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Abstract

In making inference on the relation between failure and exposure histories in the Cox semi-
parametric model, the maximum partial likelihood estimator (MPLE) of the finite dimensional
parameter, and the Breslow estimator of the baseline survival function, are known to achieve
full efficiency when data is available for all time on all cohort members, even when the covari-
ates are time dependent. When cohort sizes become too large for the collection of complete
data, sampling schemes such as nested case-control sampling must be used and, under various
models, there exist estimators based on the same information as the MPLE having smaller
asymptotic variance.

Though the MPLE is therefore not efficient under sampling in general, it approaches effi-
ciency in highly stratified situations, or instances where the covariate values are increasingly
less dependent upon the past, when the covariate distribution, not depending on the real pa-
rameter of interest, is unknown and there is no censoring. In particular, in such situations,
when using the nested case-control sampling design, both the MPLE and the Breslow estimator
of the baseline survival function achieve the information lower bound both in the distributional
and the minimax senses in the limit as the number of cohort members tends to infinity.

1 Introduction

For many epidemiologic studies, the cohort from which failures are observed is simply too large
for the collection of full exposure data, and in order to make inference on the connection between
exposure history and failure it becomes a matter of practical necessity to sample. For a cohort
followed over time, one of the simplest sampling schemes, termed nested case-control sampling [16],
is to choose a fixed number of controls to compare to the failure at each failure time. Though it has
previously been shown that the maximum partial likelihood estimator (MPLE) in the Cox semi-
parametric model achieves full efficiency when data is available for all time on all cohort members,
the same is no longer true in certain situations when schemes such as nested case-control sampling
are used. In counterpoint to such cases, here we explore a model where the MPLE is efficient, in
both the distributional and minimax senses, for the nested case-control sampling scheme. We also
show that similar remarks apply as well to the Breslow estimator of the baseline hazard. Knowing
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in which situations the MPLE is close to efficient provides some guidelines on when it may be ap-
plied with little risk of efficiency loss, and when other estimators, perhaps depending on additional
modeling assumptions, should be considered as an alternative.

In the standard Cox model [6], a common but unspecified baseline hazard function λ(t) is
assumed to apply to all cohort members. The relation between exposure and failure is the one
of most interest, and is modeled by the real parameter θ specifying the increased relative risk,
having the exponential form eθZ , say, for an individual with covariate Z. The unknown baseline is
considered for the most part to be a nuisance parameter. When covariate information is available
on all cohort members, the maximum partial likelihood estimator (MPLE) makes inference on the
parametric component of such models by maximizing a ‘partial likelihood’, that is, the product of
the conditional probabilities, over all failures ij, that individual ij failed given that the individuals
Rij were also at risk to fail when ij failed,

L(θ) =
∏
ij

eθZij∑
k∈Rij

eθZk
. (1)

We note that the unspecified baseline hazard cancels upon forming this conditional probability.
When data is only available on some sampled subset R̃ij of the entire cohort Rij , an estimator

may be formed by replacing Rij by R̃ij , (see [5]), possibly then mandating the use of weights so
that the MPLE remains consistent. Nested case control sampling, which does not require the use
of such weights, is the instance where R̃ij consists of the failure ij and m− 1 non-failed individuals
to serve as controls, chosen uniformly at random for those at risk at the time of the failure.

One price to pay for the ability to estimate θ while leaving the nonparametric baseline hazard
unspecified, and the subsequent use of the MPLE, is that it is not a true likelihood being maximized,
and efficiency concerns arise. In particular, it is not clear whether one can construct estimators
which depend on the same data as the MPLE, but which have better performance. In the paper of
Begun et al. [1], however, these concerns are put to rest in the full cohort case where the covariates
are time fixed, as the authors demonstrate that in that situation the MPLE achieves the semi-
parametric efficiency bound. Greenwood and Wefelmeyer [10] show the MPLE is efficient in the full
cohort situation even when the covariates are allowed to depend on time. Similar remarks apply
also to the Breslow estimator of the baseline hazard.

The situation is different under sampling: Robins et al. [15] has shown that for time fixed
covariates the MPLE is not efficient under nested case control sampling. In this situation, there
may exist modified estimators which take advantage of the time fixed nature of the covariates, in
that the exposure for a control sampled in the past is still valid at a future failure time. In time
varying covariate models, Chen [7], among others, have modified the MPLE to yield consistent
estimators of the parametric parameter which have smaller asymptotic variance than the MPLE.
The estimator proposed in [7] uses covariates sampled for other failures at time points near to that
of a given failure to take advantage of already available information. Here, to realize a practical
efficiency benefit, the sequence of failures times must be sufficiently dense and the covariates not
varying too rapidly in time. Though in the time fixed covariate situation the modified estimator uses
information from the past specifically, in both cases one relies on the dependence of the covariate
values over time to realize some efficiency gain; for the time varying covariate models, such modified
estimators will perform better the stronger the time dependence. Due to the various improvements
on the performance of the MPLE, it becomes less clear in just which ways its performance can be
improved, or, in other words, whether the MPLE fails to be efficient for reasons in addition to the
ones by which these modified estimators achieve their gains.
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Showing that there is some sense in which the MPLE for nested case control sampling is efficient
is therefore valuable for two reasons. First, it limits the scope of the search for estimators which
might improve the MPLE’s performance. Secondly, it indicates the use of the simple MPLE, and
not a more complex version of same, in situations which achieve or approximate those in which it
can not be improved.

Based on the known instances where the MPLE fails to be efficient under sampling, to find models
where it is, by constrast, efficient, we are led to consider situations where covariate information
collected for one failure is not useful at any other failure time. Indeed, such situations are fairly
common in epidemiologic studies, in particular, when highly stratified cohorts are followed over a
short period of time. Due to the short time under study, the covariates may be considered time
fixed, and there is, for that same reason, little or no censoring. Lastly, in such cases, the groups
corresponding to the terms in the product of the partial likelihood are independent, or very nearly
so. A continuous time covariate model where the failures are spaced far apart relative to the
correlation time of the covariates will also have the property that the covariate values at one failure
time will be nearly independent of those at any other. In fact, in the limit, this latter situation
becomes the former, highly stratified case. Thus we are led to a time fixed covariate model f having
no censoring, where we observe n independent units of information, each consisting of the observed
failure from a cohort of a possibly random number η of individuals who are comparable to the
failure, the covariate value of the failure, and the covariate values of m− 1 sampled controls.

A concrete example of such a situation is the study of occupational exposure to EMF and
leukemia [11], which is fairly typical of cancer registry based case-control studies. The cohort is the
adult male population in mid-Sweden followed over 1983-1987 for cases of leukemia. Two controls
were sampled from risk sets based on the age of the 250 leukemia cases, matching on year of birth
and geographic location. In this study, with the four year follow-up and fine stratification, there is
little censoring and almost all strata have at most one failure, Thus the sampling model considered
here very closely approximates the circumstances of the study.

It is easy to verify that in these situations, letting Z be the distribution of the i.i.d. covariates,
under the null θ0 = 0 the information −E[∂2 logL(θ)/∂θ2] = σ−2

MPLE, where

σ−2
MPLE =

(
m− 1

m

)
Var(Z)

where L(θ) is as in (1) with the set of those at risk Rij replaced by the nested case-control sampled

risk set R̃ij . Hence, under regularity (see e.g. [8], [5], and [9]) the MPLE θ̂n is asymptotically
normal and satisfies √

n
(
θ̂n − θ0

)
→ N (0, σ2

MPLE).

Our main result, Theorem 2.5, shows that when considering a growing cohort size, the limiting
effective information in the data, I∗(θ0), equals σ−2

MPLE, and that the MPLE is efficient in the limit in
both the convolution lower bound, and minimax, senses. Theorem 2.6 show similar remarks apply
to the Breslow estimator of the baseline survival function.

When the complete set of covariate values are observed it is unimportant whether the covari-
ate distribution is considered known or unknown. Again, the situation when sampling is different;
knowing the covariate distribution allows one to estimate large sample quantities to within some
accuracy. Consequently, the hypotheses of Theorem 2.5 includes the assumption that the covariate
distribution is unknown, and the subsequent analysis must therefore handle two infinite dimensional
nuisance parameters, one for the unknown baseline density, the other for the unknown covariate
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distribution. In particular, the results leave open the possibility of improved estimators which
take advantage of a known covariate distribution. Nevertheless, such improvements must necessar-
ily depend on having information about, and correctly modeling, the covariate distribution, and
consequently invite the possibility of bias due to modeling misspecification.

We consider the Cox model under the usual exponential relative risk, though the methods
here may be applied for other relative risk forms, as was accomplished in [10] for the full cohort,
time varying covariate model. The methods here also extend to accommodate censoring, though
this generalization requires the inclusion of a third infinite dimensional parameter, the censoring
density, and consequently the handing of an additional operator corresponding to the unknown
censoring density.

The outline of this work is as follows. In Section 2.1 we review and slightly modify the theory
in [1] for the calculation of information bounds in semi-parametric models to accommodate a pair
of unknown densities. In Section 2.2 we further specialize that theory to the case at hand and
formally state our model and the main results which were outlined above. Application of the theory
presented in Section 2.1 for the relative risk parameter θ requires verification of three assumptions.
The first, Assumption 2.1 is that certain collections of perturbations form a subspace. The sec-
ond, Assumption 2.2, is connected to the Hellinger differentiability of the observation density f ,
in particular, that perturbations of the nonparametric baseline and covariate density affect f by
amounts given by operators A and B evaluated on the respective perturbations, and that perturbing
the parametric parameter results in a score ρ0. The third, Assumption 2.3, is that the orthogonal
projection of the parametric score ρ0 is contained in a certain subspace, K. In order to proceed as
quickly as possible to the calculation of the information bounds in Section 4, we present in Section
3 only a subset of the properties eventually required of the operators A and B and of the score
ρ0; the remaining properties required of A and B are shown in Sections 5 and 6 respectively. The
verification of Assumption 2.2 can be found in Section 7. Assumptions 2.1 and 2.3 are verified in
Section 8. Section 9 is a technical appendix which highlights the modifications made to the theory
in [1] necessary for our application, and provides the proofs required for our purposes.

2 Information Bounds for Sampling in the Cox Model

In Section 2.1 we review and adapt the framework of [1] for the calculation of information bounds in
semi-parametric models to the case where there are two unknown one-dimensional density functions.
In Section 2.2 we specify the model f for nested case-control sampling and formally state our main
result showing that the MPLE, and the Breslow estimator, achieve their respective efficiency lower
bounds.

2.1 Information Bounds in Semi-parametric models

This section closely follows the treatment in [1] for deriving lower bounds for estimation in semi-
parametric models; see also the text [4]. Let L2(µ) denote the collection of functions which are
square integrable with respect to a measure µ, and for u, v ∈ L2(µ) we let 〈u, v〉µ =

∫
uvdµ and

||u||2µ = 〈u, u〉µ. Here, as in [1], the data consists of n i.i.d. observations X1, . . . , Xn taking values
in a measurable space (X ,FX ), and the density function f of a single observation is with respect to
a sigma-finite measure σ. We consider a model where the density f = f(·, θ, g, h) is determined by
a real parameter θ, the one of most interest, and by the infinite dimensional parameter p = (g, h),
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a vector of two unknown densities g and h, the baseline failure time density, and the marginal
covariate density, respectively.

Let D+ and D denote the collection of densities with respect to Lebesgue measure ν+ and ν on
R+ = [0,∞) and R, respectively. We let the parameter space G for the unknown baseline failure
density be

G = D+. (2)

To impose growth conditions on the covariates similar to the ones typically assumed, for a covariate
density h : R→ [0,∞) and θ ∈ R let

Mh(θ) =

∫
hdνθ where

dνθ
dν

= eθz.

For some fixed ξ > 0 and 0 < θξ < θκ we let the parameter space for the covariate density be

H = {h ∈ D : Mh(θ) <∞ for all |θ| < θκ and Mh(θξ) +Mh(−θξ) < ξ}. (3)

Hence, the parameter space P for the pair p of unknown densities is given by

P = G ×H.

Adopting slightly inconsistent notation for the sake of ease, we let θ0 denote the null parameter in
R, and henceforth, g and h the null parameters in G and H, respectively; we label them also as g0

and h0 when convenient.
For τ ∈ R let Θ(τ) denote the collection of all real sequences {θn}n≥1 such that

|
√
n(θn − θ0)− τ | → 0 as n→∞, and set Θ =

⋃
{Θ(τ) : τ ∈ R}.

Let Πθ = L2(ν+) × L2(νθ), and for γ = (α, β) ∈ Πθ let ||γ||Πθ = max{||α||ν+ , ||β||νθ}, the product
metric, and with p = (g, h) the null parameter let C(p, γ) be the collection of all sequences {pn}n≥0 =
{(gn, hn)}n≥0 ⊂ P such that

||
√
n(p1/2

n − p1/2)− γ||Πθ → 0 as n→∞, for all |θ| < θκ. (4)

Let Γ be the set of all γ such that (4) holds for some {pn}n≥0 ⊂ P , and

C(p) =
⋃
γ∈Γ

C(p, γ).

