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1
Multivariate Analysis

The main idea in classical or linear multivariate analysis is to reduce the di-
mension of high-dimensional data by projecting them to lower dimensional
spaces, chosen according to the goal of the analysis and the questions be-
ing asked. Linear regression, principal components, canonical correlation
analysis, and linear discriminant analysis are prime examples of this ap-
proach.These methods of analysis are driven by different goals, and the
ensuing projections and dimension reductions reflect these goals.

1.1 Principal Components Analysis

The mathematical ideas in this section go back to the 18th century with
attribution to famous names such as Euler and Lagrange. Principle com-
ponent analysis was introduced as a data analytic tool by Karl Pearson in
1901, and by H. Hotelling in 1933.

1.1.1 A brief review of relevant matrix theory

It is not difficult to see that for any real valued p× p square matrix A the
determinant det(A − λI) is a polynomial in λ of degree p. This determi-
nant is called the characteristic polynomial of A, and by the fundamental
theorem of algebra the equation det(A − λI) = 0 will have p solutions in
λ, counting multiplicity, and which are possibly complex. These solutions
λ1, . . . , λp are called characteristic roots or eigenvalues of A.
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Since for each eigenvalue λ the matrix A−λI has zero determinant, there
exists a non zero solution x to the equation Ax = λx. Such a vector x is
said to be a characteristic vector or eigenvector of A associated with λ. Such
vectors are not unique, and may not be real. In the following proposition
we consider real symmetric matrices; equation (1.1), known as the spectral
decomposition, shows such matrices may be expressed as a sum of real, rank
one matrices.

Theorem 1.1.1 Let A be a real p× p symmetric matrix.

1. The eigenvalues and eigenvectors of A are real.

2. Eigenvectors of A corresponding to distinct eigenvalues are orthogo-
nal.

3. If a root λ of the characteristic polynomial has multiplicity k, then
the null space {x : (A− λI)x = 0} has dimension k.

4. The matrix A has an orthonormal system of p eigenvectors.

5. If A is positive (nonnegative) definite, then its eigenvalues are positive
(nonnegative).

6. The matrix A is diagonalizable, that is,

Λ = V TAV or equivalently A = V ΛV T,

where V is an orthogonal matrix and Λ is diagonal. In particular, V =
[v1, . . . ,vp] is a matrix whose columns are p orthonormal eigenvectors
corresponding to the eigenvalues λ1, . . . , λp, the diagonal entries of
the matrix Λ = diag(λ1, . . . , λp).

7. We have rank(A) = rank(Λ), and letting r denote their common
value, A has r non-zero eigenvalues λ1, . . . , λr, and

A =

r∑
j=1

λjvjv
T
j . (1.1)

Proof: Part 1 can be shown using simple arguments involving complex
numbers. Parts 2 and 5 are easy and are left to the reader in Exercise
1.1.1.

To prove Part 3, perturb A = [aij ] by forming An = [aij + n−1bij ],
where bij , 1 ≤ i, j ≤ p are independent continuous random variables. The
coefficients of the characteristic polynomial of An have a continuous dis-
tribution, implying that it has p distinct roots with probability one. By
Part 2, the eigenvectors of An corresponding to its p distinct eigenvalues
are orthogonal. Thus, the collection of eigenvectors standardized to have
unit length form an orthonormal basis for Rp.

By compactness, taking subsequences we can assume the sequences of
eigenvalue-eigenvector pairs of An converge. Given an eigenvalue λ of mul-
tiplicity k, there are exactly k sequences of such pairs with eigenvalues
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converging to λ. The limits of the associated eigenvectors, being orthonor-
mal, converge to set of k orthonormal vectors, thus proving Part 3. Part 4
now follows immediately.

Part 6 follows from the identity AV = V Λ, which writes Avj = λjvj , j =
1, . . . , p in matrix form, and from V TV = I.

For Part 7, the matrices A and Λ have the same rank by Part 6 and
Exercise 1.1.2, and in particular A has rank r if and only if it has r non-
zero eigenvalues. Equation (1.1) is simply a rewriting of the second identity
in Part 6. 2

The next theorem follows from Part 6 of Theorem 1.1.1. The proof is left
to the reader, with hints in Exercise 1.1.3. It is relevant to the interpretation
of principal components.

