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Poisson Distribution

(Chen 1975) Non-negative integer valued random variable W is
distributed Pλ if and only if

E [Wf (W )] = λE [f (W + 1)] all f ∈ F .

For any W ≥ 0 with mean λ ∈ (0,∞), size bias distribution:

E [Wf (W )] = λE [f (W s)] all f ∈ F .

Restatement: W s =d W + 1 if and only if W ∼ P(λ).

dTV(W ,Pλ) ≤ (1− e−λ)E |(W s − 1)−W |.

Applications e.g. to matchings in molecular sequence analysis.
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dTV(W ,Pλ) ≤ (1− e−λ)E |(W s − 1)−W |

Simple Example: Let

W =
n∑

i=1

Xi with λ = E [W ],

the sum of independent Bernoullis with pi = E [Xi ] ∈ (0, 1). Then

W s = W − XI + 1 where P(I = i) = pi/λ, I independent.

Then

dTV(W ,Pλ) ≤ (1− e−λ)EXI =
1− e−λ

λ

n∑
i=1

p2
i .

If pi = λ/n then the bound specializes to λ(1− e−λ)/n.
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The Big Question
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Stein Identity for Standard Gaussian

Let Y be normal N (θ, σ2) with density
φθ,σ2(t) = e−(t−θ)2/2σ2

/
√

2πσ2. Then the law of a random
variable W has the same distribution as Y if and only

E [(W − θ)f (W )] = σ2E [f ′(W )] for all f ∈ F ,

where F is some sufficiently rich class of smooth functions.

1. All functions f for which the two sides above exist.

2. All functions in

Lip1 = {f : |f (x)− f (y)| ≤ |x − y |}.
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Proof of Stein Identity; Standard normal case
Direction normality of W implies for all f ∈ F equality, some say
integration by parts: with φ(t) = e−t

2/2/
√

2π

tφ(t) = −φ′(t) hence E [Wf (W )] = E [f ′(W )].

Requires restricting to finite interval, resulting in boundary terms,
on which conditions will be needed for taking limit.

Use Fubini as
Stein did, breaking into positive and negative parts:∫ ∞

0
f ′(w)φ(w)dw = −

∫ ∞
0

f ′(w)

∫ ∞
w

φ′(t)dtdw

=

∫ ∞
0

∫ t

0
tφ(t)f ′(w)dwdt =

∫ ∞
0

tφ(t)[f (t)− f (0)]dt.

Combining with portion on (−∞, 0], obtain

E [f ′(W )] = E [W (f (W )− f (0))] = E [Wf (W )].
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Stein Equation

For a given class of functions H (e.g. Lip1), and distributions of
random variables X and Y , let (e.g. Wasserstein distance)

dH(X ,Y ) = sup
h∈H
|Eh(X )− Eh(Y )|.

Given a mean zero, variance 1 random variable W , and a test
function h in a class H, bound the difference

Eh(W )− Eh(Z ).

Now, reason as follows: since this expectation, and
E [f ′(W )−Wf (W )] are both zero when W is normal, lets equate
them.
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Stein Equation (1)
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Stein Equation and Couplings

Stein equation for the standard normal:

f ′(x)− xf (x) = h(x)− Eh(Z ).

Now to compute the expectation of the right hand side involving h
to bound dH(W ,Z ), lets solve a differential equation for f and
compute the expectation E [f ′(W )−Wf (W )] of the left.

Would at first glace appear to make the problem harder. However,
there is only one random variable in this expectation, rather than
two.

Can handle the left hand side expectation using construction of
auxiliary random variables, couplings.



Introduction Poisson Normal Other Distributions Concentration Poincaré and Malliavin Shrinkage and SURE

Extend Stein Identity

One direction of the Stein identity, for W with E [W ] = 0 and
Var(W ) = 1,

E [Wf (W )] = E [f ′(W )] for all f ∈ F (1)

only if W ∼ N (0, 1). So if W has any other distribution (1) does
not hold.

Can we can modify the identity, or make some similar identity, so
that it holds for a different W distribution?
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Some Options

Feel free to add to the list!