By considering the components of {pn}n≥0 we see that {gn}n≥0 ∈ C1(g, α), the collection of all
sequences in G such that

||
√
n(g1/2

n − g1/2)− α||ν+ → 0 as n→∞,

and therefore α ∈ L2(ν+) satisfies α ⊥ g1/2 in L2(ν+), that is, 〈α, g1/2〉ν+ = 0, or,∫ ∞
0

g1/2αdν+ = 0. (5)
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Now let

A = {α ∈ L2(ν+) : there exists {gn}n≥0 ⊂ G such that ||
√
n(g1/2

n − g1/2)− α||ν+ → 0} (6)

and set
C1(g) =

⋃
α∈A

C1(g, α).

Similarly, {hn}n≥0 ⊂ C2(h, β), the collection of all sequences in H such that

||
√
n(h1/2

n − h1/2)− β||νθ → 0 as n→∞, for all |θ| < θκ. (7)

For θ = 0 (7) yields

||
√
n(h1/2

n − h1/2)− β||ν → 0 as n→∞, (8)

and therefore that β satisfies ∫ ∞
−∞

h1/2βdν = 0. (9)

Now let B be the collection of all β ∈ L2(ν) such that there exists {hn}n≥0 ⊂ H such that

||
√
n(h1/2

n − h1/2)− β||νθ → 0 for all |θ| < θκ, (10)

and set
C2(h) =

⋃
β∈B

C2(h, β).

Clearly
C(p, γ) = C1(g, α)× C2(h, β), C(p) = C1(g)× C2(h) and Γ = A× B.

The following three assumptions will be needed to demonstrate Theorems 2.1 and 2.2, and, in
addition, the fourth for Theorems 2.3 and 2.4. The first is that Γ is a subspace of L2(ν+)× L2(ν),
or equivalently,

Asssumption 2.1. The sets A and B are subspaces of L2(ν+) and L2(ν), respectively.

It is shown in [1] that parts of the following assumption are a consequence of the Hellinger
differentiability of f ; we verify Assumption 2.2 directly.

Asssumption 2.2. There exists ρθ ∈ L2(σ) and linear operators A : L2(ν+) → L2(σ) and B :
L2(ν)→ L2(σ) such that for any (τ, α, β) ∈ R×A× B and

({θn}n≥0, {gn}n≥0, {hn}n≥0) ∈ Θ(τ)× C1(g, α)× C2(h, β), (11)

the sequence of densities given by fn = f(·, θn, gn, hn) for n = 0, 1, . . . satisfies

||
√
n(f 1/2

n − f 1/2
0 )− ζ||σ → 0 for ζ = τρθ + Aα +Bβ as n→∞. (12)
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Let

H = {ζ ∈ L2(σ) : ζ = τρθ + Aα +Bβ for some τ ∈ R, α ∈ A, β ∈ B} (13)

and

K = {δ ∈ L2(σ) : δ = Aα +Bβ for some α ∈ A and β ∈ B}. (14)

The classical projection theorem shows that the orthogonal projection of ρθ onto the closure of K is
an element of the closure of K. However, we consider situations satisfying the following assumption,
that is, where K itself contains the projection of ρθ.

Asssumption 2.3. There exists α̂ ∈ A and β̂ ∈ B such that δ̂ = Aα̂ +Bβ̂ satisfies

ρθ − δ̂ ⊥ δ for all δ ∈ K.

Since for any δ = Aα +Bβ ∈ K, by orthogonality,

||ρθ − δ||2σ = ||ρθ − Aα−Bβ||2σ
= ||ρθ − δ̂ − A(α− α̂)−B(β − β̂)||2σ
= ||ρθ − δ̂||2σ + ||A(α− α̂) +B(β − β̂)||2σ
≥ ||ρθ − δ̂||2σ,

hence δ̂ minimizes ||ρθ − δ||2σ over δ ∈ K, and thus corresponds to the worst case direction of
approach to the null, that is, the one which minimizes the available information. Set the effective
information I∗ to be

I∗ = 4||ρθ − δ̂||2σ. (15)

For ζ ∈ H, let F(f, ζ) be the collection of all sequences {fn}n≥0 such that (12) holds, and F(f)

the union of F(f, ζ) over all ζ ∈ H. We say that an estimator θ̂n of θ0 is regular at f = f(·, θ0, g, h)
if for every sequence fn(·, θn, gn, hn) with {θn}n≥0, {gn}n≥0 and {hn}n≥0 as in (11), the distribution

of
√
n(θ̂n− θ0) converges in distribution to L = L(f) which depends on f but not on the particular

sequence fn.
The setup above differs in two ways from that in [1]. First, the model considered here has two

nonparametric components, g and h, while in [1] only one nonparametric component is considered.
Secondly, as we specify the parameter space H on the covariate density h in such a way as to accom-
modate more relaxed integrability conditions, the resulting space of perturbations B is expressed as
the intersection of subspaces (see (77)), one for each θ in (−θκ, θκ). This is so as the perturbations

β are required to be limiting approximations to
√
n(h

1/2
n − h1/2) in L2(νθ) for all |θ| < θκ, rather

than in L2(ν). As (7) implies (8) our condition gives rise to a smaller collection B of perturbations
than in [1]. Nevertheless, only minimal adaptations of the proofs of Theorems 3.1 and 3.2, and
Theorems 4.1 and 4.2, of [1] are required to demonstrate Theorems 2.1 through 2.4 for our model,
so these are relegated to Section 9.

Theorem 2.1. Suppose that θ̂n is a regular estimator of θ0 in the model f = f(·, θ, g, h) with limit
law L = L(f) and that Assumptions 2.1, 2.2 and 2.3 hold. Then L is the convolution of a normal
N (0, 1/I∗) distribution with a distribution depending only on f , where I∗ is given by (15).
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We may also adapt the asymptotic minimax result of [1]. Recall that we say a loss function
` : R→ R+ is subconvex when {x : `(x) ≤ y} is closed, convex, and symmetric for every y ≥ 0. We
will also assume our loss function satisfies∫ ∞

−∞
`(z)φ(az)dz <∞ for all a > 0, (16)

where φ denotes the standard normal density function.

Theorem 2.2. Suppose Assumptions 2.1, 2.2 and 2.3 hold, that ` is subconvex and satisfies (16),
and for c ≥ 0 let

Bn(c) = {fn ∈ F :
√
n||f 1/2

n − f 1/2||σ ≤ c}. (17)

Then

lim
c→∞

lim
n→∞

inf
θ̂n

sup
fn∈Bn(c)

Efn`(
√
n(θ̂n − θn)) ≥ E`(Z∗), (18)

where Z∗ ∼ N (0, 1/I∗) where I∗ is given by (15).

The infimum in (18) is taken over the class of “generalized procedures,” the closure of the class
of randomized Markov kernel procedures (see [14], page 235). We also obtain lower bounds on
the performance of regular estimators of the baseline survival function G(·) by similarly adapting
Theorem 4.1 and Theorem 4.2 of [1], under the following assumption.

Asssumption 2.4. The linear operator A∗A : L2(ν+)→ L2(ν+) is invertible with bounded inverse
(A∗A)−1.

We suppose also that, perhaps by a suitable map such as the probability integral transformation,
the density g is supported on [0, 1]. Let

Gs = (I[0,s] −G(s))g(s)1/2,

and define the covariance functions

K(s, t) = 〈Gs, (A
∗A)−1Gt〉ν+ and K∗(s, t) = K(s, t) + 4I−1

∗

∫ s

0

α̂g1/2

∫ t

0

α̂g1/2, (19)

where I∗ is given by (15) and α̂ is as in Assumption 2.3. For the precise definition of a regular
estimator of G(·), analogous to that for estimators of θ0, see [1].

Theorem 2.3. Suppose that Ĝ(·)n is a regular estimator of G(·) =
∫ ·

0
gdν+ in the model f =

f(·; θ, g, h) with limit process S, that Assumptions 2.2 to 2.4 hold, and that Assumption 2.1 holds
with A given by {α ∈ L2(ν+) :

∫
αg1/2dν+ = 0}. Then

S =d Z∗ + W,

where Z∗ is a mean zero Gaussian process with covariance function K∗(s, t) given by (19) and the
process W is independent of Z∗.

For the local asymptotic minimax bound, we let ` : C[0, 1]→ R+ be a subconvex loss function,
such as `(x) = supt |x(t)|, `(x) =

∫
|x(t)|2dt, or `(x) = 1(x : ||x|| ≥ c).
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Theorem 2.4. Suppose the hypotheses of Theorem 2.3 are satisfied, that ` is subconvex, and that
Bn(c) is as in (17). Then

lim
c→∞

lim
n→∞

inf
Ĝ(·)n

sup
fn∈Bn(c)

Efn`(
√
n(Ĝ(·)n −Gn)) ≥ E`(Z∗), (20)

where Z∗ is the mean zero Gaussian process with covariance K∗(s, t) given by (19).

The infimum over estimators Ĝ(·)n in (20) is taken over the class of “generalized procedures”
as in [14], page 235. The proofs of Theorems 2.1 to 2.4 in the Appendix detail the modifications
required for the application of the methods of [1] to the case at hand.

2.2 Main Results

We now specify our model f for the nested case-control sampling of m − 1 controls for the failure
in each group. For any integer k, let [k] = {1, . . . , k}, and for any set S let Pk(S) be the collection
of all subsets of S of size k. Groups of individuals of size η ≥ m are observed up to the time of the
first failure, at which point covariates are collected on a simple random sample of m− 1 non-failed
individuals, and the failure.

An observation X = (η, i, r, t, zr) consists of the group size η, the identity i ∈ [η] of the failed
individual, the group r ⊂ [η] of the m individuals whose covariates are collected, the time t of the
failure, and the covariates zr = {zj, j ∈ r}. In particular, X takes values in the space

X =
⋃
η≥m

{
η × [η]× Pm([η])× R+ × Rm

}
which we endow with the σ-finite product measure

σ = (counting measure)× (counting measure)× (counting measure)× ν+ × νm.

To begin the specification of the density f of the observations, corresponding to the baseline
survival density g on R+ are the baseline survival and hazard functions, for t ≥ 0, given by,
respectively

G(t) =

∫ ∞
t

g(u)du and λ(t) =

{
g(t)G

−1
(t) for G(t) > 0

0 otherwise.

Under the assumed standard exponential relative risk form, the hazard function λ(t; z) for an
individual with covariate value z is the baseline hazard scaled by the factor exp(θz), that is, λ(t; z) =
exp(θz)λ(t), resulting in survival and density functions, respectively, of

Gθ(t; z) = G
eθz

(t) and gθ(t; z) =

{
eθzg(t)G

eθz−1
(t) for G(t) > 0

0 otherwise;
(21)

we note g0(t; z) = gθ(t; 0) = g(t). As the marginal covariate density is h, the survival function
Gθ(t; z) averaged over individuals with covariate density h(z) results in the (mixture) survival
function

Gθ(t) =

∫
Gθ(t; z)h(z)dz (22)
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for individuals whose covariates are not observed.
The group size η may vary from strata to strata, and we assume it to be random with distribution,

say, %. At the time t of the failure of individual i, a simple random sample of size m − 1 is taken
from the non-failures to serve as controls. Hence, when the group size is η, and the identity of the
failure i, the probability that the set r ⊂ [η] is selected is given by

Kη,m =

(
η − 1

m− 1

)−1

for any set r of size m containing i. We assume that the individuals in [η] are independent, and
therefore the density of the sampled covariates zr is the product

h(zr) =
∏
j∈r

h(zj).

Putting all the factors together, the density for X = (η, i, r, t, zr) is given by

f(X; θ, g, h) = Kη,me
θzig(t)G(t)

∑
j∈r e

θzj−1Gθ(t)
η−mh(zr)%(η) (23)

= Kη,mg(t; zi)[
∏

j∈r\{i}

G(t; zj)]Gθ(t)
η−mh(zr)%(η).

For the sake of clarify or brevity, the density may be written with either its parameters or its
variables suppressed, that is, as f(η, i, r, t, zr) or f(θ, g, h), respectively. At the null, (23) reduces to

f(X; θ0, g, h) = Kη,mg(t)G(t)η−1h(zr)%(η), (24)

which, in agreement with the notation introduced in Section 2.1, may appear in the abbreviated
form f0. We may take the distribution % of η as known when proving Theorem 2.5 since the MPLE
is computed without knowledge of % and already achieves the bound (26) in the limit.

We are now ready to state our main result regarding the estimation of the parametric component
of the model.

Theorem 2.5. Suppose that η ≥ 2 almost surely, E[η5] < ∞, and at least one of the following
conditions is satisfied:

i. Positivity: The parameter space Θ = [0,∞), the covariates Z take on nonnegative values, and
η ≥ m almost surely.

ii. Boundedness: The covariates Z are bounded and η ≥ m almost surely.

iii. Cohort size: 1 ≤ m ≤ η − 4 almost surely.

Then Theorems 2.1 and 2.2 obtain for the nested case control model given in (23) with effective
information

I%∗ (θ0) = Var(Z)

(
1− 1

m

)
+mVar(Z)

(
2Var

(
1

η

)
+

[
E

(
1

η

)]2
)
. (25)
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In particular, under any of the above three scenarios, if %n is a sequence of distributions such that
ηn →p ∞ when ηn has distribution %n, then

I∗(θ0) = lim
n→∞

I%n∗ (θ0) = Var(Z)

(
m− 1

m

)
, (26)

and hence the Cox MPLE is efficient for the limiting nested case-control model.

The situation where there is full cohort information is covered by the special case P (η = m) = 1,
for which (25) reduces to the lower bound Var(Z), recovering the result of [1] for the case of no
censoring. The positivity condition is the one assumed in [4] when considering the Cox model. That
one of the three conditions above is satisfied is used in the proof of Lemma 7.8, and that η ≥ 2 in
Lemma 7.12.