Theorem 1.1.2 ( Courant–Fischer–Weyl min-max principle) Let A be an
p × p symmetric real matrix, and let λ1 ≥ λ2 ≥ . . . ≥ λp be its ordered
eigenvalues, and let vi denote their corresponding eigenvectors, normalized
to have length 1. Then

λ1 = max
||b||=1

bTAb = vT
1Av1, λp = min

||b||=1
bTAb = vT

pAvp,

λk = max
||b||=1,b⊥v1,...,vk−1

bTAb = vT
kAvk, k = 1, . . . , p. (1.2)

The decomposition given in Theorem 1.1.3 generalizes the spectral de-
composition from symmetric matrices to non-square matrices. The numbers
σj , j = 1, . . . , r below in (1.3) are called singular values.

Theorem 1.1.3 (Singular Value Decomposition) Let X be a real n×
p matrix of rank r. Then r ≤ min{n, p}, the matrices XTX and XXT

have the same set of r non-zero eigenvalues λ1, . . . , λr. With D the n × p
matrix having zeros everywhere except that dii = σi where σi =

√
λi > 0,

i = 1, . . . , r, the matrix X can be factored as

X = UDV T =

r∑
j=1

σjujv
T
j , (1.3)

where V is orthogonal p × p whose columns vj are eigenvectors of XTX,
U is orthogonal n × n whose columns uj are eigenvectors of XXT, and
Xvj = σjuj.

Proof: That XTX and XXT have the same set of r non-zero eigenvalues is
easy, see Exercise 1.1.4, Part 1. The p×pmatrixXTX is real and symmetric,
and by Exercise 1.1.4, Part 2, is nonnegative definite of rank r. In particular
r ≤ p and similarly r ≤ n. By Theorem 1.1.1, Parts 6 and 7, there exists
a p× p orthogonal matrix V , whose columns are eigenvectors of XTX sat-
isfying V TXTXV = Λ, where the entries of Λ = diag(λ1, . . . , λr, 0, . . . , 0)
are nonnegative. It is easy to verify that uj = Xvj/σj are orthonormal
eigenvectors of XXT corresponding to λj , j = 1, . . . , r. Now, if needed,
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complete the collection uj , j = 1, . . . , r to an orthonormal basis of Rn by
the Gram-Schmidt processand let U = [u1, . . . ,un]. Note that the vectors
added in the extension correspond to the eigenvalue zero, and therefore
they are in the null space of XXT. These definitions imply the required
result by a straightforward calculation, left as Exercise 1.1.4, Part 3. 2

Working towards the theme of this chapter of reducing dimension, we
next discuss the approximation of matrices by those having lower rank.
For a given n× p matrix X = [xij ], consider theFrobenius norm

||X||2F =

n∑
i=1

p∑
j=1

x2ij ,

having the invariance property ||XV ||F = ||UX||F for any orthogonal ma-
trices V and U , of dimension p× p and n× n, see Exercise 1.1.6. Theorem
1.1.4 below depends only on this property of the norm.

Using the notation of Theorem 1.1.3, for any ` = 0, . . . , r let U` be n× `
obtained from U by deleting its last n − ` columns, and let V` be p × `
obtained from V by deleting its last p − ` columns, where ` ≤ r. Let D``

be `× `, obtained from D by deleting its last n− ` columns and p− ` rows.
Then Theorem 1.1.4 shows that the matrix given by

U`D``V
T
` =

∑̀
j=1

σjujv
T
j (1.4)

is the best rank ` approximation of X in the given norm. In the following
we may assume without loss of generality that σ1 ≥ σ2 ≥ · · · ≥ σr, hence
λ1 ≥ λ2 ≥ · · · ≥ λr.

Theorem 1.1.4 (Low-rank Approximation Theorem) Let X be an
n × p matrix of rank r and l ∈ {0, 1, . . . , r}. The matrix given in (1.4)
is a solution to the minimization problem minL:rank(L)≤` ||X − L|| which
is unique if and only if σ` > σ`+1. Moreover, minL:rank(L)≤` ||X − L||2 =∑r
i=`+1 σ

2
i =

∑r
i=`+1 λi.

Proof: By Theorem 1.1.3 and then the invariance property of the norm,
we have ||X − L|| = ||UDV T − L|| = ||D − UTLV ||, and if L minimizes
the left-hand side, then UTLV minimizes the right-hand side. However,
given the diagonal nature of D, it is easy to see that the n × p matrix G
of rank ` that minimizes ||D − G|| has all entries equal to zero except for
gii = σi, i = 1, . . . , `. Hence a minimizer matrix L satisfies UTLV = G,
that is L = UGV T = U`D``V

T
` , see Exercise 1.1.7. The issue of uniqueness

and the final equalities of the theorem are also left as exercises. 2

We now discuss the Low Rank Approximation Theorem and its relation
to principal component analysis, or PCA. Let L` be the matrix given in
(1.4), that is, the best rank ` approximation of X, by the last relation in
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Theorem 1.1.3 we have

L` =
∑̀
j=1

σjujv
T
j =

∑̀
j=1

(Xvj)v
T
j .

