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1. Consider two planes, P1 : x+ y = 27 and P2 : 2x+ z = 10, and a point Q = (3, 4, 1).

(a) Write an equation of the plane that passes through the point Q and is perpendicular
to the planes P1 and P2.
Key words: cross product.

(b) Write a parametric equation of the line that passes through the point Q and is parallel
to the planes P1 and P2.
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2. The height of a hill above the xy-plane is z = 10− 2x2 − y2.
(a) At the point (1, 1, 7) on the hill, what is the maximum possible rate of change of

height?

(b) An ant moves on the hill in such a way that the coordinates of the ant on the xy-plane
at time t are

x(t) = t, y(t) =
√
t.

[i] At the point (1, 1) on the xy-plane, what is the angle between the direction in which
the ant is moving and the direction in which the hight of the hill increases most rapidly?

[ii] At the time t = 1, what is the rate of change of ant’s height?
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3. The dimensions of a closed rectangular box are found by measurement to be 10cm
by 15cm by 20cm, but there is the possibility of error ±0.1cm in each measurement. Use
linear approximation to estimate the range of possible values for the total surface area of the
box.
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4. Consider the function f(x, y) = x4 + y4 − 4xy.

(a) Identify and classify all critical points of the function f .
Key words: Second partials test.
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(b) Determine the minimum and maximum values of the function f on the curve

x4 + y4 = 32.

Key words: Lagrange multipliers.

(c) Determine the absolute minimum and maximum values of the function f on the region

x4 + y4 ≤ 32.
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5. Compute the iterated integral
9∫

0

3∫
√
y

ex
3

dx dy

by reversing the order.
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6. The planar region G consists of two semi-disks 0 ≤ y ≤
√

1− x2 and−
√

4− x2 ≤ y ≤ 0.
Consider the vector field

F (x, y) = (x2 + y2)3/2
(
ı̂ +̂

)
.

Compute the line integral of the vector field F along the boundary of G oriented counter-
clockwise.
Key words: Green’s theorem, polar coordinates.
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7. Let G be the region x ≥ 0, y ≥ 0, z ≥ 0, x2 + y2 + z2 ≤ 4. Compute the flux of the
vector field

F (x, y, z) = 〈xz2 + y3, sin(x+ z) + z3, exy〉
out of G.
Key words: Divergence theorem, spherical coordinates.
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8. (a) Consider the vector field F (x, y, z) = 〈2x−ay, 3y2+3x, 1〉. Determine the value of
a for which F is conservative and compute a potential function corresponding to this value
of a.

(b) Evaluate the line integral ∫
C

G · dr,

where G(x, y, z) = ∇g(x, y, z), g(x, y, z) = x2 + 3xy + y3 + z, and C is the curve defined by
r(t) = 〈1 + 2 cos t, −3 sin t, t〉, 0 ≤ t ≤ π.
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9. Evaluate the line integral

∮
C

(
sin(1+x3)+3y

)
dx−

(
2z+ey

2)
dy+

(
5y−
√

1 + z4
)
dz,

where C is the ellipse x2 + y2 = 1, 3x+ 4y + z = 12 oriented counterclockwise as seen from
above.
Key words: Stokes’ theorem, curl.