Next, we consider lower bounds for the estimation of the non-parametric component of the
model. It is shown in [9] that the Breslow estimator of the baseline survival is asymptotically
normal with covariance function

ω(s, t) = G(t)G(s)

(∫ s∧t

0

dG

E[ηG(u)η+1]
+ [E(Z)]2

(
logG(t) logG(s)

)
[I∗(θ0)]−1

)
(27)

where I∗(θ0) is given in (26).

Theorem 2.6. Let the hypotheses of Theorem 2.5 be satisfied. Then on any interval [0, T0] for
which G(T0) > 0, Theorems 2.3 and 2.4 obtain, with

K∗(s, t) = G(t)G(s)

(∫ s∧t

0

dG

E[ηG(u)η+1]
+ [E(Z)]2

(
logG(t) logG(s)

)
[I%∗ (θ0)]−1

)
. (28)

By (26) and (27), we see that the Breslow estimator becomes asymptotically efficient as the cohort
size increases, under the nested case control model considered.

Theorem 2.5 follows from Theorems 2.1 and 2.2. The application of these theorems is a con-
sequence of Theorem 4.1, which provides the effective information I%∗ (θ0), and the verification of
Assumptions 2.1, 2.2 and 2.3. Lemma 8.1 shows that Assumption 2.1 is satisfied with A and B
given by (77). The verification of Assumption 2.2 is somewhat involved. The relevant quantities,
A,B, α̂, β̂ and ρ0, are given in (30), (31), Lemma 3.2, Lemma 3.4, and (29) respectively. The re-
mainder of the verification of Assumption 2.2, that is, the convergence to zero in (12), is shown in
Lemma 3.1. Assumption 2.3, following in a fairly straightforward manner from (77), is proved in
Lemma 8.2.

Theorem 2.6 follows similarly from Theorems 2.3 and 2.4. In addition to Assumptions 2.1, 2.2
and 2.3, the application of these theorems follow from Theorem 4.2, which verifies the covariance
lower bound (28), Lemma 5.2, from which Assumption 2.4 on [0, T0] follows easily, and (77), which
shows that A is of the form required by Theorem 2.3. Regarding the restriction of the result to
[0, T0], see Example 4 in [1], page 450 in particular, and the proof of Lemma 2 in [17].

3 Operators A and B: Properties

The following lemma provides the parametric score ρ0 and the operators A and B required by
Assumption 2.2 and needed for the computation of the effective information I∗ in (15). Sums over
r denote a sum over all r ⊂ [η] of size m, and sums over η, i, r is short for the sum over all η ∈ Z+,
i ∈ [η] and r ⊂ [η] of size m with r 3 i.

11



Lemma 3.1. Assumption 2.2 is satisfied for the nested case control model (23) with

ρ0 =
1

2

[
zi + logG(t)

∑
j∈r

(zj − EZ) + ηEZ logG(t)

]
f

1/2
0 , (29)

Aα =

(
g−1/2(t)α(t) +

(η − 1)
∫∞
t
g1/2αdν

G(t)

)
f

1/2
0 , (30)

and

Bβ =

(∑
j∈r

h−1/2(zj)β(zj)

)
f

1/2
0 . (31)

Lemma 3.1 is proved in Section 7.

3.1 A Operator: Properties

Regarding the definition and calculation of adjoint operators such as A∗ in the following lemma,
the reader is referred to [13]. The proof of the following lemma appears in Section 5.

Lemma 3.2. Let ρ0 and A be given by (29) and (30), respectively. Then the function

α̂ =
EZ

2

[
1 + logG(t)

]
g1/2(t)

is the solution to the normal equation A∗Aα = A∗ρ0, and the projection of ρ0 onto the range of A
is given by

Aα̂ =
EZ

2
[1 + η logG(t)]f

1/2
0 . (32)

3.2 B Operator: Properties

Let r ⊂ [η] of size m be fixed. For s ⊂ r let zs = {zj : j ∈ s} and z¬s = {zj : j ∈ r \ s}, and
denote integration over zs and z¬s with respect to the measures ν |s| and νm−|s| by dzs and dz¬s,
respectively. When s = {j}, we identify that jth variable zj with z. Integration with respect to ν+

is often indicated by dt, but may also be indicated by other notations such as du, or suppressed,
when clear from context.

Lemma 3.3. The adjoint B∗ : L2(σ)→ L2(ν) of the operator B in (31) is given by

B∗µ = h−1/2(z)
∑

η,i,r,j∈r

∫
z¬j

∫ ∞
0

f
1/2
0 µdt dz¬j. (33)

Proof: As B =
∑

j∈r Bj with

Bjβ = h−1/2(zj)f
1/2
0 β(zj) for β ∈ L2(ν),

12



by linearity one need only sum the adjoints B∗j of Bj over j ∈ r to obtain B∗. For µ ∈ L2(σ), the
calculation

〈Bjβ, µ〉σ =

∫
X
Bjβµdσ

=
∑
η,i,r

∫
zr

∫ ∞
0

h−1/2(zj)f
1/2
0 β(zj)µdtdzr

=

∫
z

β(z)

(
h−1/2(z)

∑
η,i,r

∫
z¬j

∫ ∞
0

f
1/2
0 µdtdz¬j

)
dz

= 〈β,B∗jµ〉ν

provides the desired conclusion. �
The proof of the following lemma appears in Section 6.

Lemma 3.4. The function

β̂ =
1

2
h1/2(z)E

[
η −m
mη

]
(z − EZ) (34)

is the solution to the normal equation B∗Bβ = B∗ρ0, and the projection of ρ0 onto the range of B
is given by

Bβ̂ =
1

2

(
E

[
η −m
mη

]∑
j∈r

(zj − EZ)

)
f

1/2
0 . (35)

4 Lower Bound Calculations

We begin the computation of the information bound by showing that the two operators A and B
have orthogonal ranges.

Lemma 4.1. Let A and B be the operators given by (30) and (31) respectively. Then

B∗A = 0 and A∗B = 0.

Proof: Since (A∗B)∗ = B∗A it suffices to prove only the first claim. By (30) and (33),

B∗Aα = B∗

(
g−1/2(t)α(t) +

(η − 1)
∫∞
t
g1/2α

G(t)

)
f

1/2
0

= h−1/2(z)
∑

η,i,r,j∈r

∫
z¬j

∫ ∞
0

(
g−1/2(t)α(t) +

(η − 1)
∫∞
t
g1/2α

G(t)

)
f0dtdz¬j

= h−1/2(z)
∑
η

Kη,m%(η)

×

[ ∑
i,r,j∈r

∫
z¬j

h(zr)

∫ ∞
0

(
g−1/2(t)α(t) +

(η − 1)
∫∞
t
g1/2α

G(t)

)
g(t)G

η−1
(t)dtdz¬j

]
.

13



Integrating the inner integral by parts,∫ ∞
0

(
g−1/2(t)α(t) + (η − 1)

∫∞
t
g1/2α

G(t)

)
g(t)G

η−1
(t)dt

=

∫ ∞
0

(
g1/2(t)G

η−1
(t)α(t) + (η − 1)g(t)G

η−2
(t)

∫ ∞
t

g1/2α

)
dt

=

∫ ∞
0

g1/2(t)G
η−1

(t)α(t)dt−
∫ ∞

0

(G
η−1

(t))′
(∫ ∞

t

g1/2α

)
dt

=

∫ ∞
0

g1/2(t)G
η−1

(t)α(t)dt−
[
G
η−1

(t)

∫ ∞
t

g1/2α

]∞
0

−
∫ ∞

0

g1/2(t)G
η−1

(t)α(t)dt

=

∫ ∞
0

g1/2α

which equals zero by (5). �
The perpendicularity relation which holds between A and B allows for the application of the

following lemma which simplifies the calculation of the information bound.

Lemma 4.2. Let K be given by (13). Then under the perpendicularity relations provided by Lemma
4.1, the function

δ̂ = Aα̂ +Bβ̂ minimizes ||ρ0 − δ||σ over δ ∈ K,

where α̂ and β̂ are the solutions to the normal equations A∗Aα = A∗ρ0 and B∗Bβ = B∗ρ0, respec-
tively. Consequently, the effective information (15) is given by

I∗(θ0) = 4||ρ0 − Aα̂−Bβ̂||2σ. (36)

Proof: Since A∗B = 0 we have A∗ρ0 = A∗Aα̂ = A∗δ̂ and similarly B∗ρ0 = B∗Bβ̂ = B∗δ̂. Therefore

(A+B)∗ρ0 = (A+B)∗δ̂, or (A+B)∗
(
ρ0 − δ̂

)
= 0. Hence we have

ρ0 − δ̂ ⊥ K and δ̂ ∈ K,

showing δ̂ is the claimed minimizer. �
We pause to record a simple calculation which will be used frequently in what follows.

Lemma 4.3. Let s(t) be any density on R+ and S(t) the corresponding survival function. Then for
all integers η and k satisfying η ≥ k, and j = 1, 2, . . .,∫ ∞

0

s(t)S(t)η−k[logS(t)]jdt = (−1)j(η − k + 1)−(j+1)j!.

In particular, as logS(t) ≤ 0 for all t ∈ R+, if k and j are fixed then for any constant C > 1 there
exists ηC such that ∫ ∞

0

s(t)S(t)η−k| logS(t)|jdt ≤ Cj!

ηj+1
for all η ≥ ηC.
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Proof: Rewriting the integral and then applying the change of variables u = S(t)η−k+1 followed by
u = e−x we have∫ ∞

0

s(t)S(t)η−k[logS(t)]jdt = (η − k + 1)−j
∫ ∞

0

s(t)S(t)η−k[logS(t)η−k+1]jdt

= (η − k + 1)−(j+1)

∫ 1

0

[log u]jdu

= (−1)j(η − k + 1)−(j+1)Γ(j + 1)

= (−1)j(η − k + 1)−(j+1)j!.

Taking absolute value and noting that (η − k + 1)/η → 1 suffices to prove the final claim. �

Theorem 4.1. The effective information for the nested case control model (23) is given by (25).

Proof: Substituting (29), (32), and (35) into (36) we obtain

I%∗ (θ0) =

∣∣∣∣∣
∣∣∣∣∣
[

(zi − EZ) + logG(t)
∑
j∈r

(zj − EZ)− E
[
η −m
ηm

]∑
j∈r

(zj − EZ)

]
f

1/2
0

∣∣∣∣∣
∣∣∣∣∣
2

σ

=

∣∣∣∣∣
∣∣∣∣∣
[

(zi − EZ) +
∑
j∈r

(zj − EZ)

(
logG(t)− E

[
η −m
ηm

])]
f

1/2
0

∣∣∣∣∣
∣∣∣∣∣
2

σ

=

∣∣∣∣∣∣∣∣[(1 + logG(t)− E
[
η −m
ηm

])
(zi − EZ)

+
∑

j∈r\{i}

(zj − EZ)

(
logG(t)− E

[
η −m
ηm

]) f 1/2
0

∣∣∣∣∣∣
∣∣∣∣∣∣
2

σ

,

which, by the independence of Zi and {Zj, j ∈ r \ {i}}, equals

∣∣∣∣∣∣∣∣[(1 + logG(t)− E
[
η −m
ηm

])
(zi − EZ)

]
f

1/2
0

∣∣∣∣∣∣∣∣2
σ

+

∣∣∣∣∣∣
∣∣∣∣∣∣
 ∑
j∈r\{i}

(zj − EZ)

(
logG(t)− E

[
η −m
ηm

]) f 1/2
0

∣∣∣∣∣∣
∣∣∣∣∣∣
2

σ

.
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Squaring and integrating against the null density (24) we obtain

∫
X

(1 + logG(t)− E
[
η −m
ηm

])2

(zi − EZ)2 +
∑

j∈r\{i}

(
logG(t)− E

[
η −m
ηm

])2

(zj − EZ)2

 f0dσ

= Var(Z)
∑
η

Kη,m%(η)

×

[∑
i,r

∫ ∞
0

[(
1 + logG(t)− E

[
η −m
ηm

])2

+ (m− 1)

(
logG(t)− E

[
η −m
ηm

])2
]
g(t)G

η−1
(t)dt

]
= Var(Z)

∑
η

%(η)

×

[∫ ∞
0

[(
1 + logG(t)− E

[
η −m
ηm

])2

+ (m− 1)

(
logG(t)− E

[
η −m
ηm

])2
]
ηg(t)G

η−1
(t)dt

]
= Var(Z)

∑
η

%(η)

×

[∫ ∞
0

[
1 + 2

(
logG(t)− E

[
η −m
ηm

])
+m

(
logG(t)− E

[
η −m
ηm

])2
]
ηg(t)G

η−1
(t)dt

]

= Var(Z)E

[(
1− 2

(
1

η
+ E

[
η −m
ηm

])
+m

(
2

η2
+ 2

1

η
E

[
η −m
ηm

]
+

(
E

[
η −m
ηm

])2
))]

,

by applying Lemma 4.3. Simplifying we obtain

I%∗ (θ0) = Var(Z)

(
1− 1

m

)
+mVar(Z)

(
2Var

(
1

η

)
+

[
E

(
1

η

)]2
)
.

which is (25). �
We now calculate the lower bound for the estimation of the baseline survival.

Theorem 4.2. The covariance function K∗(s, t) in (19) specializes to (28) for the nested case-
control model (23).