The ith row xi,` of L` is therefore given by

xi,` =
∑̀
j=1

(xivj)v
T
j ,

where xi is the ith row of X, and we recognize the jth summand (xivj)v
T
j

as the projection of xi on the length-one vector vT
j . We call xivj the jth

principal component of the data point xi, and vj the vector of the jth

component loadings.
Measuring the difference between xi,` and xi by ||xi,`−xi||2, summing we

obtain the total discrepancy between the matrix X and its approximation
L`,

n∑
i=1

||xi −
∑̀
j=1

(xivj)v
T
j ||2 = ||X − L`||2. (1.5)

Hence, the matrix L` is not only the best rank ` approximation of X as
shown in the Low Rank Approximation Theorem, but it also determines
the best basis for a dimension ` subspace on which to project the rows of
X in order to minimize the total sum of discrepancies. From the last part
of Theorem 1.1.4 we know that (1.5) equals

∑r
i=`+1 λi. Therefore, the ratio∑`

i=1 λi/
∑r
i=1 λi represents the fraction of the data X explained by the

first ` principal components.
Given the n× p data matrix X, consisting of n observations each having

p variables, the p× p sample covariance matrix of X is given by

S =

[
1

n

n∑
k=1

(xki − xi)(xkj − xj)

]
, (1.6)

where xj = n−1
∑n
i=1 xij , the average of the jth variable over all n obser-

vations. If the rows of X are independent observations of some p variate
distribution, then S is the natural moment estimator of its covariance
matrix. The sample correlation matrix is similarly given by

R =

[ ∑n
k=1(xki − xi)(xkj − xj)√∑n

k=1(xki − xi)2
√∑n

k=1(xkj − xj)2

]
. (1.7)

In practice one may choose to use the original data matrix X or to center
or standardize it by replacing xij by xij − xj , making the sample means
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equal to zero, or by

xij − xj√
1
n

∑n
k=1(xkj − xj)2

, (1.8)

now also making the sample variances one. The method of principal com-
ponents can be applied equally to any of these versions of the data, all of
which hereafter will be referred to as X. For instance, the matrix n−1XTX
equals S when the data is centered, and equals R when standardized. In
the latter case as R is unit free, so is the analysis.

1.1.2 Examples

We discuss some examples where PCA can be applied. In the first exam-
ple, the entries of X represent the brightness of pixels in a two dimensional
black and white image. The goal is to compress the np data values. For a
standard photograph such a matrix can have n and p equal several thou-
sands. Principal components analysis amounts to computing a low rank
approximation of X. Reducing the image to one dimension it has the form
uvT with all rows proportional to each other, and the same for columns.
An image like trees in a forest, or a simple picture of sky, sea and sand
will perhaps be recognizable in such a one dimensional reduction.For more
complex pictures such as a regular family photo with, say close to 107 pix-
els, about 2500× 3000, a low rank approximation having rank ` of several
hundreds may be required for a good image, reducing the data from np to
(n + p + 1)` values, where n and p are the length of the vectors uj and
vj , respectively and we also account for storing each eigenvalue. However,
taking ` in the range of 10 to 20 may make pictures recognizable, which
suffices for certain purposes. In these cases, the reduced image has size of
about (2500 + 3000 + 1) × 20, for roughly 105 numbers, which is 1% of
its original size. For images with color there are three such matrices cor-
responding to red, green and blue, each of which can be compressed in a
similar fashion, and then superimposed to create a color image.

In the following examples the n rows of X are a sample of observa-
tions, each containing p variables. Each row may represent measurements
repeated over years, subjects, or regions. The question of interest is whether
a small number of linear combinations of the p variables can provide an ap-
proximate summary of the data, thus reducing its volume and complexity.
Moreover, the coefficients of these linear combinations may help discover
relevant features and important relationships between the variables.

Our next example is taken from Usman, who analyzed crime in Sokoto
state, Nigeria, with a population about 4.5 million. Here the original data
matrix consists of n = 8 rows corresponding to the years 2002-2009, and
the p = 7 columns to the following categories of crime: murder, grievous
harm and wounding (GHW), assault, robbery, theft and stealing, store
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breaking, and false pretence and cheating (False), with entries in rates per
100,000. The table below provides the first three eigenvectors, that is, the
components loadings, when the method of principal components is applied
to the data correlation matrix.