1. Stein’s exchangeable pair

2. Stein Kernels

3. Size Bias

4. Zero Bias

5. Score function
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Stein Kernels and Zero Bias Coupling

Modify the right hand side of the identity

E [Wf (W )] = E [f ′(W )] for all f ∈ F

in some way to accommodate non-normal distribution.
Stein Kernel (Cacoullos and Papathanasiou ’92)

E [Wf (W )] = E [Tf ′(W )] for all f ∈ F

Zero Bias (G. and Reinert ’97)

E [Wf (W )] = E [f ′(W ∗)] for all f ∈ F
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Use of Stein Kernels: E [Wf (W )] = E [Tf ′(W )]

Given h ∈ H let f be the unique bounded solution to

f ′(x)− xf (x) = h(x)− Eh(Z ).

Then, using Stein kernels, for H = {f : R→ [0, 1]}

|Eh(W )−Eh(Z )| = |E [f ′(W )−Wf (W )]| = |E [f ′(W )−Tf ′(W )]|
= |E [(1− T )f ′(W )]| ≤ ‖f ′‖E |T − 1| ≤ 2E |T − 1|.

Taking supremum over this choice of H on the left hand side yields

dTV(W ,Z ) ≤ 2E |T − 1|,

a bound on the total variation distance.
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Use of Zero Bias Coupling: E [Wf (W )] = E [f ′(W ∗)]

Given h ∈ H let f be the unique bounded solution to

f ′(x)− xf (x) = h(x)− Eh(Z ).

Then, using zero bias, for H = Lip1

|Eh(W )−Eh(Z )| = |E [f ′(W )−Wf (W )]| = |E [f ′(W )−f ′(W ∗)]|
≤ ‖f ′′‖E |W −W ∗|.

Taking infimum over all couplings on the right, and then
supremum over this choice of H on the left hand side yields

d1(W ,Z ) ≤ 2d1(W ,W ∗),

a bound on the Wasserstein distance.
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Other Distributions

Classical: Poisson, Gamma, Binomial, Multinomial, Beta, Stable
laws, Rayleigh, ...

Not so classical: PRR distribution, Dickman distribution, ...

Dickman characterizations for W ≥ 0, independent U ∼ U [0, 1],

W s =d W + U and W =d U(W + 1)
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Subgaussian Concentration

Chatterjee 2005: (W ,W ′) exchangeable pair, F (x , y) = −F (y , x)

E [F (W ,W ′)|W ] = f (W )

v(w) =
1

2
E [|(f (W )− f (W ′)F (W ,W ′)|W = w ] ≤ σ2,

then the tail of f (W ) decays like a Gaussian with variance σ2.
Recovers Hoeffding’s inequality for a sum W of independent, ci
bounded random variables. Taking F (x , y) = n(x − y),
W ′ = W − XI + X ′I , I uniform, yields f (W ) = W and

v(W ) =
1

2n

n∑
i=1

E
(
n(Xi − X ′I )2|W

)
≤ 2

n∑
i=1

c2
i .

Applications to e.g. magnetization in the Curie-Weiss model.



Introduction Poisson Normal Other Distributions Concentration Poincaré and Malliavin Shrinkage and SURE

Sub-poisson Concentration

G. Ghosh 2011, Arratia Baxendale 2015, Cook, G. and Johnson
2018. If (W ,W s) is a size biased coupling of a non-negative
random variable W with finite, nonzero mean satisfying

W s ≤W + c

for some c , then W is sub-Poisson. (Recall W s =d W + 1 if and
only if W is Poisson.)

Example with dependence, number of fixed point of π, a uniformly
chosen random permutation, and

Wπ =
n∑

i=1

1(π(i) = i).
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W s
π ≤ Wπ + c for Wπ =

∑n
i=1 1(π(i) = i)

For I an independent and uniformly chosen index, with π given by

1 · · · k · · · I · · · n
π(1) · · · I · · · π(I ) · · · π(n)

let πs be given by

1 · · · k · · · I · · · n
π(1) · · · π(I ) · · · I · · · π(n)

Then Wπs has the Wπ size bias distribution and Wπs ≤Wπ + 2.

Applications to, e.g. eigenvalues of random regular graphs.
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2nd order Poincaré inequality and Malliavin Calculus

Stein Kernel,

E [Wf (W )] = E [Tf ′(W )]

Obtain, for instance, an immediate total variation distance bound
of 2E |T − 1|. What’s the catch?

When W is the sum of independent variables, the Kernel for W is
the sum of the kernels of the components. In other situations,
determining the kernel may be much more difficult.
Note

Var(W ) = E [T ].
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2nd order Poincaré inequality and Malliavin Calculus

Stein Kernel,

E [Wf (W )] = E [Tf ′(W )]

Obtain, for instance, an immediate total variation distance bound
of 2E |T − 1|. What’s the catch?

