Problem 1. Evaluate each the following limits, including $\pm \infty$, or show the limit does not exist.
(a) $\lim _{x \rightarrow 0} \frac{x-\sin (x)}{x^{3}}$.
(b) $\lim _{x \rightarrow 1^{-}} \cos ^{-1}(x) \tan \left(\frac{\pi x}{2}\right)$.

Problem 2. Evaluate the following integrals:
(a) $\int x^{5} \ln x d x$.
(b) $\int \frac{x^{2}}{\sqrt{9-x^{2}}} d x$.

Problem 3. Consider the following improper integrals.
(a) Determine whether $\int_{2}^{9} \frac{z}{\sqrt{z-2}} d z$ converges or diverges by evaluating it.
(b) Use the comparison test on $\int_{-\infty}^{0} e^{-x^{2}} d x$ to demonstrate whether it converges or diverges.

Problem 4. Consider the region bounded by the curves $y=\cos ^{2}(x), y=0, x=2 \pi$ and $x=3 \pi$. Set up, but do not evaluate, an integral that gives the volume of the solid obtained by rotating the region about the line $x=\pi$.

Problem 5. A cylindrical tank rests on its side so that its circular base, which has a radius of 2 meters and a length of 5 meters, is perpendicular to the ground.
[PIC]
(a) Express the hydrostatic force on one side of the tank as an integral if the tank is filled halfway with a fluid of mass density δ kilograms per cubic meter and the acceleration due to gravity is g meters per second squared. Do not evaluate the integral.
(b) A crane lifts this tank to a height of 15 meters at a rate of 0.5 meters per second. As the tank is lifted, the fluid leaks out at a rate of 0.2 cubic meters per second. Express the work performed on the tank as an integral. Do not evaluate the integral.

Problem 6. Determine if the following series converge absolutely, converge conditionally, or diverge. Prove your answer. Clearly state your conclusion and any test(s) that you use.
(a) $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{5}+n^{2}+1}}$.
(b) $\sum_{n=3}^{\infty} \frac{(-1)^{n}}{n \ln n}$.

Problem 7. Consider the power series: $\sum_{n=0}^{\infty} \frac{(4-9 x)^{n}}{n+1}$.
(a) Determine a, the point where the series is centered.
(b) Show that the radius of convergence is $9 / 4$. That is, $R=9 / 4$.
(c) Find the interval of convergence.

Problem 8. Consider the function $f(x)=x^{8} \ln \left(1+x^{2}\right)$.
(a) Find a power series for $f(x)$ and state its radius of convergence. Explicitly write out the the general term, as well as first 4 terms.
(b) Find $f^{(16)}(0)$ and $f^{(17)}(0)$.
(c) Let $T_{16}(x)$ denote the degree 16 Taylor polynomial of $f(x)$. If we use $T_{16}(1.1)$ to estimate $f(1.1)$, find an upper bound for the error $\left|R_{16}(1.1)\right|$.
(d) Find a power series for $\int f(x) d x$ and find its radius of convergence.

Problem 9. Consider the polar curve $r=2+\cos \theta$.
(a) Find all values of θ where the tangent line is horizontal for $0 \leq \theta \leq 2 \pi$.
(b) Find the area enclosed by the curve.

