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A BERRY–ESSEEN BOUND WITH APPLICATIONS TO VERTEX
DEGREE COUNTS IN THE ERDŐS–RÉNYI RANDOM GRAPH

BY LARRY GOLDSTEIN1

University of Southern California

Applying Stein’s method, an inductive technique and size bias coupling
yields a Berry–Esseen theorem for normal approximation without the usual
restriction that the coupling be bounded. The theorem is applied to counting
the number of vertices in the Erdős–Rényi random graph of a given degree.

1. Introduction. We present a new Berry–Esseen theorem for sums Y of de-
pendent variables by combining Stein’s method, size bias couplings and the in-
ductive technique of Bolthausen (1984) originally developed for the combinatorial
central limit theorem. We apply the theorem to asses the accuracy of the normal
approximation to the distribution of the number of vertices of degree d in the
classical Erdős–Rényi (1959) random graph Gn having n vertices connected by
independent edges with common success probability depending on n and a param-
eter θ . Over the range of parameters considered, the theorem yields a bound that
is the same up to constants as the one obtained earlier by Barbour, Karoński and
Ruciński (1989) for the weaker smooth function metric (19).

Stein’s method [Stein (1972, 1986)] often proceeds by coupling a random vari-
able Y of interest to a related variable Y ′, using, for example, the method of ex-
changeable pairs, size bias couplings or zero bias couplings; for an overview see
Chen, Goldstein and Shao (2010). The chief innovation here is the removal of an
inconvenient restriction present in a number of results that provide Kolmogorov
distance bounds using Stein’s method, that the difference |Y − Y ′| between Y and
the coupled Y ′ be bounded almost surely by a constant. Through the use of an
unbounded coupling, in Theorem 2.1 we are able to extend the previous work by
Kordecki (1990) on the number of isolated, or degree zero, vertices of Gn to all
positive degrees.

To describe Theorem 1.1, our general result, recall that for a nonnegative ran-
dom variable Y with finite, nonzero mean μ, we say that Y s has the Y -size bias
distribution if

E[Yf (Y )] = μE[f (Y s)](1)

for all functions f for which these expectations exist.
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In employing the size bias version of Stein’s method [see Baldi, Rinott and
Stein (1989), Goldstein and Rinott (1996) and Chen, Goldstein and Shao (2010)],
the goal is to construct, on the same space as Y , a variable Y s with the Y -size
bias distribution such that Y and Y s are close is some sense. Previous applications
of the size bias coupling technique for obtaining Berry–Esseen bounds by Stein’s
method, requiring that |Y s − Y | be bounded, include Goldstein (2005), Goldstein
and Penrose (2010) and Goldstein and Zhang (2011).

Let N = {1,2, . . .} and N0 = N ∪ {0}. Our abstract framework consists of ran-
dom elements indexed by n ≥ n0 for some n0 ∈ N0 whose distributions Lθ (·) de-
pend on n, left implicit when clear from context, and a parameter θ in a topological
space �n. We also assume that �n is endowed with a σ -algebra, taken to be the
one generated by the collection of open sets unless specified otherwise.

In our application the parameter θ lies in a subset �n of the real numbers R and
interest centers on the distributions of the nonnegative random variables Yn count-
ing the number of degree d ∈ N vertices of the Erdős–Rényi random graph Gn.
For sums of exchangeable indicator variables such as Yn, Lemma 1.1 below says,
essentially, that to construct a variable Y s

n with the Yn-size bias distribution, one
chooses an indicator uniformly and sets it to one if it was not so already, and then
“adjusts” the remaining indicators, if necessary, to have their original distribution
given that the selected indicator is one. Applying Lemma 1.1 when Yn counts the
number of vertices in Gn having degree d results in the construction of Barbour,
Holst and Janson (1992), where nothing is changed if a uniformly chosen vertex
already has degree d , and otherwise edges to the chosen vertex are added if the
vertex has degree less than d , or removed if it has degree in excess of d . As it is
possible that the chosen vertex has, say, n − 1 edges, the resulting coupling fails
to be bounded in n. Nevertheless, when there is only a small probability that a
very large number of edges will need to be added or removed, the coupling can be
controlled using moments on bounds Kn that satisfy |Y s

n − Yn| ≤ Kn.
After coupling, the second ingredient in our method has an inductive flavor. We

construct a variable Vn such that its distribution, conditional on a collection Jn of
random elements, is that of Yn reduced in size by some “small” amount Ln, with
parameter ψn,θ “close” to the original θ . Formally, we require that

Lθ (Vn|Jn) = Lψn,θ (Yn−Ln)(2)

hold on an event where the size of Ln is controlled, and that a bound Bn on the
absolute difference |Yn−Vn| not be “too large.” As bounds to the normal for Yn can
be expressed in terms of quantities that include bounds to the normal for reduced
versions of the same problem, a recursive inequality for the sought after bound can
be produced.