Eigenvector 1 Eigenvector 2 Eigenvector 3

Murder 0.44 - 0.03 0.56
GHW 0.55 - 0.12 - 0.17

Assault 0.49 0.16 - 0.37
Robbery - 0.01 0.59 0.19

Theft-Stealing - 0.13 0.47 0.46
Store Breaking 0.44 0.41 - 0.07

False 0.23 - 0.47 0.52

The first three eigenvalues of the data correlation matrix are λ1 = 2.76
λ2 = 2.13 and λ3 = 1.37. Here p = 7, and for ` = 1, 2, 3 the ratios∑`
i=1 λi/

∑r
i=1 λi take values 39.4, 69.8, 89.4, respectively. In particular,

the first three principal components represent over 89% of the variability
in the data. By Exercise 1.1.6 we have

∑r
i=1 λi = 7. In the above table,

the first eigenvector combines Store Breaking with crimes against persons
such as GHW, whereas the second contrasts the non-violent crime False
with property crimes such as Robbery and Theft.

An analysis of crime rates in similar categories in the USA, where each
row of the data matrix represents a state rather than year, shows a some-
what different pattern. The first eigenvalue has roughly equal weights for
all types of crime, representing its total volume, while the second contrasts
offenses against persons with that against property.

In a classical example of PCA,, the data consist of a sample of n = 140
children, tested in p = 4 variables: (1) reading speed, (2) reading power,
(3) arithmetic speed, (4) arithmetic power. The purpose was to study the
structure of these four-dimensional data.In Hotelling’s 1933 example, the
first component is a sum with nearly equal weights of all four tests, reading
speed and power, and arithmetic speed and power, thus measuring “general
ability” and the second component contrasts the two reading tests with
those of arithmetic, representing “a difference between arithmetical and
verbal ability”.

In the last example, we are given a sample of n different images, say of
faces, each of which is represented by p pixels. Each image is stacked as
a long vector, resulting in the loss of its two dimensional structure. If the
images are of faces the eigenvectors obtained pertain to face structure, and
are called eigenfaces.Though the first example also involves an image, this
example differs from it in that here we seek to find a small set of linear
combinations that are sufficient to describe a large group of images having
common features rather than compress a single image. For examples of
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compression of different sizes of data pictures (faces) and approximation
ranks.
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Figure 1.1. Plots to be explained and improved. The one on the right shows
that the projections are not only with respect to Euclidean distance but also
Mahalanobis.

1.1.3 Population principal components

hThe previous section shows how to summarize a data matrix X by pro-
jecting onto the subspace spanned by the eigenvectors of XTX. Similarly,
the following proposition shows how to approximate a random vector
X = (X1, . . . , Xp) by taking projections onto subspaces determined by
its covariance matrix Cov(X) = Σ.

Proposition 1.1.5 Let the covariance matrix Σ of the mean zero random
vector X have ordered eigenvalues γ1 ≥ · · · ≥ γp ≥ 0, with corresponding
length-one eigenvectors ν1, . . . ,νp and let Yj = νT

j X.

1. EYj = 0. Var(Yj) = γj. Cov(Yi, Yj) = 0.

2. Corr(Xi, Yj) = νij(γj/σii)
1/2.

3. The distance E
[
||X−

∑`
j=1(X · hj)hT

j ||2
]
, where h1, . . . ,h` are

orthonormal, is minimized by the choice hj = νj.

4. max||h||=1 Var(hTX) = νT
1 Σν1 = γ1. max||h||=1,h⊥ν1,...,vk−1

Var(hTX)

= max||h||=1,h⊥ν1,...,νk−1
hTΣh = γk.

The proposition is easy to verify using the results of Section 1.1.1 and is
left as an exercise.
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whose ordered Then Yj = νT
j (X − µ) and νj = (ν1j , . . . , νpj)

T are the
jth population principal component or component loadings.

The last result says that the length-one linear combination with the
largest variance is the first principal component, whereas the second prin-
cipal component maximizes the variance subject to being orthogonal to the
first, and so on.

Part 2 above says that the component loading vij , the ith coordi-
nate of the jth eigenvector vj can be expressed in the form vij =
(σii/γj)

1/2Corr(Xi, Yj) = {Var(Xi)/Var(Yj)}1/2Corr(Xi, Yj).
If we estimate Σ by 1

nX
TX, then the sample principal components max-

imize the variance in the same sense. Thus, principal components can be
described as variance maximizing orthogonal linear combinations.