Proof: Lemma 5.2 shows that A∗A is given by (42) with M0(t) = E[ηG
η
(t)]. Now (6.8) of [1] yields

K(s, t) = G(t)G(s)

∫ s∧t

0

dG

M0(u)G(u)
= G(t)G(s)

∫ s∧t

0

dG

E[ηG(u)η+1]
.

Regarding the integral in (19), using the form α̂ given in Lemma 3.2, we have∫ t

0

α̂g1/2dν =

∫ t

0

EZ

2

[
1 + logG(u)

]
g(u)du

=
EZ

2

∫ 1

G(t)

(1 + log x)dx = −EZ
2
G(t) logG(t).

Substitution into (19) now yields (28).
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5 A Operator

In this section we provide the proof to Lemma 3.2. We begin by calculating the adjoint A∗ : L2(σ)→
L2(ν+) of the operator A given in Lemma 3.1.

Lemma 5.1. For the operator A : L2(ν+)→ L2(σ) given in (30), write

A = A1 + A2

where

A1α = g−1/2f
1/2
0 α and A2α =

(η − 1)
∫∞
t
g1/2α

G(t)
f

1/2
0 . (37)

Then the adjoint of A is given by A∗ = A∗1 + A∗2 where

A∗1µ = g−1/2(t)
∑
η,i,r

∫
zr

f
1/2
0 µdzr and A∗2µ = g1/2(t)

∑
η,i,r

(η − 1)

∫ t

0

∫
zr

f
1/2
0

G(u)
µdzrdu. (38)

Proof: Let α ∈ L2(ν+) and µ ∈ L2(σ). Then

〈A1α, µ〉σ = 〈g−1/2f
1/2
0 α, µ〉σ

=
∑
η,i,r

∫ ∞
0

∫
zr

g−1/2(t)α(t)f
1/2
0 µdzrdt

=

∫ ∞
0

α(t)

(
g−1/2(t)

∑
η,i,r

∫
zr

f
1/2
0 µdzr

)
dt

= 〈α,A∗1µ〉ν+

when A∗1 is as given in (38).
Next, writing A2 as

A2α = L

∫ ∞
t

g1/2α for L = (η − 1)G
−1

(t)f
1/2
0 , (39)

we have

〈A2α, µ〉σ = 〈L
∫ ∞
t

g1/2α, µ〉σ

=
∑
η,i,r

∫ ∞
0

∫
zr

∫ ∞
t

Lg1/2αµdudzrdt

=

∫ ∞
0

α(t)

(
g1/2(t)

∑
η,i,r

∫ t

0

∫
zr

Lµdzrdu

)
dt

= 〈α,A∗2µ〉ν+

when

A∗2µ = g1/2(t)
∑
η,i,r

∫ t

0

∫
zr

Lµdzrdu.
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Substituting L from (39) now yields the stated conclusion. �
To help express the solution to the normal equations in A, for α ∈ L2(ν+) define the operator

R as in [1] by the first equality in

Rα = g−1/2(t)α(t)−
∫∞
t
g1/2α

G(t)
= g−1/2(t)α(t) +

∫ t
0
g1/2α

G(t)
; (40)

the second equality follows from (5). Also, set

M0(t) = E
[
ηG

η
(t)
]

and M1(t) = E[Z]E
[
ηG(t)η

]
. (41)

Lemma 5.2. Let the operator A be given by (30). Then, for α ∈ L2(ν+),

A∗Aα =

[
Rα(t)

M0(t)

G(t)
−
∫ t

0

Rα
M0

G(u)

dG

G(u)

]
g1/2, (42)

with inverse given by

(A∗A)−1α =

[
Rα(t)

G(t)

M0(t)
−
∫ t

0

Rα
G(u)

M0(u)

dG

G(u)

]
g1/2. (43)

Proof: Using the decompositions A = A1 + A2 and A∗ = A∗1 + A∗2 given in Lemma 5.1, write

Aα = µ1 + µ2 where µi = Aiα i = 1, 2,

so that
A∗Aα = (A∗1 + A∗2)(A1 + A2)α = A∗1µ1 + A∗1µ2 + A∗2µ1 + A∗2µ2.

Consider A∗1µ1. From (37) and (38),

A∗1µ1 = g−1/2(t)
∑
η,i,r

∫
zr

f0g
−1/2αdzr

= g−1(t)α(t)
∑
η,i,r

∫
zr

f0dzr

= g−1(t)α(t)
∑
η,i,r

%(η)

[∫
zr

Kη,mg(t)G
η−1

(t)h(zr)dzr

]

= α(t)
∑
η

%(η)

[
G
η−1

(t)Kη,m

∑
i,r

∫
zr

h(zr)dzr

]

= α(t)
∑
η

%(η)

[
G
η−1

(t)Kη,m

∑
i,r

1

]
= α(t)E

[
ηG

η−1
(t)
]
.
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In a similar fashion,

A∗1µ2 =
∑
η

(η − 1)g−1/2(t)
∑
i,r

∫
zr

f0

∫∞
t
g1/2α

G(t)
dzr

=
∑
η

%(η)

[
(η − 1)g−1/2(t)Kη,m

∑
i,r

∫
zr

g(t)G
η−2

(t)

∫ ∞
t

g1/2αh(zr)dzr

]

= E

[
(η − 1)g1/2(t)G

η−2
(t)

∫ ∞
t

g1/2αKη,m

∑
i,r

∫
zr

h(zr)dzr

]

= E

[
η(η − 1)g1/2(t)G

η−2
(t)

∫ ∞
t

g1/2α

]
= E

[
−η(η − 1)g1/2(t)G

η−2
(t)

∫ t

0

g1/2α

]
,

where the final equality follows from (5).
Now moving on to the terms involving A∗2,

A∗2µ1 =
∑
η

(η − 1)g1/2(t)
∑
i,r

∫ t

0

∫
zr

f0

G
g−1/2αdzrdu

=
∑
η

%(η)

[
(η − 1)g1/2(t)

∫ t

0

g1/2G
η−2

αduKη,m

∑
i,r

∫
zr

h(zr)dzr

]

= E

[
η(η − 1)g1/2(t)

∫ t

0

g1/2G
η−2

αdu

]
,

and lastly,

A∗2µ2 =
∑
η

(η − 1)2g1/2(t)
∑
i,r

∫ t

0

∫
zr

f0

G(u)2

∫ ∞
u

g1/2αdzrdu

=
∑
η

%(η)(η − 1)2g1/2(t)

∫ t

0

g(u)G
η−3

(u)

∫ ∞
u

g1/2αKη,m

∑
i,r

∫
zr

h(zr)dzr

= E

[
−η(η − 1)2g1/2(t)

∫ t

0

g(u)G
η−3

(u)

∫ u

0

g1/2(v)α(v)dvdu

]
= E

[
−η(η − 1)2g1/2(t)

∫ t

0

g1/2(v)α(v)

∫ t

v

g(u)G
η−3

(u)dudv

]
= E

[
−η(η − 1)2

η − 2
g1/2(t)

∫ t

0

g1/2(v)α(v)[G
η−2

(v)−Gη−2
(t)]

]
= E

[
η(η − 1)2

η − 2
g1/2(t)

(
G
η−2

(t)

∫ t

0

g1/2α−
∫ t

0

g1/2G
η−2

α

)]
.
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Combining terms, we arrive at

A∗µ = E

[
ηg1/2

(
g−1/2G

η−1
α− (η − 1)G

η−2
∫ t

0

g1/2α + (η − 1)

∫ t

0

g1/2G
η−2

α

+
(η − 1)2

η − 2

(
G
η−2
∫ t

0

g1/2α−
∫ t

0

g1/2G
η−2

α

))]
= E

[
ηg1/2

(
g−1/2G

η−1
α− (η − 1)

(
1− η − 1

η − 2

)(
G
η−2
∫ t

0

g1/2α−
∫ t

0

g1/2G
η−2

α

))]
= g1/2E

[
g−1/2αηG

η−1
+

(
η − 1

η − 2

)(
ηG

η−2
∫ t

0

g1/2α−
∫ t

0

g1/2αηG
η−2
)]

.

Recalling Rα from (40), we may write

A∗µ = g1/2E

[
g−1/2α

ηG
η

G
+

(
η − 1

η − 2

)(
ηG

η

G
2

∫ t

0

g1/2α−
∫ t

0

g−1/2α
ηG

η

G

dG

G

)]

= g1/2E

[
Rα

ηG
η

G
+

1

η − 2

ηG
η

G
2

∫ t

0

g1/2α−
∫ t

0

g−1/2α
ηG

η

G

dG

G
− 1

η − 2

∫ t

0

g−1/2α
ηG

η

G

dG

G

]
.

Rewriting the third term using∫ t

0

g−1/2(u)α(u)
ηG

η
(u)

G(u)

dG

G
=

∫ t

0

(
Rα(u) +

∫∞
u
g1/2α

G

)
ηG

η
(u)

G(u)

dG

G
,

we find

A∗µ = g1/2E

[
Rα(t)

ηG
η
(t)

G(t)
−
∫ t

0

Rα(u)
ηG

η
(u)

G(u)

dG

G
(44)

+
1

η − 2

(
ηG

η

G
2

∫ t

0

g1/2α−
∫ t

0

g−1/2α
ηG

η

G

dG

G
− (η − 2)

∫ t

0

(∫ ∞
u

g1/2α

)
ηG

η

G
2

dG

G

)]
.

But now we see that the term on second line of (44) vanishes, since

(η − 2)

∫ t

0

(∫ ∞
u

g1/2α

)
ηG

η

G
2

dG

G
= −η

∫ t

0

(∫ ∞
u

g1/2α

)
dG

η−2

= −η
(∫ ∞

u

g1/2α

)
G
η−2|t0 + η

∫ t

0

G
η−2

g1/2α

= −ηGη−2
∫ ∞
t

g1/2α +

∫ t

0

g1/2αηG
η−2

= ηG
η−2
∫ t

0

g1/2α−
∫ t

0

g−1/2αηG
η−2

dG

=
ηG

η

G
2

∫ t

0

g1/2α−
∫ t

0

g−1/2α
ηG

η

G

dG

G
.

Hence, A∗Aα is given by the first line of (44), and taking the expectation inside the integral
completes the proof of (42).
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Lastly as A∗A is of the form (42), the form (43) of the inverse follows as in [1], page 449. �
We are now in position to prove Lemma 3.2, giving the solution α̂ to the normal equations

A∗Aα = A∗ρ0, and the projection of ρ0 onto the range of A.
Proof of Lemma 3.2 With ρ0 as in (29), we first claim

A∗ρ0 =
EZ

2
g1/2(t)E

[
η

η − 1

(
ηG(t)η−1 − 1

)]
. (45)

From (38) we obtain directly that

A∗1ρ0 =
EZ

2
g1/2(t)E

[
η
(
1 + η logG(t)

)
G
η−1

(t)
]
,

and

A∗2ρ0 =
EZ

2
g1/2(t)E

[
η

∫ t

0

(
(
1 + η logG(u)

)
(η − 1)g(u)G

η−2
(u))du

]
=

EZ

2
g1/2(t)E

[
η

(
1

η − 1
G
η−1

(u)− η logG(u)G
η−1

(u)

)t
0

]

=
EZ

2
g1/2(t)E

[
η

(
− 1

η − 1
+

1

η − 1
G
η−1

(t)− η logG(t)G
η−1

(t)

)]
,

and adding these two contributions yields the result (45).
From (40) and (45)

R(A∗ρ0) =
EZ

2
E

[
η

η − 1

(
ηG(t)η−1 − 1− 1

G(t)

∫ ∞
t

[
ηG

η−1 − 1
]
dG

)]
=

EZ

2
E

[
η

η − 1

(
ηG(t)η−1 − 1 +

1

G(t)

(
−Gη

(t) +G(t)
))]

=
EZ

2
E
[
ηG(t)η−1

]
=

1

2

M1(t)

G(t)
,

where M1(t) = E[Z]E
[
ηG(t)η

]
, in accordance with (41).

Hence, by (43), the solution α̂ to the normal equations A∗Aα = A∗ρ0 is given by

α̂ = (A∗A)−1A∗ρ0(t) =
1

2

[
M1(t)

M0(t)
−
∫ t

0

M1(s)

M0(s)

dG

G

]
g1/2(t)

=
1

2

[
E(Z)−

∫ t

0

E(Z)
dG

G(s)

]
g1/2(t) =

E(Z)

2

[
1 + logG(t)

]
g1/2(t),

where we have used M1(t)/M0(t) = EZ. To calculate the projection Aα̂ of ρ0 onto the range of A,
note ∫ ∞

t

α̂(s)g1/2(s)ds =
E(Z)

2

∫ ∞
t

(1 + logG(s))dG(s) =
E(Z)

2
G(t) logG(t),

and hence

Aα̂ =

[
g−1/2(t)α̂(t) + (η − 1)

∫∞
t
g1/2α̂

G(t)

]
f

1/2
0 =

E(Z)

2

[
1 + η logG(t)

]
f

1/2
0 .

�
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6 B Operator

In this section we prove Lemma 3.4, providing the solution to the normal equations for the operator
B. Parallel to Section 5, we begin by deriving an expression for B∗B.

Lemma 6.1. Let the operator B be given by (31). Then

B∗Bβ = mβ(z).