In the graph degree problem, Vn counts the number of degree d vertices in the
graph obtained by removing a uniformly chosen vertex from Gn, along with all its
incident edges, and the set Jn consists of the identity of the chosen vertex, and its
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degree. Conditionally on Jn, the graph that remains is an Erdős–Rényi graph on the
reduced vertex set, with the same connectivity as before. As with the bound Kn, it
is not required that Bn be almost surely bounded by a constant; though |Yn − Vn|
may be large in the graph degree problem, it is unlikely that it will be.

Tension exists in choosing the set Jn that appears in the conditioning equal-
ity (2). In order to reduce the larger problem to a smaller one so that induction may
be applied, working conditionally we must be able to treat the bounds Kn and Bn,
and the parameters of the reduced problem, Ln and ψn,θ , as constants. Hence we
require that these variables be measurable with respect to Fn, the σ -algebra gen-
erated by the conditioning collection Jn. Though this restriction necessitates that
Fn be large enough to contain, say, information on Y s

n − Yn, it must also be small
enough so that Ln and Bn are not too large, and that the conditioning “leaves
enough randomness” to yield a useful recursion for the ultimate bound.

At the heart of our main result, and Stein’s method for normal approximation,
is the characterization that Z is a standard normal random variable if and only if

E[Zf (Z)] = E[f ′(Z)]
for all absolutely continuous functions f for which the above expectations exist.
This characterization leads to the Stein equation, when, given a test function h on
which to evaluate the difference Eh(W) − Eh(Z) between the expectation of the
random variable W of interest and the standard normal Z, one solves

f ′(w) − wf (w) = h(w) − Eh(Z)

for f . Using f , one evaluates this difference by substituting W for w, and takes
expectation on the left-hand side, rather than the right. Though we focus on ma-
nipulation of the Stein equation using the size bias coupling, many variations are
possible; see Chen, Goldstein and Shao (2010) for an overview.

Throughout, for n0 ∈ N and all n ≥ n0 and θ ∈ �n, we let μn,θ = EθYn and
σ 2

n,θ = Varθ (Yn) indicate the mean and variance of Yn under Lθ . The value rn,θ

appearing in Theorem 1.1 is a function that determines the quality of the bound to
the normal, while the sequence sn,θ is used to control Ln, and hence the size of
the smaller subproblem Vn related to Yn. Without further mention, μn,θ , σ

2
n,θ and

rn,θ are assumed to be measurable in θ ∈ �n, a condition satisfied for all natural
examples, including the one considered here. To avoid repetition, the distribution
of random variables indicated after θ ∈ �n has been fixed is with respect to Lθ .
The random variable Z will always denote the standard normal.

To familiarize the reader with the conditions of Theorem 1.1, toward the end of
this section we present its application in the simple case where a bounded size bias
coupling of Y s

n to Yn exists.

THEOREM 1.1. For some n0 ∈ N0 and all n ≥ n0, let Yn be a nonnegative
random variable with mean μn,θ = EθYn and positive variance σ 2

n,θ = Varθ (Yn)

for all θ ∈ �n, and set

Wn,θ = Yn − μn,θ

σn,θ

,(3)
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the standardized value of Yn. Let rn,θ be positive for all n ≥ n0 and all θ ∈ �n,
and for all r ≥ 0 let

�n,r = {θ ∈ �n : rn,θ ≥ r}.
Assume there exists r1 > 0 and n1 ≥ n0 such that

max
n0≤n<n1

sup
θ∈�n,r1

rn,θ < ∞.(4)

Further, suppose that for all n ≥ n1 and θ ∈ �n,r1 , there exist random variables
Y s

n ,Kn,Ln, ψn,θ ,Vn and Bn on the same space as Yn, and a σ -algebra Fn, gen-
erated by a collection of random elements Jn, such that the following conditions
hold:

1. The random variable Y s
n has the Yn-size bias distribution, and

�n,θ =
√

Varθ
(
Eθ(Y s

n − Yn|Yn)
)

satisfies
(5)

sup
n≥n1,θ∈�n,r1

rn,θμn,θ�n,θ

σ 2
n,θ

< ∞.