1.1.4 Distribution of principal components

We first assume that the rows of the data matrix X are distributedN(µ,Σ),
where Σ is p × p has distinct eigenvalues γ1 > . . . > γp > 0, and corre-
sponding eigenvectors ν1, . . . ,νp. In this case, S of (1.6) is the maximum
likelihood estimators of Σ, and a similar relation holds for R and the corre-
lation matrix associated with Σ . More generally, the MLE of any function
h(Σ) is given by h(S). Therefore the eigenvalues and eigenvectors of length
1 of S are the MLE’s of those of Σ . If the eigenvalues are not distinct, then
length 1 eigenvectors are not uniquely defined, and therefore they cannot
be expressed by a function h as above. The asymptotic theory of MLE’s
applies. We quote here some results, which can be found, for example in
the text of Mardia, Kent and Bibby.

Proposition 1.1.6 Assume that the rows of the data matrix X are dis-
tributed N(µ,Σ). Let λj denote eigenvalues of S and vj their corresponding
eigenvectors, and λ = (λ1, . . . , λp). Also, let Γ be an p× p diagonal matrix
with γj, the eigenvalues of Σ on the diagonal. Assume these eigenval-
ues are distinct, denote their corresponding eigenvectors by νj and set
γ = (γ1, . . . , γp). Then as n→∞,

1.
√
n(λ− γ) ∼ N(0, 2Γ2) and in particular

√
n(λj − γj) ∼ N(0, 2γ2j ).

2.
√
n(vj − νj) ∼ N(0, γj

∑
k 6=j

γk
(γk−γj)2νkν

T
k ).

It is easy to construct asymptotic confidence intervals for the component
loadings from the last result, plugging in the estimators of the eigenvalues
and eigenvectors instead of the corresponding parameters.

If normality is not assumed, then the asymptotic variances in Proposition
1.1.6 depend on mixed fourth order moments of the data distributions. This
involves a large number of parameters which must be estimated and plugged
in, and therefore it is usually avoided.
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1.1.5 Exercises

Exercise 1.1.1 Prove Parts 2 and 5 of Theorem 1.1.1.

Exercise 1.1.2 Show that if A is n× p and U and V are invertible p× p
and n× n matrices respectively, then

rank(AU) = rank(A) and rank(V A) = rank(A).

Exercise 1.1.3 Prove Theorem 1.1.2. To prove the first relation in (1.2)
compute bTAb writing A = V ΛV T and making the substitution c = V Tb.
The other results in (1.2) follow in a similar way.

Exercise 1.1.4 This exercise concerns Theorem 1.1.3.

1. Prove that if v is an eigenvector of XTX then Xv is an eigenvector
of XXT with the same eigenvalue.

2. Prove that XTX and XXT are nonnegative definite of rank r.

3. Show that X = UDV T by noting that the identity in question is
equivalent to XV = UDV TV .

Exercise 1.1.5 The right-hand side expression in (1.3) can also be ob-
tained as follows. In the notation of Theorem (1.1.3), write X = XV V T =∑p
j=1Xvjv

T
j =

∑p
j=1 σjujv

T
j , where uj = 1

σj
Xvj. Now show that uj are

eigenvectors of XXT of length 1.

Exercise 1.1.6 For an n× p matrix X let ||X||2 =
∑n
i=1

∑p
j=1 x

2
ij.

1. Show that ||X||2 = trace(XXT), and in particular when the entries
xij of the data matrix are replaced by the values given in (1.8) the
resulting matrix has norm p. Hint: trace(R) = p, where R is defined
in (1.7).

2. Show that ||XV || = ||UX|| = ||X|| for any orthogonal matrices V
and U , of dimension p× p and n× n.

3. Prove that 2 holds for the operator norm ||X||op = max||v||=1 ||Xv||,
where here || · || is Euclidean norm.

Exercise 1.1.7 Complete the proof of Theorem 1.1.4.

Exercise 1.1.8 Prove that the solution L of minL:rank(L)≤` ||X − L|| is

also the solution of minL:rank(L)≤` ||XTX −LTL||. This can be done easily
by using (1.3) to express X, and (1.4) to express L, and then applying
Theorem 1.1.4 to ||XTX − LTL|| after simplification.

Exercise 1.1.9 Prove Proposition 1.1.5.
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1.2 Classification

In this section we consider the following problem: given samples generated
from g different distributions, and a new observation generated by one
of them, we want to formulate a decision rule which classifies the new
observations to its generating distribution. There are various approaches
to this problem. Here we concentrate on linear decision functions. The main
original contributors to this area were made in the 1930’s by R.A. Fisher,
H. Hotelling, and P.C. Mahalonobis.

