
EXERCISE SHEET 3

The exercise numeration aligns with the numbering system used in Chapter 3 in
the book “Introduction to Probability” by David Anderson, Timo Seppalainen, and
Benedek Valko.

Exercises with ** are harder and the solution is not provided. Discussions on
these exercises is possible if there is time during the lectures or by asking an office
hour.

1. Exercises

Ex. 1: Let X have possible values {1, 2, 3, 4, 5} and probability mass function

pX(1) =
1

7
, pX(2) =

1

14
, pX(3) =

3

14
, pX(4) = pX(5) =

2

7
.

Compute
(a) P(X ≤ 3);
(b) P(X < 3);
(c) P(X < 4.12 |X > 1.638).

Ex. 3: Let X be a continuous random variable with density function

f(x) =

{
3e−3x , if x > 0

0 , otherwise.

(a) Verify that f is a density function.
(b) Compute P(−1 < X < 1).
(c) Compute P(X < 5).
(d) Compute P(2 < X < 4 |X < 5).

Ex. 7: Suppose that the continuous random variable X has cumulative distribution
function given by

F (x) =


0 , if x <

√
2 ,

x2 − 2 , if
√

2 ≤ x <
√

3 ,

1 , if
√

3 ≤ x .

(a) Find the smallest interval [a, b] such that P(a ≤ X ≤ b) = 1.
(b) Find P(X = 1.6).
(c) Find P

(
1 ≤ X ≤ 3

2

)
.

(d) Find the probability density function.

Ex. 9: Let X be the random variable in Ex. 3.
(a) Find the mean of X.
(b) Compute E[e2X ].
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Ex. 15: Suppose the random variable X has expected value E[X] = 3 and Var(X) =
4. Compute the following quantities:
(a) E[3X + 2];
(b) E[X2];
(c) E[(2X + 3)2];
(d) Var(4X − 2).

Ex. 17: Let X be a normal random variable with mean µ = −2 and variance σ2 =
7. Find the following probabilities using the table of the standard normal
distribution:
(a) P(X > 3.5);
(b) P(−2.1 < X < −1.9);
(c) P(X < 2);
(d) P(X < −10);
(e) P(X > 4).

Ex. 31: Suppose a random variable X has density function

f(x) =

{
cx−4 , if x ≥ 1 ,

0 , otherwise ,

where c is a constant.
(a) What must be the value of c?
(b) Find P(0.5 < X < 1).
(c) Find P(0.5 < X < 2).
(d) Find P(2 < X < 4).
(e) Find the cumulative distribution function FX(x).
(f) Find E[X] and Var(X).
(g) Find E[5X2 + 3X].
(h) Find E[Xn] for all integers n. This quantity is called the n-th moment

of X. Your answer will be a formula that contains n.

Ex. 40: Give an example of a discrete or continuous random variable X (by giving
the probability mass function or the probability distribution function) whose
cumulative distribution function F (x) satisfies F (n) = 1− 1

n
for each positive

n.

Ex. 46: A stick of length ` is broken at a uniformly chosen random location. We
denote the length of the smaller piece by X.
(a) Find the cumulative distribution function of X.
(b) Find the probability density function of X.

Ex. 52: Show that if the random variable X takes only nonnegative integers as its
values, then

E[X] =
∞∑
k=1

P(X ≥ k) .

This holds even when E[X] = ∞, in which case the sum on the right-hand
side is infinite.
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Hint: Write P(X ≥ k) =
∑∞

i=k P(X = i) in the sum and then switch the
order of the two summations.

Ex. 56: Let X ∼ Geom(p). Show that

E[X2] =
2− p
p2

.

Hint: To compute this conveniently, start with E[X2] = E[X]+E[X(X−1)].
Then note that in the geometric case E[X(X − 1)] can be computed with the

derivative technique using the second derivative d2

dx2
xk = k(k − 1)xk−2 for

k ≥ 2.

Ex. 57: Let X ∼ Geom(p). Find the expected value of 1
X

.

Ex. 58: Let X ∼ Binom(n, p). Find the expected value of 1
1+X

.