2. The random variable Kn is Fn-measurable, |Y s
n − Yn| ≤ Kn and

sup
n≥n1,θ∈�n,r1

rn,θμn,θEθ [(1 + |Wn,θ |)K2
n]

σ 3
n,θ

< ∞(6)

with Wn,θ as given in (3).
3. The random variable Ln takes values in {0,1, . . . , n}, there exists a positive

integer valued sequence {sn,θ }n≥n1 satisfying n − sn,θ ≥ n0, the variables Ln and
ψn,θ are Fn-measurable, for some Fn,θ ∈ Fn satisfying Fn,θ ⊂ {Ln ≤ sn,θ },

ψn,θ ∈ �n−Ln and Lθ (Vn|Jn) = Lψn,θ (Yn−Ln) on Fn,θ(7)

and

sup
n≥n1,θ∈�n,r1

r2
n,θμn,θ

σ 3
n,θ

Eθ

[
K2

n

(
1 − 1(Fn,θ )

)]
< ∞.(8)

4. There exists {c1, c2} ⊂ (0,∞) such that

σ 2
n,θ ≤ c1σ

2
n−Ln,ψn,θ

and rn,θ ≤ c2rn−Ln,ψn,θ on Fn,θ .

5. The random variable Bn is Fn-measurable, |Yn − Vn| ≤ Bn and

sup
n≥n1,θ∈�n,r1

r2
n,θμn,θEθ [K2

nBn]
σ 4

n,θ

< ∞.(9)

6. Either:
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(a) there exists ln,0 ∈ {0, . . . , n} such that Pθ(Ln = ln,0) = 1 for all θ ∈ �n,r1 ,
or

(b) the set �n,r1 is a compact subset of �n, and the functions of θ

tn,θ,l = Eθ

(
K2

n

EθK2
n

1(Ln = l)

)
, l ∈ {0,1, . . . , n}(10)

are continuous on �n,r1 for l ∈ {0,1, . . . , sn} where sn = supθ∈�n,r1
sn,θ .

Then there exists a constant C such that for all n ≥ n0 and θ ∈ �n,

sup
z∈R

|Pθ(Wn,θ ≤ z) − P(Z ≤ z)| ≤ C/rn,θ .(11)

When higher moments exist a number of the conditions of the theorem may be
verified using standard inequalities. In particular, by the Cauchy–Schwarz inequal-
ity a sufficient condition for (6) is

sup
n≥n1,θ∈�n,r1

rn,θμn,θk
1/2
n,θ,4

σ 3
n,θ

< ∞ where kn,θ,m = EθK
m
n ,(12)

and, when Fn,θ = {Ln ≤ sn,θ }, a sufficient condition for (8) is

sup
n≥n1,θ∈�n,r1

r2
n,θμn,θ k

1/2
n,θ,4l

1/2
n,θ,2

σ 3
n,θ sn,θ

< ∞ where ln,θ,m = EθL
m
n ,

since, additionally using the Markov inequality yields

Eθ [K2
n1(Ln > sn,θ )] ≤ k

1/2
n,θ,4Pθ(Ln > sn,θ )

1/2 = k
1/2
n,θ,4Pθ(L

2
n > s2

n,θ )
1/2

≤ k
1/2
n,θ,4l

1/2
n,θ,2

sn,θ

.

Similarly, a sufficient condition for (9) is

sup
n≥n1,θ∈�n,r1

r2
n,θμn,θk

1/2
n,θ,4b

1/2
n,θ,2

σ 4
n,θ

< ∞ where bn,θ,m = EθB
m
n .(13)

Regarding (7) we remark that by Lθ (Yn−Ln) we mean the mixture distribution∑n
m=n0

Lθ (Ym)P (Ln = n − m), which can be defined without requiring that
Yn0, . . . , Yn and Ln all be defined on the same space. A general prescription for
size biasing a sum of nonnegative variables is given in Goldstein and Rinott (1996);
specializing to exchangeable indicators yields the following result.

LEMMA 1.1. Let Y = ∑
α∈I Xα be a finite sum of nontrivial exchangeable

Bernoulli variables {Xα,α ∈ I}, and suppose that for α ∈ I the variables {Xα
β,β ∈

I} have joint distribution

L(Xα
β,β ∈ I) = L(Xβ,β ∈ I|Xα = 1).
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Then

Yα = ∑
β∈I

Xα
β

has the Y -size biased distribution Y s , as does the mixture Y I when I is a random
index with values in I , independent of all other variables.

