Math 125 Final December 6, 2017

NAME:

\qquad

USC ID Number: \qquad

Circle your section in the list below:

T. Do (9am)
G. Dreyer (9am)
R. Mancera (10am)
D. Searles (10am)
R. Mancera (11am)
D. Searles (11am)
G. Dreyer (12pm)
A. Mazel-Gee (12pm)
G. Reyes Souto (1pm)
C. Wang (1pm)
G. Reyes Souto (2pm)

Instructions:

- No note sheets or electronics are permitted.
- Carefully justify all your answers.
- For each problem, draw a box around your final answer.
- There are 200 points available on the exam.

1. (20 points) Find the value of the following limits. Carefully justify your answers.
(a) $\lim _{x \rightarrow 0} \frac{\sin ^{2}(x)}{x \tan (3 x)}$
(b) $\lim _{x \rightarrow \infty} \frac{e^{\cos (3 x)}}{\sqrt{x}}$
(c) $\lim _{x \rightarrow \infty} x+1-\sqrt{x^{2}+x+1}$
2. (16 points) Find the value of a for which the function

$$
f(x)= \begin{cases}x^{2}-a & \text { if } x \leq 1 \\ \frac{x^{2}-1}{x^{2}+2 x-3} & \text { if } x>1\end{cases}
$$

is continuous at $x=1$.
3. (16 points) Show that the function

$$
f(x)= \begin{cases}x^{3} \sin \frac{1}{x^{3}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is differentiable at $x=0$.
4. (16 points)
(a) Suppose g is a differentiable function with $g(1)=2$ and $g^{\prime}(1)=-1$. If $f(x)=2 g(x) \ln (g(x)-x)$, find $f^{\prime}(1)$. Express your answer as a single number.
(b) Find the derivative $f^{\prime}(x)$ of $f(x)=x^{\sqrt{x}}$.
5. (16 points) Water is being poured into a cylindrical tank at a rate of $5 \mathrm{ft}^{3} / \mathrm{min}$. If the depth of the water is increasing at a rate of $7 \mathrm{ft} / \mathrm{min}$, what is the radius of the tank?
6. (16 points) Find the linear approximation to the function $f(x)=\sqrt[3]{x+2}$ at 62 , and use this to approximate $f(63)$.
7. (16 points) Find all points in the interval $[-2,2]$ on which the function

$$
f(x)=\frac{x^{\frac{2}{3}}}{2+x^{2}}
$$

has a local maximum or minimum, and find the absolute maximum and minimum values of f on this interval.
8. (16 points) Find the area of the largest rectangle with one of its sides on the x-axis that can be inscribed in the closed region bounded by the x-axis and the graph of $y=2-x^{2}$.
9. (16 points) Let $f(x)=\ln \left(2+e^{x-3}\right)$.
(a) Indicate the domain of f. Show that f is one-to-one over its domain and determine the range of f.
(b) Find an expression for f^{-1}, and find the domain of f^{-1}.
(c) Evaluate the derivative of f^{-1} at $x=5$.
10. (20 points) Find the following integrals.
(a) $\int_{0}^{2}|1-x| d x$
(b) $\int x^{5} \sqrt{x^{2}+3} d x$
(c) $\int_{-\ln 7}^{\ln 7} \frac{x^{7}}{e^{-7 x}+e^{7 x}} d x$
11. (16 points) Find the interval where the function

$$
g(x)=\int_{0}^{x} \frac{d t}{t^{2}-t+1}
$$

is concave up.
12. (16 points) The weight of a certain extraterrestrial creature increases at a rate proportional to its weight. A researcher found such a creature at 9 am on Monday morning. The researcher weighed the creature at 9am on Tuesday morning, and found it weighed 50 g . The researcher weighed the creature again at 9 pm on Thursday evening, and found it weighed 150 g .
How much did the creature weigh when the researcher found it? Express your answer as single fraction, without any exponentials or logarithms.