Ex. 63: A random variable X is symmetric if X has the same probability distribution
of −X. In the discrete case symmetry means P(X = k) = P(X = −k) for all
possible values k. In the continuous case it means that the density function
satisfies f(x) = f(−x) for all x (that is, f is an even function).
Assume that X is symmetric and E[X] is finite. Show that E[X] = 0 in the
(a) discrete case;
(b) continuous case.

Ex. 69: Find a general formula for all the moments of E[Zn], n ≥ 1, for a standard
normal random variable Z.

Ex. 74: Let k be a positive integer. Give an example of a nonnegative random
variable X for which E[Xk] <∞ but E[Xk+1] =∞.

Ex. 77**: Suppose that s1 < s2 < s3 < . . . is an increasing sequence with limn→∞ sn =
a. Consider the events An = {X ≤ sn}.
(a) Show that ∪∞n=1An = {X < a}.
(b) Prove that limn→∞ P(An) = P (∪∞n=1An) .

Hint: Recall the continuity of probability with respect to continuous
monotonic sequences.

Additional Ex.: Urn U contains 2280 balls, 1000 green and 1280 red. Out of your sight, from
urn U two are selected at random without replacement and put in urn A. In
urn B there is one green and one red ball.
You are invited to play the following two stage game. In the first stage, you
choose either urn A or urn B and withdraw a ball. If the ball is green, you
are given $10,000 and if it is red you win nothing. The ball is returned to
the urn from which it is picked. In the second stage you again choose either
urn A or urn B from which to randomly draw a single ball. The payoff is
the same as for the first draw. How do you choose urns from which to draw
in order to maximize your expected payoff?
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2. Solutions

Ex. 1: Recall that the probability mass function for a discrete random variable X
is defined as

pX(k) = P(X = k) .

(a) P(X ≤ 3) = pX(1) + pX(2) + pX(3) = 3
7
.

(b) P(X < 3) = pX(1) + pX(2) = 3
14
.

(c) Note that, by definition of conditional probability

P(X < 4.12 |X > 1.638) =
P(X < 4.12, X > 1.638)

P(X > 1.638)
=

=
pX(2) + pX(3) + pX(4)

pX(2) + pX(3) + pX(4) + pX(5)
=

4
7
6
7

=
2

3
.

Ex. 3: Before the computation, note that, since f(x) = 3e−3x if x > 0 and f(x) = 0
if x ≤ 0, we can rewrite f(x) as

f(x) = 3e−3x · 1(0,+∞)(x) ,

where

1(0,+∞)(x) =

{
1 , if x ∈ (0,+∞) ,

0 , otherwise .

(a) We have to check that f(x) ≥ 0 for all x ∈ R, that is obviously true,

and that
∫ +∞
−∞ f(x) dx = 1. We have∫ +∞

−∞
f(x) dx =

∫ +∞

−∞
3e−3x · 1(0,+∞)(x) dx =

=

∫ +∞

0

3e−3x · 1(0,+∞)(x) dx+

∫ 0

−∞
3e−3x · 1(0,+∞)(x) dx =

=

∫ +∞

0

3e−3x · 1 dx+

∫ 0

−∞
3e−3x · 0 dx =

=

∫ +∞

0

3e−3x dx .

Recall that ∫
eαx dx =

eαx

α2
,

and hence∫ +∞

0

3e−3x dx =

[
3 · e

−3x

−3

]+∞
0

= 0−
(
e−3·0

)
= 1 .

So we have checked that
∫ +∞
−∞ f(x) dx = 1.

(b) Note that

P(−1 < X < 1) =

∫ +∞

−∞
f(x) dx =

∫ 1

−1
f(x) dx .
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We have ∫ 1

−1
f(x) dx =

∫ 1

−1
3e−3x · 1(0,+∞)(x) dx .

Note that the integral is on the interval (−1, 1) and the function f(x)
is nonzero in (0,+∞). So we can reduce this integral to the interval in
(−1, 1) ∩ (0,+∞) = (0,+∞). Hence we have∫ 1

−1
f(x) dx =

∫ 1

−1
3e−3x · 1(0,+∞)(x) dx =

∫ 1

0

3e−3x dx =

=

[
3 · e

−3x

−3

]1
0

= −e−3 − (−1) = 1− e−3 .