PROOF. First, fixing α ∈ I , we show that Yα satisfies (1). For given f ,

E[Yf (Y )] = ∑
β∈I

E[Xβf (Y )] = ∑
β∈I

P [Xβ = 1]E[f (Y )|Xβ = 1].

As exchangeability implies that E[f (Y )|Xβ = 1] does not depend on β , we have

E[Yf (Y )] =
(∑

β∈I
P [Xβ = 1]

)
E[f (Y )|Xα = 1] = E[Y ]E[f (Yα)],

demonstrating the first result. The second follows easily using that Y I is a mixture
of random variables all of which have distribution Y s . �

Employing size bias couplings and Stein’s method, Chen and Röllin (2010)
prove a general result to compute bounds to the normal in the Waserstein met-
ric. In particular, Corollary 2.2 and Construction 3A of Chen and Röllin (2010)
yield

dW(Lθ (Wn,θ ), L(Z)) ≤ 0.8
μn,θ�n,θ

σ 2
n,θ

+ μn,θkn,θ,2

σ 3
n,θ

.(14)

To compare (14) with one conclusion of Theorem 1.1, as well as to familiarize
the reader with the roles of some of the variables appearing in its formulation, we
now consider its application in the simple case where a bounded size bias coupling
exists, that is, when the bound Kn on |Y s

n − Yn| can be taken to be a constant,
say kn, almost surely. In such cases we set Jn to be the empty set, and note that
any constant is measurable with respect to the trivial σ -algebra that Jn generates.
Conditions 3 through 6 are easily satisfied in this case for any candidate rn,θ . In
particular, taking Ln = 0, sn,θ = 1 and Fn,θ = {Ln ≤ sn,θ }, with Jn = ∅, (7) of
Condition 3 holds with ψn,θ = θ and Vn = Yn, and (8) holds as 1 − 1(Fn,θ ) = 0
a.s. As (n − Ln,ψn,θ ) = (n, θ), Condition 4 holds with c1 = c2 = 1. As Vn = Yn

we may take Bn = 0 in Condition 5, and as Ln = 0 Condition 6a is satisfied. Hence,
only Conditions 1 and 2 are in force, and Theorem 1.1 obtains with

r−1
n,θ = μn,θ�n,θ

σ 2
n,θ

+ μn,θk
2
n

σ 3
n,θ

,

yielding a Kolmogorov bound that, up to constants, agrees with the Wasserstein
bound (14) in this particular case.
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Bounded size bias couplings exist when Yn is the sum of independent, bounded
nonnegative random variables, or a sum of bounded, nonnegative locally depen-
dent variables with bounded dependence neighborhood sizes, as studied, for in-
stance, in Goldstein (2005). In addition, bounded size bias couplings can also be
constructed in cases of global dependence; see Goldstein and Zhang (2011) or
Goldstein and Penrose (2010).

We next apply Theorem 1.1 to vertex degree counts in the Erdős–Rényi random
graph. The proof of Theorem 1.1 is given in Section 3.

2. Vertex degree in the Erdős–Rényi random graph. We apply Theo-
rem 1.1 to bound the error in the normal approximation to the distribution of the
number of vertices of a given degree in the Erdős–Rényi (1959) random graph
Gn; see also Bollobás (1985). With n ∈ N we take the vertex set of Gn to be
In = {1, . . . , n}, and the indicators ξu,v of the presence of edges between distinct
vertices u and v to be independent Bernoulli variables with a common success
probability. No vertex is connected to itself, and we set ξu,u = 0 for all u ∈ In.

The number Yn of vertices of degree d of Gn has been the object of much
study. For a sequence of graphs with connectivity probability p depending on
n ∈ N, Karoński and Ruciński (1987) proved the asymptotic normality of Yn when
n(d+1)/dp → ∞ and np → 0, or np → ∞ and np− logn−d log logn → −∞; see
also Palka (1984) and Bollobás (1985). Asymptotic normality of Yn when np →
c > 0 was obtained by Barbour, Karoński and Ruciński (1989), and Kordecki
(1990) for nonsmooth functions of Yn in the case d = 0. Neammanee and Sun-
tadkarn (2009) obtain a Kolmogorov distance bound between Yn and the normal
with rate n−1/2+ε for all ε > 0 when Var(Yn) is of order n. Other univariate re-
sults on asymptotic normality of counts on random graphs are given in Janson
and Nowicki (1991), and references therein. Goldstein and Rinott (1996) obtain
smooth function bounds for the vector whose k components count the number of
vertices of fixed degrees d1, d2, . . . , dk when p = θ/(n − 1) ∈ (0,1) for fixed θ ,
implying asymptotic multivariate joint normality.

