhandle;
>> temp = myf;
??? Input argument "x" is undefined.

Error in ==> myf at 3
y = 1./(1 + x.^2);

You can create a function handle for any MATLAB function in exactly the same
way; by preceding the name of the function with an @ sign. For instance

>> temp = @sin;
assigns the function f(x) = sin(x) to the function handle temp. So, typing

>> plot(-3*pi:.01:3*pi, temp(-3*pi:.01:3*p))
has the same effect as typing

>> plot(-3*pi:.01:3*pi, sin(-3*pi:.01:3*p))
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If a function is not too complicated, you don’t have to have an m-file to create a
function handle whose value is that function. You can create it in-line instead. For
instance, if you type

>> temp = @(x) x.^2 - 4*x;
then temp becomes a function handle whose value is the function f(x) = x2 − 4x.
Since a function handle behaves just like an m-file this is a very convenient way to
define functions in MATLAB without having to write an m-file for them. Such a
function is called an anonymous function since it doesn’t have a name. Notice that
the x in this expression is a dummy variable; the @(x) that precedes the expression
tells MATLAB that the expression x2−4x should be treated as a function of x. For
instance

>> slopesec(@(x) x.^2 - 4*x, 4, 1)
ans =

1
finds the slope of the secant line of the function f(x) = x2 − 4x through the points
whose x-coordinates are 1 and 4. Similarly,

>> slopesec(@(t) t.^2 - 4*t, 4, 1)
ans =

1
does the same thing.

Often we have a function that has more than one input, and we are interested
in the function of one variable that is obtained by holding all of the inputs constant
except for one of them. We can easily create this function of one variable in-line.
For example, consider the function m-file mortgage that we used in Lesson 4. Copy
this m-file from your flash drive’s learnmatlab/lesson4 folder to the folder you are
working in now. If you type

>> m = @mortgage
then m is a function handle whose value is the function m-file mortgage. This
function has three inputs; the amount of money that is borrowed, the number of
years over which it is paid back, and the annual interest rate. The function handle
m cannot produce an output value unless it is given values for all three of the inputs:

>> m(200000, 30, 5)
ans =

1.0727e+03
Now, consider the function that is obtained when the number of years over which
the mortgage is paid and the annual interest rate are held constant at 30 and 5%
respectively. If we type

>> m = @(p) mortgage(p, 30, 5)
then m is a function handle whose value is this function of one variable. If you recall,
you looked at this function in Worksheet 4 and you found that it was linear. We
could now use our m-file slopesec to find its slope (since the slope of a straight line
is equal to the slope of all of its secant lines):

>> slopesec(@(p) m(p, 30, 5), 100000, 200000)
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ans =
0.0042

When you type the name of a variable at the prompt in the command window,
MATLAB finds the value of that variable and prints it out in the command window.
So, to see that the function handles myhandle1 and myfhandle do indeed have the
values f(x) = sin(x2) and myf respectively as we claimed above, we can simply type
the name of these variables at the prompt in the command window:

>> myhandle1
myhandle1 =

@(x) sin(x.^2)
>> myfhandle
myfhandle =

@myf

6.6 Comment on Writing Function M-files in which One of the
Inputs is a Function

As we saw when we wrote the m-file slopesec we didn’t have to make any special
provisions because one of the inputs was a function. We simply gave that variable
a name (we called it f in that case but any name would do) and treated it, when
writing the file, as if it were a function. It was when we used the function slopesec
that we had to make sure that the value of that variable was a function handle
instead of, say, the name of an m-file.

6.7 If Statements

We have looked at two different kinds of flow control structures, namely for loops
and while loops. In this section we will look at yet another, if statements. An if
statement has the form

if expression1
statements1

elseif expression2
statements2

elseif expression3
statements3
...

else
statements4

end
The expressions are all Boolean expressions that may be true or false. The state-
ments following each expression are MATLAB commands and are only executed
if the expression preceding them is true. There may be any number of elseif’s
including none at all. The statements after the else are only executed if none of
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the previous expressions are true. It is not necessary for else to appear in an if
statement.