(c) Note that

P(X < 5) =

∫ 5

−∞
f(x) dx .

Since f(x) is nonzero in (0,+∞) and the integral is on (−∞, 5), we can
reduce the above integral to the interval (0,+∞)∩ (−∞, 5) = (0, 5). So∫ 5

−∞
f(x) dx =

∫ 5

−∞
3e−3x · 1(0,+∞)(x) dx =

∫ 5

0

3e−3x dx =

=

[
3 · e

−3x

−3

]5
0

= −e−15 − (−1) = 1− e−15 .

(d) By definition of conditional probability we have

P(2 < X < 4 |X < 5) =
P(2 < X < 4, X < 5)

P(X < 5)
=

P(2 < X < 4)

P(X < 5)
.

We have already computed P(X < 5) = 1− e−15 . Now

P(2 < X < 4) =

∫ 4

2

f(x) dx .

Since f(x) is nonzero in (0,+∞) and the integral is on (2, 4), we can
reduce the above integral to the interval (0,+∞) ∩ (2, 4) = (2, 4). So

∫ 4

2

f(x) dx =

∫ 4

2

3e−3x · 1(0,+∞)(x) dx =

∫ 4

2

3e−3x dx =

=

[
3 · e

−3x

−3

]4
2

= −e−12 − (−e−6) = e−6 − e−12 .

So

P(2 < X < 4 |X < 5) =
P(2 < X < 4, X < 5)

P(X < 5)
=

P(2 < X < 4)

P(X < 5)
=
e−6 − e−12

1− e−15
.
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Ex. 7: Recall that for any random variable X and for any a < b we have

P(a < X ≤ b) = FX(b)− FX(a) .

Moreover, if X is continuous, then P(X = a) = 0 for any a ∈ R and hence

P(a ≤ X ≤ b) = P(X = a) + P(a < X ≤ b) = P(a < X ≤ b) = FX(b)− FX(a) .

(a) We look for a, b such that FX(b) − FX(a) = 1. Let us assume a <
√

2
and b ∈ [

√
2,
√

3). Then

FX(b)− FX(a) = b2 − 2− 0 = b2 − 2 .

This equals 1 if

b2 − 2 = 1⇒ b2 = 3⇒ b = ±
√

3 .

Since b ∈ [
√

2,
√

3) the values we have found are not valid. So let us
assume now a <

√
2 and b ≥

√
3. Then

FX(b)− FX(a) = 1− 0 = 1 .

So any interval [a, b] with a <
√

2 and b ≥
√

3 works. Can we take a
shorter interval? We have to check if we can think a ∈ [

√
2,
√

3) and
b ≥
√

3. In such a case we have

FX(b)− FX(a) = 1− (a2 − 2) = 3− a2 .

So FX(b) − FX(a) = 1 if 3 − a2 = 1 ⇒ a2 = 2 ⇒ a = ±
√

2. Since
a ∈ [

√
2,
√

3) we can consider only a =
√

2. So if a =
√

2 and b ≥
√

3
we have FX(b)− FX(a) = 1. Hence the smallest interval is [

√
2,
√

3].
(b) Since X is continuous we have P(X = 1.6) = 0. We can see it also from

FX thinking that

P(X = 1.6) = P(X ∈ [1.6, 1.6]) = FX(1.6)− FX(1.6) = 0 .

(c)

P(1 ≤ X ≤ 3/2) = FX(3/2)− FX(1) =
9

4
− 2− 0 =

1

4
.

(d) Recall that the probability density function of a continuous random
variable X is the first derivative of the cumulative distribution function
FX . So

f(x) =

{
2x , if x ∈ (

√
2,
√

3) ,

0 , otherwise .

Note that actually FX cannot be differentiated at x =
√

2 and x =
√

3.
By the way, to compute the probability we use the integral of f and it
does not take care of the values of f on single points. Hence we can
easily fix f(x) = 0 for x =

√
2 and x =

√
3.
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Ex. 9: (a) Recall that if X is a continuous random variable, then

E[X] =

∫ +∞

−∞
x · f(x) dx .