Proof: Applying formulas (33), (31) and (24),

B∗Bβ = h−1/2(z)
∑

η,i,r,j∈r

∫
z¬j

∫ ∞
0

f0

(∑
k∈r

h−1/2(zk)β(zk)

)
dtdz¬j

=
∑
η

%(η)Kη,mh
−1/2(z)

∑
i,r,j∈r

∫ ∞
0

g(t)G(t)η−1dt

∫
z¬j

∏
l∈r

h(zl)

(∑
k∈r

h−1/2(zk)β(zk)

)
dz¬j

= h−1/2(z)E

[∫ ∞
0

ηg(t)G(t)η−1dt

] ∫
z¬j

∑
j∈[m]

∏
l∈[m]

h(zl)

∑
k∈[m]

h−1/2(zk)β(zk)

 dz¬j

= h−1/2(z)
∑
j∈[m]

∫
z¬j

∏
l∈[m]

h(zl)

∑
k∈[m]

h−1/2(zk)β(zk)

 dz¬j

= mh−1/2(z)

∫
z¬1

∏
l∈[m]

h(zl)

∑
k∈[m]

h−1/2(zk)β(zk)

 dz¬1,

where the third equality is by symmetry, and the last by recalling that z1 and z are identified in
the integral over z¬1. Hence

B∗Bβ = mh1/2(z)

∫
z¬1

m∏
l=2

h(zl)

(
m∑
k=1

h−1/2(zk)β(zk)

)
dz¬1

= mh1/2(z)

∫
z¬1

m∏
l=2

h(zl)

(
h−1/2(z)β(z) +

m∑
k=2

h−1/2(zk)β(zk)

)
dz¬1

= mβ(z)

∫
z¬1

m∏
l=2

h(zl)dz¬1 +mh1/2(z)

∫
z¬1

m∏
l=2

h(zl)

(
m∑
k=2

h−1/2(zk)β(zk)

)
dz¬1.

As h(zl) is a density, the first term integrates to mβ(z). For the second term,∫
z¬1

m∏
l=2

h(zl)
m∑
k=2

h−1/2(zk)β(zk)dz¬1 =
m∑
k=2

∫
z¬1

 m∏
l 6∈{1,k}

h(zl)

h1/2(zk)β(zk)dz¬1

=
m∑
k=2

∫
z¬1,k

 m∏
l 6∈{1,k}

h(zl)

 dz¬1,k

∫
zk

h1/2(zk)β(zk)dzk

=
m∑
k=2

∫
zk

h1/2(zk)β(zk)dzk

= 0
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by (9), showing B∗Bβ = mβ(z), and the lemma. �
Proof of Lemma 3.4 From (33) and (29), arguing as in the proof of Lemma 6.1 and applying

Lemma 4.3 we obtain

B∗ρ0 =
1

2

∑
η,i,r,j∈r

∫
z¬j

∫ ∞
0

f0h
−1/2(zj)

(
zi + logG(t)

∑
k∈r

(zk − EZ) + η logG(t)EZ

)
dtdz¬j

=
1

2

∑
η

%(η)×∑
j∈[m]

∫
z¬j

∫ ∞
0

ηg(t)G
η−1

(t)h−1/2(zj)h(zr)

z1 + logG(t)
∑
k∈[m]

(zk − EZ) + η logG(t)EZ

 dtdz¬j


=

1

2

∑
j∈[m]

∫
z¬j

h−1/2(zj)h(zr)E

z1 −
1

η

∑
k∈[m]

(zk − EZ)− EZ

 dz¬j
=

1

2

∑
j∈[m]

∫
z¬j

h1/2(zj)
∏
k 6=j

h(zk)E

[(
η − 1

η

)
(z1 − EZ)− 1

η

m∑
k=2

(zk − EZ)

]
dz¬j.

For j = 1 we obtain (1/2)h1/2(z)E[(η−1)/η](z−EZ) from the first term in parenthesis, while each
term in the second sum integrates to zero. For each of the m− 1 terms where j 6= 1 the first term
in parenthesis integrates to zero, but when k = j one term in the sum in the second term makes a
nonzero contribution of −(1/2)h1/2(z)(z − EZ)E[1/η], for a total of

B∗ρ0 =
1

2
h1/2(z)(z − EZ)E

[
η − 1

η
− m− 1

η

]
=

1

2
h1/2(z)(z − EZ)E

[
η −m
η

]
.

From Lemma 6.1 we clearly have,

(B∗B)−1β =
1

m
β hence β̂ = (B∗B)−1B∗ρ0 =

1

2
h1/2(z)(z − EZ)E

[
η −m
ηm

]
,

proving (34), and applying B as in (31) to β̂ now yields (35). �

7 Operators and Parametric Score: Verification

The goal of the present section is to prove Lemma 3.1, verifying Assumption 2.2.
Proof of Lemma 3.1. The operators A and B are clearly linear. To see that their ranges are
contained in L2(ν+) and L2(ν), respectively, we show that they are bounded. Write A = A1 + A2

where A1 and A2 are given in (37). The operator A1 is bounded, as

||A1α||2σ =

∫
X

(g−1/2f
1/2
0 α)2dσ =

∫
X
Kη,mG

η−1
(t)α2(t)h(zr)%(η)dσ ≤ E[η]||α||2ν+ .

Regarding A2, first note that∣∣∣∣∫ ∞
t

g1/2αdu

∣∣∣∣2 ≤ ∫ ∞
t

gdu

∫ ∞
t

α2du ≤ ||α||2ν+ ,
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and hence

||A2α||2σ ≤
∫
X
Kη,m(η − 1)2g(t)G(t)η−3||α||2νh(zr)%(η)dσ ≤ E

[
η(η − 1)2

η − 2

]
||α||2ν+ ,

showing A2, and therefore A, is bounded. Next, for any j ∈ r,∫
X

(
h−1/2(zj)β(zj)f

1/2
0

)2

dσ =

∫
X
Kη,mβ

2(zj)g(t)G(t)η−1h(z¬j)%(η)dσ = ||β||2ν .

Hence B is a finite sum of bounded operators, and is therefore bounded.
To conclude the proof of the lemma we need to show that for any α ∈ A and β ∈ B the term

(12) tends to zero for an arbitrary

({θn}n≥0, {gn}n≥0, {hn}n≥0) ∈ Θ(τ)× C1(g, α)× C2(h, β).

By the triangle inequality (12) is upper bounded by the sum of the three terms

||
√
n
(
f 1/2(θn, gn, hn)− f 1/2(θ0, gn, hn)

)
− τρ0||σ (46)

+ ||
√
n
(
f 1/2(θ0, gn, hn)− f 1/2(θ0, g, hn)

)
− Aα||σ (47)

+ ||
√
n
(
f 1/2(θ0, g, hn)− f 1/2(θ0, g, h)

)
−Bβ||σ. (48)

We show these three terms tend to zero in Lemmas 7.13, 7.6, and 7.5, respectively. �

7.1 Preliminaries

We first collect here some results, some of which are also used in later sections. We recall that

h(zr) =
∏
j∈r

h(zj) for any h ∈ H.

When the measure space on which functions are defined is clear from context, we will use || · ||q to
denote their Lq norms on that space.

Lemma 7.1. Let {hn}n≥0 ∈ C(h, β) for some β ∈ B. Then the sequence of L2(ν) norms ||βn||2, n =
1, 2, . . . of

βn =
√
n(h1/2

n − h1/2) (49)

is bounded. In addition, in L2(νm),

‖
√
n
(
h1/2
n (zr)− h1/2(zr)

)
− h1/2(zr)

(
m∑
j=1

h−1/2(zj)β(zj)

)
‖νm→ 0 as n→∞, (50)

and in particular ‖ h1/2
n (zr)− h1/2(zr) ‖νm→ 0 as n→∞.

24



Proof: Denote the L2(ν) norm by || · ||ν . The condition that {hn}n≥0 ∈ C(h, β) implies
limn→∞ ||βn − β||ν → 0; as ||βn||ν ≤ ||βn − β||ν + ||β||ν , the sequence ||βn||ν is bounded. Next,

as (49) gives h
1/2
n (z) = h1/2(z) + n−1/2βn(z), we have

√
n
(
h1/2
n (zr)− h1/2(zr)

)
=
√
n

(
h

1/2
n (zr)

h1/2(zr)
− 1

)
h1/2(zr)

=
√
n

(∏
j∈r

h
1/2
n (zj)

h1/2(zj)
− 1

)
h1/2(zr)

=
√
n

(∏
j∈r

(1 + n−1/2h−1/2(zj)βn(zj))− 1

)
h1/2(zr)

=

 ∑
s⊂r,|s|>0

n(−|s|+1)/2
∏
j∈s

h−1/2(zj)βn(zj)

h1/2(zr)

= h1/2(zr)
m∑
j=1

h−1/2(zj)βn(zj) +

 ∑
s⊂r,|s|>1

n(−|s|+1)/2
∏
j∈s

h−1/2(zj)βn(zj)

h1/2(zr)

as the subset s = ∅ gives the product 1, which cancels, and the subsets s of size 1 yield the first
term above after the last equality. Now subtracting h1/2(zr)

∑m
j=1 h

−1/2(zj)β(zj) yields

h1/2(zr)
m∑
j=1

h−1/2(zj) (βn(zj)− β(zj)) +

 ∑
s⊂r,|s|>1

n(−|s|+1)/2
∏
j∈s

h−1/2(zj)βn(zj)

h1/2(zr).

Squaring the first term and integrating, we have∫
zr

h(zr)

(
m∑
j=1

h−1/2(zj)(βn(zj)− β(zj))

)2

dzr ≤ m
m∑
j=1

∫
zr

h(zr)h
−1(zj) (βn(zj)− β(zj))

2 dzr

= m2||βn − β||2ν → 0,

as n→∞. For the L2(νm) norm of the second term, again by the Cauchy-Schwarz inequality

∫
zr

 ∑
s⊂r,|s|>1

n(−|s|+1)/2
∏
j∈s

h−1/2(zj)βn(zj)

2

h(zr)dzr

≤ 2m
∫
zr

∑
s⊂r,|s|>1

n−|s|+1
∏
j∈s

h−1(zj)β
2
n(zj)h(zr)dzr

= 2m
m∑
k=2

n−k+1
∑

s⊂r,|s|=k

∫
zr

∏
j∈s

h−1(zj)β
2
n(zj)h(zr)dzr

= 2m
m∑
k=2

n−k+1
∑

s⊂r,|s|=k

||βn||2ν → 0 as n→∞,
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since |s| = k > 1 and ||βn||ν , n = 1, 2, . . . is bounded, completing the proof of (50).
Finally, note that h1/2(zr)

∑m
j=1 h

−1/2(zj)β(zj) is bounded in L2(νm) as∫
zr

(
h1/2(zr)

m∑
j=1

h−1/2(zj)β(zj)

)2

dzr ≤ m||β||2ν ,

and hence ||h1/2
n − h1/2||νm → 0 as n→∞ by (50). �

The following lemma will also be required in Sections 7.3 and 7.4.

Lemma 7.2. Let fn and f be density functions on a measure space. Then

||f 1/2
n − f 1/2||2 → 0 implies ||fn − f ||1 → 0.

Further, for any measurable set S, letting

An(S) = Fn(S)− F (S) where Fn(S) =

∫
S

fn(x) and F (S) =

∫
S

f(x),

we have

A2
n(S) ≤ 2

∫
S

(f 1/2
n (x)− f 1/2(x))2 (Fn(S) + F (S)) , (51)

and

|An(S)| ≤
(

2

∫
S

(
f 1/2
n (x)− f 1/2(x)

))1/2 (
F 1/2
n (S) + F 1/2(S)

)
. (52)

Proof: Note that

fn(x)− f(x) = (f 1/2
n (x)− f 1/2(x))(f 1/2

n (x) + f 1/2(x)). (53)

Taking absolute value, integrating and then using the Cauchy Schwarz inequality followed by

|f 1/2
n (x) + f 1/2(x)|2 ≤ 2(fn(x) + f(x)) (54)

yields

||fn − f ||21 ≤ ||f 1/2
n − f 1/2||22

(∫ ∞
0

|f 1/2
n (x) + f 1/2(x)|2

)
≤ 4||f 1/2

n − f 1/2||22,

yields the first claim.
Next, integrating (53) over S we have

An(S) =

∫
S

(f 1/2
n (x)− f 1/2(x))(f 1/2

n (x) + f 1/2(x)),

so squaring and using the Cauchy Schwarz inequality yields

A2
n(S) ≤

∫
S

(f 1/2
n (x)− f 1/2(x))2

∫
S

(f 1/2
n (x) + f 1/2(x))2.

Now applying (54) gives (51), and taking square root and using
√
x+ y ≤

√
x+
√
y for nonnegative

x, y we obtain (52). �
For a sequence {gn}n≥0 ⊂ G and t ≥ 0 let

αn(t) =
√
n(g1/2

n (t)− g1/2(t)) and An(t) =
√
n(Gn(t)−G(t)). (55)
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Lemma 7.3. Let {gn}n≥0 ∈ C1(g, α) for some α ∈ A. Then the sequence of L2 norms ||αn||2, n =
1, 2, . . . is bounded and ||gn − g||1 → 0 as n→∞. In addition

A2
n(t) ≤ 2

[∫ ∞
t

α2
n(u)du

]
(G(t) +Gn(t)), (56)

|An(t)| ≤
(

2

∫ ∞
t

α2
n(u)du

)1/2

(G
1/2

(t) +G
1/2

n (t)), (57)

|
√
n(G

1/2

n (t)−G1/2
(t))| ≤

(
2

∫ ∞
t

αn(u)2du

)1/2

≤
√

2||αn||2, (58)

and

||Gn −G||∞ → 0. (59)

Proof: That ||αn||2, n = 1, 2, . . . is bounded follows as in Lemma 7.1. The next claim and
inequalities (56) and (57) follow from Lemma 7.2. Now write

√
n(G

1/2

n (t)−G1/2
(t)) =

√
n(Gn(t)−G(t))

G
1/2

n (t) +G
1/2

(t)
=

An(t)

G
1/2

n (t) +G
1/2

(t)
,

so (58) follows from (57), as does (59). �
For any measurable function ϕ : R→ R and a sequence {hn}n≥0 ⊂ H, let

Enϕ(Z) =

∫
ϕ(z)hn(z)dz n = 0, 1, 2, . . . ,

and define Varn(ϕ(Z)) similarly. The following result will be applied in Section 7.4.