We begin with the ‘gold standard’ of classification methods, the Bayes
Rule. As we will find in general that in practice we will need information not
available to us in order to use this rule, we will move on to other methods
where estimation is required.

1.2.1 Known distributions: the Bayes Rule

Assume first that the g distributions are known, and have densities
f1, . . . , fg. Given a new observation, say x, the problem amounts to testing
the multiple hypotheses Hj : x ∼ fj , j = 1, . . . , g. We describe a Bayesian
approach, but the same results can be obtained in other ways.

Suppose that the prior probability of group j, that is, the prior probabil-
ity that x comes from fj is πj , where

∑g
k=1 πk = 1, and let Y ∈ {1, . . . , g}

denote the group of an individual. For a natural, concrete example, we
can consider when one needs to classify patients to diseases y on the ba-
sis of a vector of symptoms x, and the prevalence of these diseases in the
population is known.

Under this model, the joint distribution of (X, Y ) is given by

P (X = x, Y = j) = P (X = x|Y = j)P (Y = j) = πjfj(x).

Upon observing the symptoms x, is natural to compute the posterior dis-
tribution of k given x, and classify according to the maximal posterior
probability, that is, by the Bayes rule

ĵ = argmaxjP (Y = j|x). (1.9)

To avoid having to consider conditioning, consider tossing a die with given
face probabilities, and having to predict an outcome. In such as case we
will ‘clearly’ pick the side with the highest chance, with the error being
that some other side will occur. Hence the Bayes error rate is therefore

1− argmaxjP (Y = j|x).

Consider the special case where the outcome is binary, so by relabeling
we may assume y ∈ {−1, 1}. Let π(x) = P (X = x), so that

η(x) = E[Y |X = x] = P (Y = 1|X = x)− P (Y = −1|X = x)

= 2P (Y = 1|X = x)− 1.
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Hence, for t ∈ {−1, 1},

P (Y = t|X = x) =
1 + tη(x)

2
.

The Bayes classifier be written as

g∗(x) =

{
1 η(x) ≥ 0
−1 η(x) < 0

= sign(η(x)). (1.10)

as it classifies as +1 if and only if P (Y = 1|X = x) ≥ P (Y = −1|X = x).
Let the Bayes risk of any classifier g be given by

L(g) = P (Y 6= g(X)),

the error probability. So

L(g) = P (Y 6= g(X)) = E[P (Y 6= g(X)|X)]

= E

[
1− η(X)g(X)

2
|X
]

=

∫
1− g(x)η(x)

2
π(x)dx ≥

∫
1− |η(x)|

2
π(x)x = L(g∗),

so g∗ is optimal.
In in the case of g groups, one can similarly obtain that (1.9) is the

optimal rule, see Exercise 1.2.1. By Bayes rule

P (Y = j|x) =
fj(x)πj∑g
k=1 fk(x)πk

,

and we note that the denominator does not depend on j. Hence (1.9) leads
immediately to the rule that classifies an observed x as coming from group

ĵ = arg max fj(x)πj . (1.11)

1.2.2 Linear and Quadratic Discriminant Analysis

Assume now that the densities fk correspond to N(µk,Σ ), where the co-
variance matrix Σ is invertible, and common to all distributions. It is easy
to see that (1.11) leads immediately to the classification rule

arg min
j
{(x− µj)

TΣ−1 (x− µj)/2− log(πj)}, (1.12)

where x and µj are taken to be column vectors. If the prior group proba-
bilities πj ’s are equal the above rule amounts to minimizing the so called
Mahalanobis distance between x and µj , defined by (x−µj)

TΣ−1 (x−µj).
Expanding the first expression in (1.12) yields

(xTΣ−1 x− 2µT
j Σ−1 x + µT

j Σ−1 µj)/2.

As the first term depends only on x and the covariance matrix, j is the
unique minimizer when for all k 6= j

−µT
j Σ−1 x + µT

j Σ−1 µj/2− log(πj) < −µT
kΣ−1 x + µT

kΣ−1 µk/2− log(πk)
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or, rearranging, when

(µj − µk)TΣ−1 (x− µk)

>
1

2
(µj − µk)TΣ−1 (µj − µk)− log(πj) + log(πk) (1.13)

As x enters only linearly through the inequalities, the region where the
x must fall to be classified into any of them is an intersection of hyper-
planes, as the regions are determined by linear functions. In fact, here the
application of the Bayes rule here divides the observation space into K
regions known as Voronoi sets, each one being the set of points closest in
the Mahalanobis distance to µj over all k = 1, . . . ,K. We observe that
each such region is an intersection of hyperplanes, that is, the regions are
determined by linear functions. Hence this method is known by the term
linear discriminant analysis (LDA).