So

E[X] =

∫ +∞

−∞
x · f(x) dx =

∫ +∞

−∞
x · 3e−3x1(0,+∞)(x) dx =

∫ +∞

0

x · 3e−3x dx .

Using integration by parts (in which we integrate 3e−3x and we differ-
entiate x), we get

∫ +∞

0

x︸︷︷︸
g(x)

· 3e−3x︸ ︷︷ ︸
h′(x)

dx =

 x︸︷︷︸
g(x)

· (−e−3x)︸ ︷︷ ︸
h(x)


+∞

0

−
∫ +∞

0

1︸︷︷︸
g′(x)

· (−e−3x)︸ ︷︷ ︸
h(x)

dx =

= (0− 0)−
[
−e−3x

−3

]+∞
0

=
1

3
,

where we have used the fact that limx→+∞ xe
−3x = 0. So

E[X] =
1

3
.

(b) Recall that if X is a continuous random variable, then for any function
`(x) we have

E[`(X)] =

∫ +∞

−∞
`(x) · f(x) dx .

So

E[e2X ] =

∫ +∞

−∞
e2x · f(x) dx .

We have

E[e2X ] =

∫ +∞

−∞
e2x · 3e−3x1(0,+∞)(x) dx =

∫ +∞

0

3e−x dx =

[
3 · e

−x

−1

]+∞
0

= 3(0− (−1)) = 3 .

Ex. 15: (a) Recall that for any a, b ∈ R and for any two random variables X, Y we
have

E[aX + b] = aE[X] + b , E[X + Y ] = E[X] + E[Y ] .

So
E[3X + 2] = 3E[X] + 2 = 3 · 2 + 2 = 8 .

(b) Recall that Var(X) = E[X2]− E[X]2. So

E[X2] = Var(X) + E[X]2 = 4 + 32 = 13 .

(c) Note that
(2X + 3)2 = 4X2 + 9 + 12X .

So

E[(2X+3)2] = E[4X2+9+12X] = 4E[X2]+9+12E[X] = 4·13+9+12·3 = 52+9+36 = 97 .
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(d) Recall that for any a, b ∈ R and for any random variable X we have
Var(aX + b) = a2 Var(X) . So

Var(4X − 2) = 16 Var(X) = 16 · 4 = 64 .

Ex. 17: Recall that if X ∼ N (µ, σ2) then

X = σZ + µ ,

where Z ∼ N (0, 1). Recall also that Φ(x) = P(Z ≤ x) is the cumulative
distribution function of Z and its values are known from the table of the
standard normal distribution. Hence

FX(t) = P(X ≤ t) = P(σZ+µ ≤ t) = P
(
Z ≤ t− µ

σ

)
= Φ

(
t− µ
σ

)
= Φ

(
t+ 2√

7

)
.

Finally recall that, since the table of the standard normal distribution have
the values of Φ only for x ≥ 0, to get the values of Φ on negative numbers
we can use the relation Φ(−x) = 1− Φ(x).
(a)

P(X > 3.5) = 1− Φ

(
3.5 + 2√

7

)
= 1− Φ

(
5.5√

7

)
≈ 1− Φ(2.08) ≈ 1− 0.98 = 0.02 .

(b)

P(−2.1 < X < −1.9) = Φ

(
−1.9 + 2√

7

)
− Φ

(
−2.1 + 2√

7

)
= Φ

(
0.1√

7

)
− Φ

(
−0.1√

7

)
=

= Φ

(
0.1√

7

)
−
(

1− Φ

(
0.1√

7

))
=

= 2 · Φ
(

0.1√
7

)
− 1 ≈ 2Φ(0, 04)− 1 ≈ 2 · 0.52− 1 = 0.04 .

(c)

P(X < 2) = Φ

(
2 + 2√

7

)
≈ Φ(1.51) ≈ 0.93 .

(d)

P(X < −10) = Φ

(
−10 + 2√

7

)
≈ Φ(−3.02) = 1− Φ(3.02) ≈ 0 .

(e)

P(X > 4) = 1− Φ

(
4 + 2√

7

)
= 1− Φ

(
6√
7

)
≈ 1− Φ(2.27) ≈ 1− 0.99 = 0.01 .

