> 11/18/2020 (online, submitted on Gradescope)

Directions. (Please read!)

- You must show all your work and justify your methods to obtain full credit. Name any theorems that you use. Clearly indicate your final answers.
- Simplify your answers to a reasonable degree.
- You may use your personal notes, your book and a calculator during the test. You can use your cell phone only at the end of the test to take pictures of your paper and submit. Collaboration with other students/external people is strictly forbidden.
- Your camera should be on and your microphone muted at all times during the test. If you experience a technical issue, please let your instructor know immediately. For any question to your instructor/TA, please use the chat.
- The test lasts two hours. You will have additional 20 minutes to submit on Gradescope. Please use the extra time exclusively for submission. Late submissions will be accepted only under exceptional circumstances.
- Please indicate the question number/part you are working on on your paper. Once you are done, you should submit one pdf on Gradescope. Please match the pages with the question numbers on the outline.
- Remember, USC considers cheating to be a serious offense; the minimum penalty is failure for the course. In the current circumstances, cheating includes communication with your peers via email, social media, etc.

Problem 1. Find the following limit.

$$
\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{1}{x^{2}}}
$$

Hint. Use Taylor expansion.
(10 pt.)

Problem 2. Evaluate the following integrals.
a)

$$
\int e^{1-a x} \sin (1+a x) d x ; \quad a \in \mathbb{R}
$$

b)

$$
\int \frac{x}{\sqrt{4 x^{2}+4 x+5}} d x
$$

(20 pt.)

Problem 3. a) Compute the exact value of $\int_{0}^{\infty} \frac{4 d x}{x^{2}+6 x+8}$ if it is convergent. If it is divergent, explain why.
b) Decide whether the integral $\int_{0}^{\infty} \frac{e^{1-x} d x}{\sin \left(e^{-x}\right)}$ converges or diverges, justifying carefully.
(20 pt.)

Problem 4. Let R be the region bounded by the y-axis and the curves $y=x+1$ and $y=x^{3}+x$.
(a) Write down an integral giving the volume of the solid obtained by rotating R around the x-axis. You do not have to evaluate it.
(b) Write down an integral giving the volume of the solid obtained by rotating R around the line $x=1$. You do not have to evaluate it.
(20 pt.)

Problem 5. The arc of the parabola $y=2 x^{2}$ between $x=0$ and $x=4$ is rotated about the y-axis. The obtained cup-like surface is filled with water. Find the work required to pump the water out from the top, assuming that x and y are measured in meters. (Hint. density of water $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, g=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
(15 pt.)

Problem 6. Determine whether the given numerical series are convergent or divergent. Justify your answer in each case.
a) $\sum_{n=1}^{\infty} \frac{\ln ^{6} n}{n \sqrt{n}}$
b) $\sum_{n=1}^{\infty} \frac{1}{n \sin (1 / n)}$
c) $\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{\pi}{2}-\arctan n\right)$
(30 pt.)

Problem 7. Consider the power series

$$
\sum_{n=1}^{\infty} \frac{(n r)^{n}}{n!}(x-1)^{n},
$$

where $r \geq 0$.
a) Find its radius of convergence as a function of r (Hint. $\left.\lim _{n \rightarrow \infty}(1+1 / n)^{n}=e\right)$;
b) Find one value of r such that the series converges at $x=4$ and diverges at $x=-4$;
c) For what values of r does the series converge for every real x ?
(15 pt.)

Problem 8. Consider the following function: $f(x)=\frac{\cos \left(x^{3}\right)-1}{x^{6}}$.
a) Find a power series representation of $f(x)$ about $x=0$. Write the power series in sigma notation, and write out the first three nonzero terms.
b) Using your answer from part a., find the number of nonzero terms in the series for $\int_{0}^{\pi / 4} \frac{\cos \left(x^{3}\right)-1}{x^{6}} d x$ that will guarantee an error of at most $\frac{1}{10^{5}}$.
(15 pt.)

Problem 9.

a) Find the area in the first two quadrants of the region bounded by the innermost loop of the parametric curve given by $x=\cos (t), y=t \sin (t)$ and $x=-1$ and $x=1$.
b) Set up, but do not evaluate, the length of the curve bounding the top of the region in part a.
(15 pt.)