If the covariance matrix of group j is an invertible matrix Σj , which
perhaps varies from group to gropup, then it is not difficult to show that
the Bayes rule depends also on the quadratic term xTΣ−1j x; under this
model, the resulting method is known as quadratic discriminant analysis,
or QDA. See Exercise (1.2.2).

Lastly, in practical situations we may not have knowledge of the para-
maters of these normal distributions. In such case, the true values may
be replaced by their unbiased estimates or their MLE’s. This situation is
explored in the following section.

1.2.3 Normal groups with unknown parameters

When assuming the observations are normally distributed, it is usually not
assumed that the parameters of the class distributions are known, as was
done in Section 1.2.2. In this case the parameters are replaced by their
estimators using the given data from the K populations.

Supposing that we observe nk observations xki, i = 1, . . . , nk from group
k, with all observations independent, the MLE of the parameters are

µ̂k = xk =
1

nk

nk∑
i=1

xki , Σ̂ =
1

N

K∑
k=1

nk∑
i=1

(xki − xk)(xki − xk)T. (1.14)

An unbiased estimator of Σ is

S =
1

N −K

K∑
k=1

nk∑
i=1

(xki − xk)(xki − xk)T. (1.15)

Now replacing the distributional parameters by these estimates we obtain
the classification rule for a new observation x ∈ Rp : classify x to the
population having index

arg max
k
{(x− xk)TS−1xk + xT

kS−1 xk/2 + log(πk)}. (1.16)
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Consider now the special case of K = 2. A straightforward calculation
shows that (1.16) is equivalent to the rule of classifing x to group 1 if

xTS−1(x1 − x2) > (x1 + x2)TS−1 (x1 − x2)/2− log(π1) + log(π2). (1.17)

In fact the rule of (1.16) for general K can be obtained by comparing all
pairs of hypotheses in the same way as 1 and 2 above.

Setting `(x) = xTS−1(x1 − x2) we have {`(x1) + `(x1)}/2 = (x1 −
x2)TS−1 (x1 − x2)/2. Thus in (1.17), `(x) is compared to the average of
`(x1) and `(x2) if π1 = π2. The function `(x) is often referred to as Fisher’s
linear discriminant function.

1.2.4 Classification and hypotheses testing

With normally distributed data as given in Section 1.2.3, define the within
and between sums of squares matrices

W =

K∑
k=1

nk∑
i=1

(xki−xk)(xki−xk)T, B =

K∑
k=1

nk(xk−x)(xk−x)T, (1.18)

where x = 1
N

∑K
k=1 nkxk is the average of all sample vectors. Suppose we

reduce the dimension of the data to one by fixing a vector a and considering
yki = aTxki ∈ R, for which yki ∼ N(aTµk,a

TΣa). Set ηk = aTµk, and
consider testing the hypothesis H0 : η1 = . . . = ηK . This testing problem
is a special case the F test for linear models, in this case with test statistic
given by∑K

k=1 nk(yk − y)2∑K
k=1

∑nk

i=1(yki − yk)2
= T (a) where T (a) =

aTBa

aTWa
. (1.19)

The linear combination that best separates the hypotheses is given by
the solution to

max
a

aTBa

aTWa
.

It is easy to see, Exercise 1.2.5, that the maximum equals the largest eigen-
value of W−1B, and it is obtained by the corresponding eigenvector. In
analogy to principal component analysis, one can compute further eigen-
vectors, each new one maximizing T (a) subject to being orthogonal to
previously computed eigenvectors. These eigenvectors, say vj are called
the linear discriminant functions. Most statistical packages standardize the
eigenvalues so that vT

jWvj = Var(vT
1xki) = 1.

Consider the first two eigenvectors, say v1 and v2. For each data point
xki one can compute (vT

1xki,v
T
2xki), and draw a scatter plot of of these

points. The chosen linear combinations are supposed to separate the groups
in the best way in a two-dimensional space. For a large K, that is a large
number of groups, two dimensions may not suffice to separate all groups.
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Note that rankB is at most K−1, so there can be at most K−1 eigenvectors
corresponding to non-zero eigenvalues.