If statements are relatively intuitive. We use them when what we want MATLAB
to do depends on the results of previous calculations. As an example, create the
following function that finds the number of real roots of the quadratic function
f(x) = ax2 + bx+ c. If you recall, we created such a function in Lesson 4 by using
MATLAB’s sign function. Here we’ll do it by using an if statement. Click on File
→ New → M-file and type the following in the window that appears.

function numroots = quadroots2(a, b, c)
%
% The function numroots = quadroots(a, b, c) finds how many real
% roots the quadratic function f(x) = ax^2 + bx + c has.
% Inputs:
% a (number): the coefficient of x^2 in the quadratic
% b (number): the coefficient of x in the quadratic
% c (number): the constant term in the quadratic
% Output:
% numroots (number): the number of real roots (either 0, 1, or 2)

delta = b^2 - 4*a*c;
if delta > 0

numroots = 2;
elseif delta == 0

numroots = 1;
else

numroots = 0;
end

Remember to save the file. Notice that f(x) = x2 + 1 has no real roots, f(x) =
x2− 4x+ 4 = (x− 2)2 has one real root, and f(x) = x2 + x− 6 = (x− 2)(x+ 3) has
two real roots. We can test numroots2 on these functions by typing:

>> numroots2(1,0,1)
ans =

0
>> numroots2(1,-4,4)
ans =

1
>> numroots2(1,1,-6)
ans =

2
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6.8 An M-File for Finding a Root of a Function Using the Bisection
Method

The following function m-file implements the method of bisection to find a root of
a function. Recall that in the method of bisection you start with two initial guesses
of the root, one where the value of the function is positive and the other where the
value of the function is negative. If the function is continuous then this guarantees
that there is a root somewhere between these two numbers. You then look at the
value of x in between these two numbers. This is the next approximation. You
evaluate the function there to determine if it is positive or negative. This gives you
an interval that is half the size of the original in which you know there is a root.
The method continues until you have the accuracy you desire.

The m-file below implements this algorithm. The function whose root is to be
found is an input to the function as are the two initial guesses and the accuracy
to which the root is to be found. The implementation illustrates if statements and
writing an m-file in which one of the inputs is a function. Although the program
looks long, most of it is comments.

Click on File → New → M-file and type the following in the window that
appears.

function root = bisection(f, x0, x1, tol)
% bisection(f, x0, x1) finds a root of the function f using the
% method of bisection.
%
% Output:
% A number which is the value of the root to the desired accuracy.
%
% Inputs:
% f (function handle): The function whose root is to be found.
% x0 (number): A number in the domain of f.
% x1 (number): A number in the domain of f.
% tol (positive number): The accuracy to which the root will be
% found. An actual root of f will lie within +/- tol of the
% value returned by the function.
%
% Notes:
% * f(x0) and f(x1) must have opposite signs (ie one of them must
% be positive and the other negative). The algorithm finds a
% root that lies between x0 and x1.
% * The function f must be continuous to produce a reliable
% estimate of a root.

% The algorithm only works if f f(x0) and f(x1) have opposite
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% signs. If they do not, then the following if statement will
% quit the program printing an error message.
if f(x0)*f(x1) > 0

error(’f(x0) and f(x1) must have opposite signs.’)
end

% The following if statement ensures that f is negative at x=a
% and positive at x=b.
if f(x0) < 0

a = x0;
b = x1;

else
a = x1;
b = x0;

end

% If either f(a) or f(b) is equal to 0 then the root has been
% found. The following if statement sets both a and b equal
% to the root in this case.
if f(a) == 0

b = a;
elseif f(b) == 0

a = b;
end

% The root will be the value of (a+b)/2. It will be determined
% to the desired accuracy when |b-a| < 2*tol.
intervalsize = 2*tol;

% The following loop performs the iterations until the desired
% accuracy is achieved. If a = b then the loop is skipped
% because the root has already been found.
while abs(b-a) >= intervalsize

temp = (a+b)/2; % the new value to be tested.
if f(temp) == 0 % root has been found: both a and b take on
this value.

a = temp;
b = temp;

elseif f(temp) < 0 % a becomes the new value.
a = temp;

else % (f(temp) > 0) b becomes the new value.



c© C. Haskell. Draft 7/2010. Duplication for commercial purposes prohibited. 105

b = temp;
end

end

root = (a+b)/2;

Remember to save the file when you’re done. Remember that when we use the file
to find a root of a function, we’ll have to enter the function as a function handle.
Test the file by typing in the following commands. Notice that the function x2 − 4
has roots at ±2, the function x2 sinx has roots at all the multiples of π, the function
1/(1 + x2) implemented in myf is positive everywhere and doesn’t have any roots,
and the function sin(x2) that is assigned to the function handle myhandle1 has roots
at the square roots of all the multiples of π.