Lemma 7.4. Let {hn}n≥0 ∈ C2(h, β) for some β ∈ B. Then, with θξ as in (3), for all θ ∈ (0, θξ)
and a ≥ 0,

sup
n,|θ|≤θ

En|Z|aeθZ <∞.

In particular, for any r ⊂ [η] and i ∈ r the functions zai hn(zr) and zai h(zr) are in L1(νm),

||zai hn(zr)− zai h(zr)||1 → 0 and EnZ
a → EZ. (60)

Proof: For all a ≥ 0 there exists a constant C such that |z|aeθ|z| ≤ C(eθξz + e−θξz) for all z ∈ R.
Hence for all θ satisfying |θ| ≤ θ,

En|Z|aeθZ ≤ En|Z|aeθ|Z| ≤ CEn(eθξZ + e−θξZ) = C(Mhn(θξ) +Mhn(−θξ)) < Cξ, n = 0, 1, . . . ,

by (3), proving the first claim. Furthermore, for any K ∈ R,

En[|Z|a1(|Z| ≥ K)] = En[|Z|a1(eθ|Z| ≥ eθK)] ≤ e−θKEn[|Z|aeθ|Z|1(eθ|Z| ≥ eθK)]

≤ e−θKEn[|Z|aeθ|Z|]
≤ Cξe−θK . (61)
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Now given ε > 0, choosing K such that (61) is less than ε/2, we obtain

||zai hn(zr)− zai h(zr)||1 =

∫
|zi|a |hn(zr)− h(zr)|dzr

=

∫
|zi|<K

|zi|a |hn(zr)− h(zr)|dzr +

∫
|zi|≥K

|zi|a |hn(zr)− h(zr)|dzr

≤ Ka||hn(zr)− h(zr)||1 +

∫
|zi|≥K

|zi|a hn(zr)dzr +

∫
|zi|≥K

|zi|a h(zr)zr

= Ka||hn(zr)− h(zr)||1 +

∫
|z|≥K

|z|a hn(z)dz +

∫
|z|≥K

|z|a h(z)dz

≤ Ka||hn(zr)− h(zr)||1 + ε.

By Lemma 7.1 ||h1/2
n (zr)− h1/2(zr)||2 → 0, and therefore by Lemma 7.2, ||hn(zr)− h(zr)||1 → 0.

Thus, letting n tend to infinity and noting that ε > 0 is arbitrary completes the proof of the first
claim in (60). The second claim now follows since

En[Za] =

∫
zahn(z)dz =

∫
zai hn(zr)dzr →

∫
zai h(zr)dzr =

∫
zah(z)dz = E[Za].

�
In the following three subsections we show the three terms (48), (47) and (46) tend to zero, thus

completing the proof of Lemma 3.1.

7.2 B Operator

The goal of this section is to prove Lemma 7.5, showing that the term (48) tends to zero.

Lemma 7.5. For any β ∈ B and {hn}∞n ∈ C2(h, β), with B given by (31), we have

||
√
n
(
f(θ0, g, hn)1/2 − f 1/2

0

)
−Bβ||σ → 0 as n→∞.

Proof: We have

√
n
(
f(θ0, g, hn)1/2 − f 1/2

0

)
−Bβ

=
√
n
(
h1/2
n (zr)− h1/2(zr)

) (
Kη,mg(t)G(t)η−1%(η)

)1/2 −

(
m∑
j=1

h−1/2(zj)β(zj)

)
f

1/2
0

=

[
√
n
(
h1/2
n (zr)− h1/2(zr)

)
− h1/2(zr)

(
m∑
j=1

h−1/2(zj)β(zj)

)](
Kη,mg(t)G(t)η−1%(η)

)1/2
.

Squaring the above term, summing over i, r then integrating over t, summing over η and lastly
integrating over zr, we obtain∥∥∥∥∥√n (h1/2

n (zr)− h1/2(zr)
)
− h1/2(zr)

(
m∑
j=1

h−1/2(zj)β(zj)

)∥∥∥∥∥
νm

,

which tends to zero by Lemma 7.1. �
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7.3 A Operator

The goal of this section is to prove Lemma 7.6, showing that the term (47) tends to zero.

Lemma 7.6. For any α ∈ A and β ∈ B and {gn}n≥0 ∈ C1(g, α) and {hn}∞n ∈ C2(h, β), with A as
in (30),

||
√
n
(
f(θ0, gn, hn)1/2 − f(θ0, g, hn)1/2

)
− Aα||σ → 0.

Proof: Adding and subtracting terms we may write

√
n(f(θ0, gn, hn)1/2 − f(θ0, g, hn)1/2)− Aα (62)

= (Kη,mhn(zr)%(η))1/2
√
n(gn(t)1/2 − g1/2(t))

(
Gn(t)(η−1)/2 −G(t)(η−1)/2

)
+ (Kη,m%(η))1/2 (h1/2

n (zr)− h1/2(zr)
)√

n(gn(t)1/2 − g1/2(t))G(t)(η−1)/2

+ (Kη,mh(zr)%(η))1/2
√
n(gn(t)1/2 − g1/2(t))G(t)(η−1)/2 − g−1/2αf

1/2
0

+ (Kη,m%(η))1/2√n(h1/2
n (zr)− h1/2(zr))g(t)1/2

(
Gn(t)(η−1)/2 −G(t)(η−1)/2

)
+ (Kη,mh(zr)%(η))1/2g(t)1/2

√
n
(
Gn(t)(η−1)/2 −G(t)(η−1)/2

)
−

(η − 1)
∫∞
t
g1/2α

G(t)
f

1/2
0 .

We show that each of the five expressions above tend to zero in L2(σ). Calculating the L2(σ) norm
of the first term, we obtain∫
X
Kη,mhn(zr)α

2
n(t)

(
Gn(t)(η−1)/2 −G(t)(η−1)/2

)2
dσ = E[η

∫ ∞
0

α2
n(t)

(
Gn(t)(η−1)/2 −G(t)(η−1)/2

)2
dt],

which tends to zero by the dominated convergence theorem and Lemma 7.3, in particular, using
that E[η] is finite, ||αn||ν+ is bounded and ||Gn −G||∞ → 0 as n→∞.

For the second term,∫
X
Kη,m

(
h1/2
n (zr)− h1/2(zr)

)2
αn(t)G(t)η−1dσ ≤ E[η]||h1/2

n (zr)− h1/2(zr)||2νm||αn||22,

which turns to zero by the uniform boundedness of ||αn||2 and Lemma 7.1.
For the third term∫

X
Kη,mG

η−1
(t)h(zr)(αn(t)− α(t))2dσ =

∑
η

∫ ∞
0

ηG(t)η−1(αn(t)− α(t))2dt%(η)

≤ E[η]||αn − α||22 → 0.

For the fourth term, we note∫
X
Kη,m%(η)g(t)

(√
n(h1/2

n (zr)− h1/2(zr))
)2 (

Gn(t)(η−1)/2 −G(t)(η−1)/2
)2
dσ

= ||
√
n(h1/2

n (zr)− h1/2(zr))||22E[η

∫ ∞
0

g(t)
(
Gn(t)(η−1)/2 −G(t)(η−1)/2

)2
dt].

which tends to zero by virtue of (50), (59), E[η] <∞ and the dominated convergence theorem.
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Moving now to the last term, let An(t) be as in (55), that is,

An(t) =
√
n(Gn(t)−G(t)) =

√
n

∫ ∞
t

(gn(u)− g(u))du

=

∫ ∞
t

(g1/2
n (u) + g1/2(u))αn(u)du, (63)

and define

Rn(t) = r(An(t)) where r(x) = (1 + x)(η−1)/2 − 1− η − 1

2
x. (64)

Now gathering terms and using Gn(t)/G(t) = 1 + An(t)/(
√
nG(t)), we have that the last term in

(62) equals

f
1/2
0

(
√
n

((
Gn(t)

G(t)

)(η−1)/2

− 1

)
−

(η − 1)
∫∞
t
g1/2α

G(t)

)

= (η − 1)f
1/2
0

(
An(t)

2G(t)
−
∫∞
t
g1/2α

G(t)

)
+
√
nf

1/2
0 Rn(t)

= (η − 1)(Kη,mg(t)G(t)η−3h(zr)%(η))1/2

(
An(t)

2
−
∫ ∞
t

g1/2α

)
+
√
nf

1/2
0 Rn(t). (65)

By (63) and adding and subtracting terms,

An(t)

2
−
∫ ∞
t

g1/2α =

∫ ∞
t

((
g

1/2
n (u) + g1/2(u)

2

)
αn(u)− g1/2α

)
du

=

∫ ∞
t

(
g

1/2
n + g1/2

2

)
(αn(u)− α(u))du+

∫ ∞
t

(
g

1/2
n + g1/2

2
− g1/2

)
α(u)du.

Applying the Cauchy Schwarz inequality, we see that the square of the first term is bounded by∫ ∞
t

(
g

1/2
n + g1/2

2

)2 ∫ ∞
t

(αn(u)− α(u))2 ≤ 2

∫ ∞
0

(
gn(u) + g(u)

4

)
du||αn − α||22 = ||αn − α||22,

and similarly, for the square of the second term we have(∫ ∞
t

(
g

1/2
n + g1/2

2
− g1/2(u)

)
α(u)du

)2

= n−1

(
1

2

∫ ∞
t

αn(u)α(u)du

)2

≤ 1

4n
||αn||22||α||2n.

Hence, for all t ∈ R+,(
An(t)

2
−
∫ ∞
t

g1/2α

)2

≤ Cn where Cn = 2

(
||αn − α||22 +

1

4n
||αn||22||α||2n

)
and the first term in (65) has L2(σ) norm bounded by

Cn

∫
χ

(η − 1)2Kη,mg(t)G(t)η−3h(zr)%(η)dσ = CnE

[
η(η − 1)2

η − 2

]
≤ Cn2E[η2],
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which we see tends to zero, using E[η2] <∞,
Lastly, we prove that the second term of (65) goes to zero in L2(σ). By Taylor’s theorem applied

to the function r(x) in (64), for every t ∈ R+ there exists ξt between 0 and 1 such that

Rn(t) =
(η − 1)(η − 3)

8

(
1 + ξt

An(t)
√
nG(t)

)(η−5)/2
A2
n(t)

nG
2
(t)

=
(η − 1)(η − 3)

8
G(t)(5−η)/2

(
G(t) + ξt

An(t)√
n

)(η−5)/2
A2
n(t)

nG
2
(t)

=
(η − 1)(η − 3)

8
G(t)(5−η)/2

(
(1− ξt)G(t) + ξtGn(t)

)(η−5)/2 A2
n(t)

nG
2
(t)
.

Since |(1− ξt)G(t) + ξtGn(t)| ≤ 1, we have

|Rn(t)|2 ≤ 1

64n2
η4G(t)1−ηA4

n(t).

Now, multiplying by nf0, integrating, and using (57) of Lemma 7.3 for the bound |An(t)| ≤ 2||αn||2
we have∣∣∣∣ 1

64n

∫
χ

η4G(t)1−ηA4
n(t)f0dσ

∣∣∣∣ =

∣∣∣∣ 1

64n

∫
χ

η4A4
n(t)Kη,mg(t)h(zr)%(η)dσ

∣∣∣∣ ≤ 1

n
||αn||42E[η5]→ 0.

7.4 Parametric Score

The goal of this subsection is to prove Lemma 7.13, showing that the term (46) tends to zero; we
continue to occasionally write g0 and h0 for g and h, respectively, and let ({gn}n≥0, {hn}n≥0) ∈
C1(g, α)× C2(h, β) for some α ∈ A and β ∈ B.

First we extend definitions (21) and (22) for Gθ(t; z), gθ(t; z) and Gθ(t), the covariate z survival,
density, and averaged survival, respectively, to a sequence gn, hn. Let Gn(t) =

∫∞
t
gn(u)du, the

survival function corresponding to the density gn, and define

Gn,θ(t; z) = G
eθz

n (t), Gn,θ(t) =

∫
Gn,θ(t; z)hn(z)dz, (66)

and

gn,θ(t; z) =

{
eθzgn(t)G

eθz−1

n (t) when Gn(t) > 0
0 otherwise.

In a slight abuse of notation, unwritten n and θ will correspond to the null, so we have

Gn(t) = Gn,0(t) while Gθ(t) = G0,θ(t).

In the following lemma we collect some facts about the averaged survival function Gn,θ(t); again C
will be used to denote a constant, not necessarily the same at each occurrence.