Ex. 31: (a) We have to impose
∫ +∞
−∞ f(x) dx = 1. Note that∫ +∞

−∞
f(x) dx =

∫ +∞

1

cx−4 dx = c

∫ +∞

1

x−4 dx = c

[
x−3

−3

]+∞
1

=
c

3
.

So c
3

= 1⇒ c = 3.



EXERCISE SHEET 3 9

(b) We have

P(0.5 < X < 1) =

∫ 1

0.5

3x−41(1,+∞)(x) dx = 0 ,

since (0.5, 1) ∩ (1,+∞) = ∅.
(c)

P(0.5 < X < 2) =

∫ 2

0.5

3x−41(1,+∞)(x) dx =

∫ 2

1

3x−4 dx = [−x−3]21 = 1− 1

8
=

7

8
.

(d)

P(2 < X < 4) =

∫ 4

2

3x−41(1,+∞)(x) dx =

∫ 4

2

3x−4 dx = [−x−3]42 = 1− 1

8
=

7

8
.

(e) If t < 1, then

FX(t) = P(X ≤ t) =

∫ t

−∞
f(x) dx = 0

since (−∞, t) ∩ [1,+∞) = ∅ if t < 1. If t ≥ 1, then

FX(t) = P(X ≤ t) =

∫ t

−∞
f(x) dx =

∫ t

1

3x−4 dx = [−x−3]t1 = 1− 1

t3
.

So

Fx(t) =

{
1− 1

t3
, if t ≥ 1 ,

0 , otherwise .

(f) Note that

E[X] =

∫ +∞

−∞
x · f(x) dx =

∫ ∞
1

x · 3x−4 dx =

[
−3

2
x−2
]∞
1

=
3

2
,

E[X2] =

∫ +∞

−∞
x2 · f(x) dx =

∫ ∞
1

x2 · 3x−4 dx =
[
−3x−1

]∞
1

= 3 .

So Var(X) = E[X2]− E[X]2 = 3−
(
3
2

)2
= 1

4
.

(g)

E[5X2 + 3X] = 5E[X2] + 3E[X] = 5 · 3 + 3 · 3

2
=

39

2
.

(h) For n > 3 we have

E[Xn] =

∫ +∞

−∞
xn·f(x) dx =

∫ ∞
1

xn·3x−4 dx =

∫ ∞
1

3xn−4 dx =

[
− 3

n− 3
xn−3

]∞
1

=∞ .

For n = 3 we have

E[Xn] =

∫ +∞

−∞
x3 · f(x) dx =

∫ ∞
1

xn · 3x−4 dx =

∫ ∞
1

3x−1 dx = [3 ln(x)]∞1 =∞ .

For n = 1, 2 we have the results in (f).
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Ex. 40: Suppose that X is a discrete random variable and assumes positive integer
values. Recall that the cumulative distribution function is defined as F (n) =
P(X ≤ n) = 1− 1

n
. In particular

P(X = n) = P(X ≤ n)− P(X ≤ n− 1) = F (n)− F (n− 1) =

= 1− 1

n
−
(

1− 1

n− 1

)
=

1

n− 1
− 1

n
=

1

n(n− 1)
.

So we can define X as a discrete random variable such that for n ∈ N , n ≥ 2
P(X = n) = 1

n(n−1) , otherwise P(X = n) = 0.

Note that it is possible to show that
∑∞

n=2
1

n(n−1) = 1 .

Ex. 46: Denote by Y the point at which we break the stick. Note that Y is a
continuous random variable with uniform distribution on the interval [0, `].
(a) Note that X is at most `/2 being the length of the smaller piece. In

particular also X is continuous and for t ∈ (0, `/2]

FX(t) = P(X ≤ t) = P(Y ≤ t) + P(Y ≥ `− t) =

= P(Y ≤ t) + 1− P(Y < `− t) =
t

`
+ 1− `− t

`
=

2t

`
.

So

FX(t) =


0 , if t ≤ 0 ,
2t
`
, if t ∈ (0, `/2] ,

1 , if t > `/2 .

