Last Name: _	I	First Name:								
Signature:	Student ID:									
	ill out your name, signature and the exam! Also, check the box ne		•							
• You must your final	show all your work and justify you answers.	our methods to obtain full credit.	Clearly indicate							
	your answers to a reasonable degre not evaluate expressions such as l		in lowest terms.							
sheet of 8	use the sheet of notes that you by $\frac{1}{2}'' \times 11''$ paper. You may have an in your own handwriting.	rought with you. This may be no sything written on it (on both side	o more than one les), but it must							
• Do not us	se scratch paper; use the back of t	he previous page if additional roo	om is needed.							
• No calcula	ators are allowed. Turn off your c	ell phone.								
for the co	er, USC considers cheating to be urse. Cheating includes "straying end of the exam.	· -	*							
	bk (9:00))	ai (1:00)							
	1 (20 pts)	6 (20 pts)								
	2 (20 pts)	7 (25 pts)								
	3 (20 pts)	8 (25 pts)								
	4 (25 pts)	9 (25 pts)								
	5 (20 pts)									

200 points total

Proble	m 1 ((20 points).	Two	particles	are hur	tling	through	space f	rom	time a	t = 0	until	they
collide.	Their	positions at	t time t	are given	by the	vecto	r-valued	function	ns				

$$\vec{r}_1(t) = \langle -3 + 2t, 2t, 2t \rangle$$
 $\vec{r}_2(t) = \langle t, t(5-t), t(5-t) \rangle$

a) Find all the points in space where the paths of the two particles intersect.

- b) At what time do the particles collide?
- c) Find the angle between the two paths when the particles collide.

Problem 2 (20 points). Consider the graph of the function f that is given by

$$f(x,y) = 5 + x\sin(2x - y).$$

a) Find an equation of the tangent plane at the point (x, y) = (1, 2).

b) Use your answer to a) to estimate the value of f(1.1, 1.8).

$$f(x,y) = y^3 - 2xy + x^2$$

a) Find all the critical points of f.

b) Classify each critical point you found above (if you can) as a local maximum, local minimum, or saddle point.

- c) Does f have a global maximum on the plane? If it does, state its value and where it is attained. If not, explain why not.
- d) Does f have a global minimum on the plane? If it does, state its value and where it is attained. If not, explain why not.

Problem 4 (25 points). A rectangular box without a lid is made of 48 in² of material. Using Lagrange multipliers, find the dimensions of the box with the maximum possible volume.

Problem 5 (20 points).

a) Consider the iterated integral:

$$\int_0^2 \int_{y^2}^4 y \ln(1+x^2) \, dx \, dy.$$

Reverse the order of integration. Do not evaluate the integral.

b) Consider the iterated integral:

$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{2-x^2-y^2}} e^z \, dz \, dy \, dx.$$

Write the integral in spherical coordinates. Do not evaluate the integral.

Problem 6 (20 points). Let $\mathbf{F}(x,y) = \langle e^x \cos y, 2y - e^x \sin y \rangle$.

a) Find a function f such that $\mathbf{F} = \nabla f$.

b) Evaluate the integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the curve given by $\mathbf{r}(t) = \langle t + \sin \frac{\pi t}{2}, t + \cos \frac{\pi t}{2} \rangle$, $0 \le t \le 1$.

Problem 7 (25 points). Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where the vector field \mathbf{F} is given by

$$\mathbf{F}(x,y) = \langle y^2 + \arctan x, \ x^2 - e^{\sin y} \rangle$$

and C is the boundary of the half-annular region $D=\{(x,y):1\leq x^2+y^2\leq 4,\ y\geq 0\}$ oriented counter-clockwise.

Problem 8 (25 points). Let S be the surface defined by $z=x^2+y^2,\ 0\leq z\leq 4$, oriented with the upward pointed normal vector. Let \mathbf{G} be the vector field given by $\mathbf{G}(x,y,z)=-3xz^2\mathbf{i}+z^3\mathbf{k}$. Notice that \mathbf{G} is the curl of the vector field $\mathbf{F}(x,y,z)=xz^3\mathbf{j}$. Use Stokes' theorem to evaluate

$$\iint_{S} \mathbf{G} \cdot d\mathbf{S}.$$

Problem 9 (25 points). A mountain in the ocean is bounded by the ocean floor z=0 and the cone $z=4-2\sqrt{x^2+y^2}$. Suppose the heat flow in and around the mountain is described by the vector field

$$\mathbf{F}(x, y, z) = y^{2}(x + \sin y)\mathbf{i} + z\cos x\mathbf{j} + x^{2}z\mathbf{k}.$$

Calculate the flux of heat flowing out of the mountain. Hint: use the divergence theorem.