When W is the sum of independent variables, the Kernel for W is
the sum of the kernels of the components. In other situations,
determining the kernel may be much more difficult.

Note
Var(W ) = E [T ].



Introduction Poisson Normal Other Distributions Concentration Poincaré and Malliavin Shrinkage and SURE
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2nd order Poincaré inequality

Chatterjee 09: For a sufficently smooth H : Rd → R, the Stein
Kernel T for H(g), where g ∼ N (0, Id), is given by

T =

∫ ∞
0

e−t〈∇H(g), Ê (∇H(ĝt))〉dt.

where for t ≥ 0, ĝt = e−tg +
√

1− e−2t ĝ, where ĝ is an
independent copy of g, and Ê indicates expectation with respect to
ĝ. (Recovers the Poincaré inequality via Cauchy-Schwarz)

Applications include results on the behavior of eigenvalues of
random matrices with independent Gaussian entries.
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The Malliavin Calculus connection
Nourdin and Peccati 2009 (see their Cambridge Univerity text
2012). Specializing their work to the Hilbert space of functions of
Brownian motion B(t) with inner product 〈F ,G 〉 = E [FG ], for
some F we have

T = 〈DF ,−DL−1F 〉

where L is the Ornstein-Uhlenbeck generator, and D is the
Malliavin derivative, which extends

DF =
n∑

i=1

∂ig(I (ψ1), . . . , I (ψn))ψi

for F = g(I (ψ1), . . . , I (ψn)) and I (ψ) =
∫
ψdB. Applications:

Functions of stochastic integrals.

Similar results for functions of Poisson processes, applications
include to Voronoi tessellations. (Need to start with structure)
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Stein Shrinkage Estimation

To estimate an unknown θ ∈ Rd based on an observation
X ∼ N (θ, Id), it seems natural, and even optimal, to use X, which
has mean squared error E‖X− θ‖2 = d .

Surprisingly, for d ≥ 3, we can do better using (Stein ’56,
James-Stein ‘61)

T (X) = X

(
1− d − 2

||X||2

)
.

Expanding, we see that the mean squared error of T (X) is

Eθ

[
||(X− θ)||2 − 2(d − 2)(X− θ)′X

||X||2
+

(d − 2)2

||X||2

]
.

We improve on X if the remaining two terms are negative.
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Stein Shrinkage Estimation

Mean squared error of James-Stein

Eθ

[
||(X− θ)||2 − 2(d − 2)(X− θ)′X

||X||2
+

(d − 2)2

||X||2

]
Improvement results when

2Eθ

[
(X− θ)′X

||X||2

]
> Eθ

[
d − 2

||X||2

]
.

Apply Stein identity on the left, coordinate-wise, to the function
f (x) = x/‖x‖2.
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Stein Identity with f (x) = x/‖x‖2

Yields:

2Eθ

[
(X− θ)′

X

||X||2

]
= 2Eθ

d∑
j=1

∂fi (X)

∂xi

= 2Eθ

d∑
j=1

(
||X||2 − 2X 2

i

||X||4

)
= 2Eθ

(
d

||X||2
− 2||X||2

||X||4

)

= 2Eθ

(
d − 2

||X||2

)
> Eθ

(
d − 2

||X||2

)
.

We have shown that

Eθ||T (X)− θ||2 < d = Eθ||X− θ||2 for all θ ∈ Rd .
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Stein’s Unbiased Risk Estimator
Observe X ∼ Nd(θ, Id) with θ unknown. We want to compute an
unbiased estimate of the MSE of an estimator the form
S(X) = X + h(X), that is, of the expectation of

‖S(X)− θ‖2 = ‖X− θ + h(X)‖2

= ‖X− θ‖2 + ‖h(X)‖2 + 2〈h(X),X− θ〉.
The expectation of the first term is d , and ‖h(X)‖2 is an unbiased
estimator of its own expectation.

Applying the Stein identity coordinate-wise on the last term
eliminates the unknown θ,

E [〈X− θ, h(X)〉] = E

[
n∑

i=1

∂hi (X)

∂xi

]
.

Hence

SURE(h,X) := dσ2 + ‖h(X)‖2 + 2∇ · h(X)

is unbiased for the MSE, and computable from the data.
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End of Tour

Thanks!
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