(b) Note that

fX(t) =
d

dt
FX(t) =

{
2
`
, if t ∈ (0, `/2) ,

0 , otherwise .

Ex. 52: Note that P(X ≥ k) =
∑∞

i=k P(X = i). Hence

∞∑
k=1

P(X ≥ k) =
∞∑
k=1

∞∑
i=k

P(X = i) .

Note that we are summing over the pairs (k, i) with k = 1, 2, . . . and i ≥ k.
We can rewrite such a sum considering pairs (k, i) with i = 1, 2, . . . and
k ≤ i. So the above sum can be rewritten as

∞∑
i=1

i∑
k=1

P(X = i) =
∞∑
i=1

P(X = i)
i∑

k=1

1 =
∞∑
i=1

P(X = i) · i = E[X] .

Ex. 56: Recall that P(X = k) = p(1− p)k−1. Since

E[X2] = E[X] + E[X(X − 1)] =
1

p
+ E[X(X − 1)]
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it is enough to compute E[X(X − 1)]. Note that

E[X(X − 1)] =
∞∑
k=1

k(k − 1)p(1− p)k−1 = p(1− p) ·
∞∑
k=1

d2

dp2
(1− p)k =

= p(1− p) d
2

dp2

∞∑
k=1

(1− p)k = p(1− p) · d
2

dp2
1− p
p

=

= p(1− p) · 2

p3
=

2− 2p

p2
.

So

E[X2] =
1

p
+

2− 2p

p2
=

2− p
p2

.

Ex. 57: We have

E
[

1

X

]
=
∞∑
k=1

1

k
· p(1− p)k−1 =

1

1− p

∞∑
k=1

1

k
· p(1− p)k .

Recall that the Taylor series of ln(1 + x) is

ln(1 + x) =
∞∑
k=1

(−1)n+1x
n

n!
,

and hence

− ln(1− x) =
∞∑
k=1

xn

n!
.

So

E
[

1

X

]
=

p

1− p

∞∑
k=1

(1− p)k

k
=

p

1− p
· (− ln(1− (1− p))) =

−p ln(p)

1− p
.

Ex. 58: We have

E
[

1

X + 1

]
=

n∑
k=0

1

k + 1

(
n

k

)
pk(1− p)n−k =

n∑
k=0

n!

(k + 1)! · (n− k)!
pk(1− p)n−k =

=
1

n+ 1

n∑
k=0

(n+ 1)!

(k + 1)! · (n− k)!
pk(1− p)n−k =

1

n+ 1

n∑
k=0

(
n+ 1

k + 1

)
pk(1− p)n−k =

=
1

p(n+ 1)

n∑
k=0

(
n+ 1

k + 1

)
pk+1(1− p)n−k =

j=k+1

1

p(n+ 1)

n+1∑
j=1

(
n+ 1

j

)
pj(1− p)n+1−j =

=
1

p(n+ 1)

[
n+1∑
j=0

(
n+ 1

j

)
pj(1− p)n+1−j − (1− p)n+1

]
=

1

p(n+ 1)

[
1− (1− p)n+1

]
,

where we have used the fact that
n+1∑
j=0

(
n+ 1

j

)
pj(1− p)n+1−j =

n+1∑
j=0

P(Bin(n+ 1, p) = j) = 1 .
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Ex. 63: (a) Denote by Im(X) = {k ∈ R |P(X = k) > 0}. We can write Im(X) =
Im+(X) ∪ Im−(X), where

Im+(X) = {k > 0 |P(X = k) > 0} , Im−(X) = {k < 0 |P(X = k) > 0} .

Then

E[X] =
∑

k∈Im(X)

kP(X = k) =
∑

k∈Im+(X)

kP(X = k) +
∑

k∈Im−(X)

kP(X = k) .

Since X is symmetric we can write∑
k∈Im−(X)

kP(X = k) =
∑

k∈Im+(X)

−kP(X = −k) = −
∑

k∈Im+(X)

kP(X = k) .

Hence

E[X] =
∑

k∈Im+(X)

kP(X = k)−
∑

k∈Im+(X)

kP(X = k) = 0 .