>> bisection(@(x) x^2 - 4, 1, 3, 0.0001)
>> bisection(@(x) x^2 - 4, 1.1, 2.04, 0.001)
>> bisection(@(x) x^2 - 4, 1.1, 10, 10∧(-12))
>> bisection(@(x) x^2 - 4, 3, 4, 0.5)
>> bisection(@(x) x^2 - 4, -3, 4, 0.0001)
>> bisection(@(x) (x^2)*sin(x), 0.5, 4, 10∧(-6))
>> bisection(@(x) (x^2)*sin(x), 28.7, 40, 10∧(-6))
>> bisection(@myf, -5, 8, 10^(-6))
>> bisection(myhandle1, 0.2, 1.3, 0.0001)
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Worksheet 6

1. (Function handles.) First try to answer these questions without using MAT-
LAB. Then, check your answers using MATLAB.

a) Suppose you type
>> clear, f = sin; f(2)

at the prompt in the command window. How does MATLAB respond?
Circle your answer.

i) It complains because it needs an input to sin in order to execute the
command f = sin.

ii) It complains because f is not a function so it cannot find the value
of f(2).

iii) ans = 0.9083

b) Suppose you type
>> clear, myf = x.^2 - 5*x; g = myf; g(3)

at the prompt in the command window. How does MATLAB respond?
Circle your answer.

i) It complains because x is not a variable in the workspace so it can’t
execute the command myf = x.^2 - 5*x.

ii) It complains because myf is a function and not a variable, so it can’t
execute the command g = myf.

iii) It complains because g is not a function so it can’t find the value of
g(3).

iv) ans = -6

c) Suppose you type
>> clear, myf = @(x) x.^2 - 5*x; g = myf; g(3)

at the prompt in the command window. How does MATLAB respond?
Circle your answer.

i) It complains because x is not a variable in the workspace so it can’t
execute the command myf = @(x) x.^2 - 5*x.

ii) It complains because myf is a function and not a variable, so it can’t
execute the command g = myf.

iii) It complains because g is not a function so it can’t find the value of
g(3).

iv) ans = -6
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d) Suppose you type
>> clear, x = 1; y = 7; myf = @(x, y) x*y - y^2./x; myf(2, 7)

at the prompt in the command window. How does MATLAB respond?
Circle your answer.

i) It complains because x and y both have particular values, so it cannot
execute the command myf = @(x, y) x*y - y^2./x.

ii) It complains because function handles can only be functions of one
variable, so it cannot execute the command myf = @(x, y) x*y -
y^2./x.

iii) ans = -10.5

iv) ans = -42

e) Suppose you type
>> clear, y = 7; myf = @(x) x*y - y^2./x; myf(2)

at the prompt in the command window. How does MATLAB respond?
Circle your answer.

i) It complains because x is not a variable in the workspace, so it cannot
execute the command myf = @(x) x*y - y^2./x.

ii) It complains because y has a particular value, so it cannot execute
the command myf = @(x) x*y = y^2./x.

iii) It complains because myf should have two inputs x and y, so myf(2)
doesn’t make sense.

iv) ans = -10.5000

2. (Using an m-file that has an input that is a function handle.)

a) Use the m-file bisection from lesson 6 to find the root of f(x) = x−tanx
that lies between π/2 and 3π/2. Find the root with a tolerance of ±10−6.

b) Use the m-file bisection from lesson 6 to find all solutions to the equa-
tion x3 = 5x − 3. Find each solution with a tolerance of ±10−9. (Note:
bisection will only find one root each time it is used, so you will have
to use it more than once to find all of the roots.)

3. (Writing an m-file that has a function handle as one of its inputs.)

Recall the m-files you wrote in Worksheets 3, 4 and 5 to evaluate∫ 1

0
e−x

2
dx
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using the Trapezoidal Rule. Modify the m-file you wrote for Worksheet 5 so
that it finds the value of ∫ b

a
f(x) dx

for any function f and any limits a and b. Your m-file should have four inputs;
the function whose integral is to be found (f), the lower and upper limits of
integration (a and b respectively), and the accuracy to which the integral
should be found. Use your m-file to find the value of∫ π

0
sin(x2) dx

accurate to 4 decimal places.

4. (If statements.)

The following code appears in an m-file in which x and y are variables.

if x > y

temp = x;

x = y;

y = temp;

end

a) If x = 3 and y = 7 prior to this code being executed, what are the values
of x and y after the code is executed?

b) If x = 7 and y = 3 prior to this code being executed, what are the values
of x and y after the code is executed?

c) Describe in words what the code does.