Lemma 7.7. The survival function Gn,θ(t) given in (66) has density

gn,θ(t) =

∫
gn,θ(t; z)hn(z)dz, t ∈ R+,
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and the partial derivative of Gn,θ(t) with respect to θ exists for |θ| < θκ and is given by

∂Gn,θ(t)

∂θ
= En[ZeθZGn(t)e

θz

] logGn(t). (67)

Proof: Let θ ∈ (|θ|, θκ). We have gn(t) = 0 a.e. on Gn(t) = 0, so on this set the given gn,θ(t) is a
version of the density of Gn,θ(t). Otherwise, we have

| ∂
∂t
Gn,θ(t; z)| ≤ (eθz + e−θz)

gn(t)

Gn(t)
,

which is integrable with respect to hn(z) since Mhn(θ) +Mhn(−θ) is finite, and hence the derivative
in t may by passed through the integral in definition (66) of Gn,θ(t) to obtain the density gn,θ(t; z).

Next, it is easily verified that

∂

∂θ
Gn,θ(t; z) = zGn,θ(t; z) logGn,θ(t; z) = zeθzGn(t)e

θz

logGn(t),

and hence there exists a neighborhood around θ for which this partial is bounded by a constant
times (eθz + e−θz)| logGn(t)|, an integrable function in z. Hence, the partial in θ may be passed
through the integral in definition (66) of Gn,θ(t) yielding (67). �

In prove our results under the cohort size condition stated in Theorem 2.5, in this subsection
only, we denote

fn,l(θ) = Kη−l,me
θzign(t)Gn(t)

∑
j∈r e

θzj−1Gn,θ(t)
(η−l)−mhn(zr)%(η) and fn(θ) = fn,0(θ). (68)

In order for fn,l(θ) to be a density we require 1 ≤ m ≤ η− l, as it then corresponds to the situation
where an initial η is generated by %(η), but which then leads to a cohort of size η − l, from which
m are sampled.

Lemma 7.8. Let θξ be as in (3). If the positivity (boundedness) condition holds, then for all

θ ∈ (0, θξ) the partial derivative of f
1/2
n (θ) with respect to θ exists for all 0 ≤ θ ≤ θ (|θ| ≤ θ), and

is given by

∂

∂θ
f 1/2
n (θ) = D1(θ) +D2(θ) +D3(θ)

where

D1(θ) =
1

2
zif

1/2
n (θ), D2(θ) =

1

2
logGn(t)

∑
j∈r

zje
θzjf 1/2

n (θ)

and D3(θ) = Cn η logGn(t)f 1/2
n (θ), (69)

where Cn, short for Cn,η,m,θ,t, is uniformly bounded in n, η,m ∈ {1, . . . , η}, 0 ≤ θ ≤ θ, (|θ| ≤ θ) and
t ≥ 0.

In general, when 1 ≤ m ≤ η − 2 the same conclusion holds with fn,2(θ) replacing fn(θ) in (69),
with the bound on the constant holding in the same range as for the bounded covariate case.

In any of the three scenarios, at the null θ0,

∂

∂θ
f 1/2
n (θ0) =

1

2

[
zi + logGn(t)

∑
j∈r

(zj − En[Z]) + [logGn(t)]ηEn[Z]

]
f 1/2
n (θ0). (70)
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Proof: The termsD1(θ), D2(θ) are obtained by differentiating fn(θ) in the terms eθzi andGn(t)
∑
j∈r e

θzj
,

respectively. Applying Lemma 7.7, the term which results from differentiating the term G
η−m
n,θ (t) is

D3(θ) =
1

2
(η −m)

∂Gn,θ(t)

∂θ
Gn,θ(t)

−1f 1/2
n (θ)

=
1

2
(η −m)En[ZeθZGn(t)e

θz

] logGn(t)
(
Gn,θ(t)

−1f 1/2
n (θ)

)
. (71)

Hence, (69) holds with

Cn =

(
η −m

2η

)
En[ZeθZGn(t)e

θz
]

Gn,θ(t)
.

Under the positivity condition z ≥ 0 and θ ≥ 0, the function zeθz is increasing in z and Gn(t)e
θz

is decreasing in z. Therefore these functions are negatively correlated and we have

En[ZeθZGn(t)e
θz

] ≤ En[ZeθZ ]En[Gn(t)e
θz

] = En[ZeθZ ]Gn,θ(t),

and in particular

|Cn| ≤
1

2
En[ZeθZ ],

which is a bounded sequence in n by Lemma 7.4.
Under the bounded covariate condition, with, say, |Z| ≤ z0 almost surely, we have

|Cn| ≤
1

2

En[|ZeθZ |Gn(t)e
θz

]

En[Gn(t)eθz ]
≤ 1

2
z0e
|θ|z0 ≤ 1

2
z0e

θz0 .

Under the cohort size condition, write

D3(θ) =
1

2
(η −m)En[ZeθZGn(t)e

θZ

]

(
Kη,m

Kη−2,m

)1/2

logGn(t)f
1/2
n,2 (θ),

which is (69) with fn,2(θ) replacing fn(θ) and

Cn =

(
η −m

2η

)
En[ZeθZGn(t)e

θZ

]

(
Kη,m

Kη−2,m

)1/2

.

Since |En[ZeθZGn(t)e
θZ

]| ≤ En[|Z|eθZ ] is bounded in n by Lemma 7.4, and Kη,m/Kη−2,m ≤ 1, the
constant is uniformly bounded.

At the null, expression (71) becomes

D3(θ0) =
1

2
(η −m)En[Z] logGn(t)f 1/2

n (θ0),

and adding this to D1(θ0) and D2(θ0) and rearranging gives (70). �
For a ∈ Rm let zar =

∏
j∈r z

aj
j and a′zr =

∑
j∈r ajzj. We will say an expression is a Tn,l term,

and denote it by Tn,l for short, if there exists a bounded sequence Mn, a nonnegative integer ι, a
real number k, and a, b ∈ Rm such that the expression can be written

Tn,l(Mn, ι, k, a, b) = Mnη
ι(logGn(t))kzar e

θb′zrf
1/2
n,l (θ). (72)
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Lemma 7.9. Let θξ be as in (3). Under the positivity (boundedness) condition, for all θ ∈ (0, θξ),
the partial derivative of Tn,0 exists for all 0 ≤ θ ≤ θ (|θ| ≤ θ), and can be written as a finite sum
of Tn,0 terms. In general, when l ≥ 0 and m ≤ η− (l+ 2) the partial derivative of Tn,l exists for all
|θ| ≤ θ, and can be written as a finite sum of Tn,l and Tn,l+2 terms.

In particular, under the positivity (boundedness) condition the first and second partial derivatives

of f
1/2
n (θ) with respect to θ exist for all 0 ≤ θ ≤ θ (|θ| ≤ θ), and can be written as a sum of Tn,0

terms with 0 ≤ ι ≤ 2. In general, when m ≤ η − 4 almost surely, these first two partial derivatives
exist for all |θ| ≤ θ and can be written as sums of Tn,0, Tn,2 and Tn,4 terms with 0 ≤ ι ≤ 2, so in
particular in terms of functions fn,l(θ) which are densities.

Proof: Letting ej be the unit vector in direction j for j = 1, . . . ,m, the partial derivative
(∂/∂θ)Tn,0(Mn, k, a, b) equals∑

j∈r

Tn,0(bjMn, ι, k, a+ ej, b) +Mnη
ι(logGn(t))kzar e

θb′zr
∂

∂θ
f 1/2
n (θ). (73)

By Lemma 7.8, under the positivity (boundedness) condition, and recalling the form (72), we may
write

∂

∂θ
f 1/2
n (θ) = Tn,0

(
1

2
, 0, 0, ei, 0

)
+
∑
j∈r

Tn,0

(
1

2
, 0, 1, ej, ej

)
+ Tn,0(Cn, 1, 1, 0, 0),

for 0 ≤ θ ≤ θ (|θ| ≤ |θ|). Hence the last term in (73) equals

Tn,0

(
Mn

2
, ι, k, a+ ei, b

)
+
∑
j∈r

Tn,0

(
Mn

2
, ι, k + 1, a+ ej, b+ ej

)
+ Tn,0(MnCn, ι+ 1, k + 1, a, b),

demonstrating the first claim.
When taking the partial derivatives of Tn,l for m ≤ η− (l+ 2) the terms Tn,0 in the sum in (73)

are replaced by Tn,l and the second term by

Tn,l

(
Mn

2
, ι, k, a+ ei, b

)
+
∑
j∈r

Tn,l

(
Mn

2
, ι, k + 1, a+ ej, b+ ej

)
+ Tn,l+2(MnCn, ι+ 1, k + 1, a, b),

with equality for all |θ| ≤ θ.

The claims about the partial derivatives of f
1/2
n (θ) now follow by noting that this function is a

Tn,0 term with ι = 0, and that the value of ι increases by at most one with every differentiation,

and that, in general, the first partial of f
1/2
n is a sum of Tn,0 and Tn,2 terms, and the second partial

of terms Tn,0, Tn,2 and Tn,4. �

Lemma 7.10. For 1 ≤ m ≤ η and all ι ∈ {0, 1, 2}, k ∈ R and a, b ∈ Rm there exists θ > 0 such
that

sup
n,|θ|≤θ

||ηι(logGn(t))kzar e
θb′zrf 1/2

n (θ)||σ <∞.
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Proof:

||ηι(logGn(t))kzar e
θb′zrf 1/2

n (θ)||2σ =

∫
X
ηι(logG(t))2kz2a

r e
2θb′zrfn(θ)dσ

=
∑
η,i,r

Kη,mη
ι

∫
zr

∫
t

(logGn(t))2kz2a
r e

2θb′zreθzign(t)G
∑
j∈r e

θzj−1

n (t)G
η−m
n,θ (t)hn(zr)%(η)dtdzr

=
∑
η

ηι+1

∫
z[m]

∫
t

(logGn(t))2kz2a
[m]e

2θb′z[m]eθz1gn(t)G
∑
j∈[m] e

θzj−1

n (t)G
η−m
n,θ (t)hn(z[m])dtdz[m]%(η)

≤ E[ηι+1]

∫
z[m]

∫
t

(logGn(t))2kz2a
[m]e

2θb′z[m]eθz1gn(t)G
eθz1−1

n (t)hn(z[m])dtdz[m]

= E[ηι+1]
∏
j 6=1

En[Z2aje2θbjZ ]

∫
z

z2a1e2θ(b1−k)z

∫
t

e2kθz(logGn(t))2keθzgn(t)Gn(t)e
θz−1hn(z)dtdz

= E[ηι+1]
∏
j 6=1

En[Z2aje2θbjZ ]

∫
z

z2a1e2θ(b1−k)z

(∫
t

(logGn,θ(t; z))2kgn,θ(t; z)dt

)
hn(z)dz

= E[ηι+1](2k)!
∏
j 6=1

En[Z2aje2θbjZ ]

∫
z

z2a1e2θ(b1−k)zhn(z)dz

= E[ηι+1](2k)!En[Z2a1e2θ(b1−k)Z ]
∏
j 6=1

En[Z2aje2θbjZ ]

where Lemma 4.3 was applied to obtain the second to last equality. Now use Lemma 7.4 to verify
there exists a sufficiently small interval around zero for θ such that the supremum of this final
quantity, over all n and such θ, is finite. �

As in the proof of Lemma 1 of [2], we will make use of Lemma 7.11 below, there termed Vitali’s
theorem; see also, for instance, Chapter 2 of [12], Exercises 21 and 33.

Lemma 7.11. If wn, n = 0, 1, . . . are nonnegative functions in L1(µ) such that wn → w0 in µ
measure, then ∫

wndµ→
∫
w0dµ implies w

1/2
n → w

1/2
0 in L2(µ).

In particular, the conclusion holds if wn → w0 in L1(µ).

Consistent with the notation in (68), we let f0(θ0) denote the null density.

Lemma 7.12. Let η ≥ 2. Then for any k, a ∈ R and any sequence of real numbers Mn converging
to M ,

Mn[logGn(t)]kzai f
1/2
n (θ0)→M [logG(t)]kzai f

1/2
0 (θ0) in L2(σ) as n→∞.

Proof: By Lemma 7.3 we have

||gn − g||1 → 0 and ||Gn −G||∞ → 0.

When η ≥ 2 the function ψ(x) = [log x]2kxη−1 is uniformly continuous on [0, 1], and therefore

lim
n→∞

||ψ(Gn)− ψ(G)||∞ = 0 and ||ψ(G)||∞ <∞, (74)
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implying
gn(t)ψ(Gn)→ g(t)ψ(G) in L1(ν+).