In the case K = 2, it is easy to see that B =
n1n2
N2

(x1 − x2)(x1 − x2)T,

a p × p matrix satisfying rank(B) = 1 (recall that xi are row vectors).
In this case there is one non-zero eigenvalue for the matrix W−1B =
n1n2
N2

W−1(x1−x2)(x1−x2)T. Let a = W−1(x1−x2). Then W−1Ba = λa,

where λ = n1n2

N2 (x1−x2)TW−1(x1−x2). Thus the eigenvector which max-
imizes the F statistics, see (1.19), is a = W−1(x1 − x2), and the optimal
linear combination of the variables is xTa = xTW−1(x1−x2). Noting that
S = W/(N − K), we see that up to a constant we obtained which the
combination appearing in (1.17), denoted later by `(x).

Figure : Plot of the famous iris data. Four variables, sepal and petal
length and width are measured in three kinds of iris flowers. The three
groups, denoted by V, R, and S are plotted by the first two discriminant
functions. The first discriminant function is vT

1 = (0.83, 1.53,−2.20,−2.81),
corresponding to sepal length and width and petal length and width, re-
spectively; thus it contrasts sepal and petal sizes. The plot shows that the
first discriminant function separates the groups almost perfectly.

1.2.5 Misclassification probabilities

For simplicity we now assume K = 2 and π1 = π2, for which the
classification rule (1.13) classifies x to distribution k = 2 if

(µ2 − µ1)TΣ−1(x− µ1) > (µ1 − µ2)TΣ−1 (µ1 − µ2)/2. (1.20)

Setting a = Σ−1(µ2 − µ1) we see that under x ∼ N(µ1,Σ), the left-hand
side of (1.20) is N(0, D2), where D2 = (µ1−µ2)TΣ−1 (µ1−µ2). Standard-
izing by dividing both sides of (1.20) by D, we find that the probability
of misclassifying an observation from group 1 to be in group 2 is given
by Φ(−D/2). This probability, a function of the Mahalanobis distance D
between the two distributions’ means, tends to zero as that distance in-
creases to infinity. By reversing the roles of the two groups, the probability
of misclassifying x from µ2 to µ1 has the same probability, and these prob-
abilities are also direct to compute when π1 6= π2, see Exercise 1.2.3. In
general D is unknown, and it is estimated using the sample means and
covariance matrix.

The resulting approach tends to underestimate the error probabilities
since the discriminant function and the error probability are computed
under the same parameters, corresponding to a situation in which the
parameters are known and are equal to their sample estimates.
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1.2.6 Exercises

Exercise 1.2.1 Generalize the Bayes Rule (1.10) to the case where the
cost of misclassifying a individual who belongs to group +1 is a > 0, and
misclassifying a individual who belongs to group −1 is b > 0.

Prove that classification rule (1.9) is optimal, relative to the loss of 1 for
any wrong classification, and 0 for a correct one.

Exercise 1.2.2 Develop the consequences of applying the Bayes rule for
observations from groups having multivariate normal distributions with
different means and covariance matrices, where all these parameters are
known. That is, find the decision rule for QDA as described in Section
1.2.2.

Exercise 1.2.3 Under the model in Section 1.2.5 and observations from
two groups, compute the misclassification probabilities in the general case
when π1 and π2 may be unequal. Determine any conditions on the pa-
rameters D,π1 and π2 where the probability of misclassification tends to
zero.

Exercise 1.2.4 Consider the case of two normal populations N(µk,Σ ),
k = 0, 1, where Σ is common to both distributions. Given a new observation
x let Y = k indicate the distribution that generated x, that is x | Y = k ∼
N(µk,Σ ), and let πk = P (Y = k), k = 0, 1, be the prior probabilities.

Show that log
P (Y = 1 | x)

P (Y = 0 | x)
= β0 + βTx, that is, a linear function of x.

This coincides with the Logistic Model.
Show that if the two groups can be completely separated by a linear

function then the MLE estimators in logistic regression achieve such sepa-
ration, and in general, they are not unique. Note that LDA as described in
this section does not necessarily achieve complete separation even if such
separation is possible. Note also that logistic regression is a model for a
distribution conditional on the x’s while these variables are assumed to be
normal when using LDA.

Exercise 1.2.5 Prove that λ = max
a

aTBa

aTWa
is the largest eigenvalue of

W−1B defined in Section 1.2.4, and the maximizing a is the correspond-
ing eigenvector. Hints: first prove that we can write W = V 2 where V is
symmetric. This follows easily from (1.1). Then apply the transformation

V a = b to aTBa

aTWa
and use Theorem 1.1.2.
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