(b) Since f(−x) = f(x), we have that f(x) is even. Hence the function
h(x) = xf(x) is odd, that is h(x) = −h(−x). So

E[X] =

∫ +∞

−∞
x · f(x) dx =

∫ +∞

−∞
h(x) dx = 0 ,

since the integral of an odd function over R is zero.1.

Ex. 69: Note that

E[Zn] =
1√
2π

∫ +∞

−∞
xn · e−

x2

2 dx .

Note that

xn · e−
x2

2 = xn−1 · xe−
x2

2 = −xn−1 · d
dx
e−

x2

2 .

So using integration by parts we have

E[Zn] =
1√
2π

∫ +∞

−∞
xn · e−

x2

2 dx = − 1√
2π

∫ +∞

−∞
xn−1 · d

dx
e−

x2

2 dx =

= − 1√
2π

([
xn−1e−

x2

2

]+∞
−∞
−
∫ +∞

−∞
(n− 1)xn−2e−

x2

2 dx

)
=

= 0 + (n− 1)

∫ +∞

−∞
xn−2 · 1√

2π
· e−

x2

2 dx = (n− 1)E[Zn−2] .

Hence, if n is even, by iteration we get

E[Zn] = (n−1)In−2 = (n−1)(n−3)In−4 = . . . = (n−1)(n−3)(n−5) . . . 3·1·E[Z0] = (n−1)!! ,

1Actually this integral has meaning only in the sense of Cauchy Principal Value
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where E[Z0] = E[1] = 1 and

(n− 1)!! = (n− 1)(n− 3)(n− 5) . . . 3 · 1 =
n−1∏
i=1,
i odd

(n− i) .

If n is odd

E[Zn] = (n−1)In−2 = (n−1)(n−3)In−4 = . . . = (n−1)(n−3)(n−5) . . . 3·1·E[Z1] = 0 ,

since E[Z] = 0 . So

E[Zn] =

{
(n− 1)!! , if n is even ,

0 , if n is odd ,

Ex. 74: Fix a positiver integer k. Let us define a continuous random variable X with
probability density function

f(x) =

{
ck
xk+2 , if x > 1 ,

0 , otherwise ,

where ck > 0 is a constant dependent of k. Note that

E[Xk] =

∫ +∞

−∞
xk · f(x) dx =

∫ +∞

1

ck
x2
dx = ck

[
−1

x

]∞
1

= ck <∞ .

Moreover

E[Xk+1] =

∫ +∞

−∞
xk+1 · f(x) dx =

∫ +∞

1

ck
x
dx = ck [ln |x|]∞1 =∞ .

So we are left to compute ck. Since
∫ +∞
−∞ f(x) dx = 1, we have

1 =

∫ +∞

−∞
f(x) dx =

∫ +∞

1

ck
xk+2

dx = ck

[
(−k − 1)

1

xk+1

]+∞
1

= ck · (k + 1) ,

and hence

ck =
1

k + 1
.

So X has probability density function

f(x) =

{
1

(k+1)xk+2 , if x > 1 ,

0 , otherwise .

Additional Ex.: Lets say we have in general W green and B red balls, N = W +B. Consider
the strategy of drawing first from Urn A. If the ball is green, we draw again
from urn A, and if the ball is red, we take the second draw from Urn B. The
possible outcomes and their probabilities are listed below. E.g. for the ww
computation, inside the parentheses is the probability of picking green the
second time, so with probability 1/2 we select the green ball we chose on the
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first draw, and with probability 1/2 a different green ball from the original
urn. 

ww with probability W
N

(
1
2

+ 1
2
W−1
N−1

)
= 0.3154

wb with probability W
N

(
1
2

B
N−1

)
= 0.1232

bw with probability B
N

1
2

= 0.2807

bb with probability B
N

1
2

= 0.2807

Expected value applying this strategy is

20, 000 ∗ 0.3154 + 10, 000 ∗ (0.1232 + 0.2807) = 10, 347.

Taking two balls out of Urn B gives an expected number of 1 green ball, for
an expectation of 10,000.

The advantage is due to the fact that urn A has some significant chance
of having two green balls, whereas urn B has no such chance.