Now Lemma 7.4 gives

z2a
i hn(zr)→ z2a

i h(zr) in L1(νm) for all r ⊂ [η] of size m and i ∈ r,

and therefore, for any fixed η ≥ 2,

Kη,m[logGn(t)]2kz2a
i gn(t)Gn(t)η−1hn(zr)%(η)→ Kη,m[logG(t)]2kz2a

i g(t)G(t)η−1h(zr)%(η)

in L1(ν+× νm) for each such i and r. As the choices of such i and r are finite, this convergence also
holds in L1(counting×counting×ν+×νm). Again invoking Lemma 7.4, and using (74), we see that
the convergence holds in L1(σ), and clearly continues to hold when multiplying by a convergent
sequence. Invoking Lemma 7.11 concludes the argument. �

Lemma 7.13. Let θn ∈ Θ(τ) and ρ0 be given by (29). Then

||
√
n
(
f 1/2
n (θn)− f 1/2

n (θ0)
)
− τρ0||σ → 0. (75)

Proof: Let τn =
√
n(θn − θ0). By Taylor expansion with remainder around θ0 we may write the

difference in (75) as

τ

(
∂

∂θ
f 1/2
n (θ0)− ρ0

)
+ (τn − τ)

∂

∂θ
f 1/2
n (θ0) +

1

2
τn(θn − θ0)

∂2

∂θ2
f 1/2
n (ξn) (76)

where ξn lies between θn and θ0; we show each of these three terms tends to zero in L2(σ).
For the first term, applying (70) and (29) we have

2

(
∂

∂θ
f 1/2
n (θ0)− ρ0

)
= zi

(
f 1/2
n (θ0)− f 1/2

0 (θ0)
)

+
∑
j∈r

(
logGn(t)(zj − En[Z])f 1/2

n (θ0)− logG(t)(zj − E[Z])f
1/2
0 (θ0)

)
+ η

(
logGn(t)En[Z]f 1/2

n (θ0)− logG(t)E[Z]f
1/2
0 (θ0)

)
all of which tend to zero in L2(σ) by Lemma 7.12. For the second term on the right hand side of
(76), since τn → τ , it suffices that

|| ∂
∂θ
f 1/2
n (θ0)||σ <∞,

but this is a consequence of Lemmas 7.9 and 7.10. For the third term of (76), since τn → τ, θn → θ0,
and ξn → θ0, it suffices to show that for some θ > 0,

sup
|θ|≤θ
|| ∂

2

∂θ2
f 1/2
n (θ)||σ <∞.

Again, this bound follows from Lemmas 7.9 and 7.10. �
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8 Verification of Assumptions 2.1 and 2.3

This following lemma shows that Assumption 2.1 is satisfied.

Lemma 8.1. Let g ∈ G and h ∈ H where G and H are as given in (2) and (3), respectively. Then
the set of perturbations A and B defined in (6) and (10) are given by

A = {α ∈ L2(ν+) : 〈α, g1/2〉ν+ = 0} and B =
⋂
|θ|<θκ

{β ∈ L2(νθ) : 〈β, h1/2〉ν = 0}, (77)

which are subspaces of L2(ν+) and L2(ν), respectively.

Proof: Let A′ and B′ denote the sets given in (77), respectively. We first show B = B′ by
demonstrating inclusion in both directions. Let β ∈ B and {hn}n≥0 ⊂ H a sequence such that

||βn − β||νθ → 0 for all |θ| < θκ, where βn =
√
n(h1/2

n − h1/2). (78)

Since the squares of h1/2 and h
1/2
n = h1/2 + n−1/2βn are densities with respect to ν,∫

h1/2βndν +
1

2
n−1/2

∫
β2
ndν = 0 for all n = 1, 2, . . .

and hence∫
h1/2βdν =

∫
h1/2βndν −

∫
h1/2(βn − β)dν = −

(
1

2
n−1/2

∫
β2
ndν +

∫
h1/2(βn − β)dν

)
.

The right hand side tends to zero as n→∞ as

n−1/2

∫
β2
ndν → 0 and

(∫
h1/2(βn − β)dν

)2

≤ ||βn − β||2ν → 0,

using Lemma 7.1 for the first term and (78) with θ = 0 for the second. Therefore,
∫
h1/2βdν = 0,

that is, 〈β, h1/2〉ν = 0. Next, let |θ| < θκ. Writing β = βn + (β − βn) we have β ∈ L2(νθ) by virtue
of

β2
n ≤ 2n(hn + h) ∈ L1(νθ),

and β − βn ∈ L2(νθ) by (78). Hence B ⊂ B′.
Now let β ∈ B′ and define

h
1/2

n = h1/2 + n−1/2β and h1/2
n =

h
1/2

n

||h1/2

n ||ν
.

Clearly hn is a density with respect to ν. In addition, by 〈h1/2, β〉ν = 0 we have

||h1/2

n ||2ν = 1 + n−1

∫
β2dν and therefore

√
n

(
1− 1

||h1/2

n ||ν

)
→ 0 as n→∞. (79)

Let |θ| < θκ. By the triangle inequality in L2(νθ),

||h1/2

n ||νθ ≤ ||h1/2||νθ + ||β||νθ for all n = 1, 2, . . .,
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and therefore

||
√
n(h

1/2

n − h1/2
n )||νθ = ||h1/2

n ||νθ
√
n

(
1− 1

||h1/2

n ||ν

)
→ 0 as n→∞.

Rewriting, we obtain

||
√
n(h1/2

n − h1/2)− β||νθ = ||
√
n(h1/2

n − h
1/2

n )||νθ → 0 as n→∞,
showing that there exists a sequence of densities having β as their limiting perturbation in L2(νθ)
for all |θ| < θκ. Lastly, at θξ

Mhn
(θξ) =

∫
h(z)dνθξ + 2n−1/2

∫
β(z)h(z)1/2dνθξ + n−1

∫
β2(z)dνθξ

≤ Mh(θξ) + 2n−1/2||β||νθξ M
1/2
h (θξ) + n−1||β||2νθξ .

Since β ∈ L2(νθξ) and Mh(θξ) <∞ the last two terms tends to zero as n→∞. Since ||h1/2

n ||2ν → 1
by (79), we have

lim sup
n→∞

Mhn(θξ) = lim sup
n→∞

Mhn
(θξ)

||h1/2

n ||2ν
= lim sup

n→∞
Mhn

(θξ) ≤Mh(θξ).

As this same argument obtains at −θξ, we conclude

lim sup
n→∞

(Mhn(θξ) +Mhn(−θξ)) ≤Mh(θξ) +Mh(−θξ) < ξ,

thus proving that β can be obtained by a sequence of density functions in H. Hence, B′ ⊂ B. The
argument that A = A′ is similar, but simpler. �

We remark that the support condition found in [1], that the support of the densities in G must
be contained in the support of g, is not needed here; the term in the proof of Lemma 1 in [2] on
which it is used does not appear in the null case considered here.

The next lemma shows that Assumption 2.3 is satisfied.

Lemma 8.2. The elements

α̂ =
EZ

2

[
1 + logG(t)

]
g1/2(t) and β̂ =

1

2
h1/2(z)

η −m
mη

(z − EZ)

are members of A and B, respectively.

Proof: By Lemma 8.1, to show α̂ ∈ A it suffices to verify that α̂ ∈ L2(ν+) and 〈α̂, g1/2〉ν+ = 0.
The first claim follows from Lemma 4.3, and, by applying that same lemma with η = k and j = 1,
the second claim from ∫ ∞

0

logG(t)g(t)dt = −1.

By Lemma 8.1, for β̂ ∈ B it suffices that β̂ ∈ L2(νθ) for all |θ| < θκ and 〈β̂, h1/2〉ν = 0. For the
first condition, fix a θ satisfying |θ| < θκ. Letting θ ∈ (|θ|, θκ), there exists a constant C such that

(z − EZ)2eθz ≤ C
(
eθz + e−θz

)
for all z ∈ R.

As Mh(θ) <∞ whenever |θ| < θκ,∫
h(z)(z − EZ)2eθzdν ≤ C

(
Mh(θ) +Mh(−θ)

)
<∞,

showing that β̂ ∈ L2(νθ). The orthogonality condition is simply that E(Z − EZ)) = 0. �
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9 Appendix

Proof of Theorem 2.1 The set H given in (14) is a subspace of L2(σ), being the image of the
subspace R × A × B under the linear transformation (τ, α, β) → τρθ + Aα + Bβ. Hence, with α̂
and β̂ as in Assumption 2.2, by that assumption,

τ ζ̂ ∈ H for all τ ∈ R, where ζ̂ = ρθ − Aα̂−Bβ̂, (80)

and 4||τ ζ̂||2σ = τ 2I∗. Now let {fn}n≥0 ∈ F(f, τ ζ̂) and continue as in the proof of Theorem 3.1
in [1]. In particular, with Ln the log likelihood ratio for fn vs f0, S the limiting distribution of
n1/2(θ̂n − θ0), guaranteed to exist by the regularity of θ̂n, and Z ∼ N (0, I∗), the random vector
(n1/2(θ̂n− θ), Ln) converges weakly under f to (S, τZ − 1/2τ 2I∗), and the characteristic function of
S factors into the product of the characteristic functions of S − Z/I∗ times that of Z/I∗. �.
Proof of Theorem 2.2 Note that with ζ̂ as in (80), as ζ̂ ∈ H we have that F(f, ζ̂) ⊂ F(f), and
therefore, for all c ≥ 0

B∗n(c) = {fn ∈ F(f, ζ̂) : n1/2||f 1/2
n − f 1/2||σ ≤ c} ⊂ {fn ∈ F(f) : n1/2||f 1/2

n − f 1/2||σ ≤ c} = Bn(c).

Hence the argument for the proof of Theorem 3.2 of [1] obtains. �
Proofs of Theorems 2.3 and 2.4 The application of the results of [14] and [3], as in the proofs of
Theorem 4.1 and 4.2 in [1] apply with minimal changes. In particular, for any element of H given
by

ζ = τρθ + Aα +Bβ,

let T : H → B0 = {x ∈ C[0, 1] : x(0) = x(1) = 0} be defined by

T ζ =

∫ t

0

2αg1/2dν+ = 〈α, 2g1/2I[0,t]〉ν+ .

Writing ζ as
ζ = τ(ρθ − Aα̂−Bβ̂) + A(τ α̂ + α) +B(τ β̂ + β),

the orthogonality provided by Assumption 2.3 and Lemma 4.1 yield A∗ζ = A∗A(τ α̂ + α) and
therefore

α = C∗ζ − 〈ζ, 4(ρθ − Aα̂−Bβ̂)/I∗〉α̂ where C = A(A∗A)−1.

Continuing, one may verify that the adjoint T ∗ of T is given by a formula analagous to that in
Lemma 5.2 of [1], and that

1

4
||T ∗v||2σ = E

(∫ t

0

Z∗dν
)2

.

�
We remark that though the subspace H is not assumed to be closed in L2(σ), and hence the

projection theorem cannot be applied, as long H contains the approach to f along the ‘worst case’
direction ζ̂ the proof of [1] carries through. Moreover, this holds true independently of the number
of factors in the model, one more here than in [1]. The other difference between the situation here

and that of [1], that B consists of the perturbations which approximate n1/2(h
1/2
n − h1/2) in L2(νθ)

for all |θ| < θκ rather than in the weaker L2(ν) sense, is handled by Assumption 2.2, which gives,
in particular, that the critical β̂ lies in B even when insisting on the stronger form of convergence.

39



Bibliography

1. Begun, J., Hall, J., Huang, W.M., and Wellner, J. (1983) Information and asymptotic effi-
ciency in parametric–nonparametric models. Ann. Statist., 11, pp. 432-452.

2. Begun, J. and Wellner, J. (1983) Asymptotic efficiency of relative risk estimates. In Contri-
butions to statistics: Essays in Honor of Norman L. Johnson ed by P.K. Sen, 47-62, North-
Holland, Amsterdam, 1983.

3. Beran, R. (1977) Estimating a distribution function. Ann. Statist., 5, pp. 400-404.

4. Bickel, P., Klaassen, C., Ritov, Y., and Wellner, J. (1998) Efficient and adaptive estimation
for semiparametric models. Springer-Verlag, New York.

5. Borgan, Ø., Goldstein, L., and Langholz, B.(1995) Methods for the analysis of sampled cohort
data in the Cox proportional hazards model. Ann. Statist., 23, pp. 1749-1778.

6. Cox, D. R. (1972) Regression models and life-tables. J. Roy. Statist. Soc. Ser. B, 34,
187-220.

7. Chen, K. (2004) Statistical estimation in the proportional hazards model with risk set sam-
pling. Ann. Statist., 32, pp. 1513-1532.

8. Goldstein, L. and Langholz, B. (1992) Asymptotic theory for nested case-control sampling in
the Cox regression model. Ann. Statist., 20, pp. 1903-1928.

9. Goldstein, L. and Langholz, B. (2008) The highly stratified Cox model. Preprint

10. Greenwood, P. and Wefelmeyer, W. (1990) Efficiency of estimators for partially specified
filtered models. Stochastic Process. Appl., 36, pp. 353-370.

11. Floderus, B., Persson, T., Stenlund, C., Wennberg, A., and Knave, B. (1993) Occupational
Exposure to Electromagnetic Fields in Relation to Leukemia and Brain Tumors: A Case-
Control Study in Sweden. Cancer Causes and Control, 4, pp. 465-476.

12. Folland, G. (1999) Real Analysis: Modern Techniques and Their Applications. Wiley & Sons,
New York.

13. Luenberger, D. (1969) Optimization by vector space methods, John Wiley & Sons, Inc., New
York.

14. Millar, P. (1979) Asymptotic minimax theorems for the sample distribution function. Z.
Wahrsch. Verw. Gebiete, 48, pp. 233–252.

15. Robins, J., Rotnitzky, A., and Zhao, L. P. (1994) Estimation of regression coefficients when
some regressors are not always observed. J. Amer. Statist. Assoc., 89, pp. 846-866.

16. Thomas, D.C. (1977). Addendum to a paper by Liddel, F.D.K., McDonald, J.C., and Thomas,
D.C. J. R. Statist. Soc. A 140, pp. 483-485.

17. Wellner, J.A. (1985) Asymptotic optimality of the product limit estimator. Ann. Statist., 10,
pp 595-602.

40