We focus on the counts of vertices of some fixed degree d ∈ N, the case d = 0
of isolated vertices having already been handled by Kordecki (1990). Set

�n = (0, n − 1) ∩ (0, b] for all n ≥ d + 1(15)

with b some arbitrarily large constant, and let the connectivity probability between
the vertices of Gn be given by θ/(n − 1) for n ≥ d + 1, θ ∈ �n. For v ∈ In let

Dn(v) = ∑
w∈In

ξv,w, Xn,v = 1
(
Dn(v) = d

)
and Yn = ∑

v∈In

Xn,v,

the degree of vertex v, the indicator that vertex v has degree d , and the number of
vertices of degree d of Gn, respectively.
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From Goldstein and Rinott (1996), for all n ≥ d + 1 and θ ∈ �n, the mean μn,θ

and variance σ 2
n,θ of Yn are given explicitly by

μn,θ = nτn,θ and σ 2
n,θ = nτ 2

n,θ

[
(d − θ)2

θ(1 − θ/(n − 1))
− 1

]
+ nτn,θ ,(16)

where

τn,θ =
(

n − 1
d

)(
θ

n − 1

)d(
1 − θ

n − 1

)n−1−d

.(17)

THEOREM 2.1. For any d ∈ N and b > 0 there exists a constant C such that
for all n ≥ d + 1 and all θ ∈ �n given in (15), the normalized count Wn,θ in (3) of
the number Yn of vertices with degree d in the Erdős–Rényi random graph Gn on n

vertices, with edges connecting each distinct pair independently with probability
θ/(n − 1), satisfies

sup
z∈R

|Pθ(Wn,θ ≤ z) − P(Z ≤ z)| ≤ C/rn,θ for all n ≥ d + 1,

where Z is a standard normal variable and

rn,θ = √
nτθ with τθ = e−θ θd/d!.(18)

By applying Stein’s method, Barbour, Karoński and Ruciński (1989) obtain a
bound of order 1/

√
nτn,θ in the metric dL defined as the supremum over Lipschitz

functions

dL(L(X), L(Y )) = sup
h

|Eh(X) − Eh(Y )|
‖h‖ + ‖h′‖ .(19)

As Lemma 2.1 shows that τn,θ /τθ converges uniformly to 1 over �n, the Kol-
mogorov bound of order 1/

√
nτθ provided by Theorem 2.1 is of the same order as

the dL bound. As remarked in Barbour, Karoński and Ruciński (1989), a bound of
size εn in the dL metric yields a bound in the Kolmogorov metric of order O(ε

1/2
n ),

which can at times be improved to O(εn) “at the cost of much greater effort.”
Though we do not cover the case d = 0 of isolated vertices, handled in Kordecki

(1990), our proof can be extended to apply there by appending additional argu-
ments that are separate, but similar to, those for the case d ∈ N. Note, for example,
the difference in the behavior of the function τθ at zero for these two ranges of d .

Following Lemma 1.1 for the case of vertex degrees yields a coupling where
for each n ≥ d + 1 and vertex v ∈ In one constructs a graph Gv

n from Gn having
the distribution of Gn conditioned on Xn,v = 1, or equivalently, on Dn(v) = d;
this coupling has previously been applied by Barbour, Holst and Janson (1992)
and Goldstein and Rinott (1996). The graph Gv

n is obtained from Gn by adding or
removing edges of v as needed. Mixing over v as indicated by Lemma 1.1 yields
a variable Y s

n having the Yn-size bias distribution.
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In the course of constructing Gv
n one also obtains a set Rv

n holding the collection
of vertices other than v that are affected by the size bias operation. In particular,
if Dn(v) = d , then Gv

n = Gn and Rv
n = ∅. If Dn(v) > d , then Gv

n is formed by
removing from Gn the edges between v and the vertices in the subset Rv

n of neigh-
bors {u : ξu,v = 1} of v, chosen with uniform conditional distribution given Gn over
all subsets of the neighbors of v of size Dn(v) − d . Similarly, if Dn(v) < d , then
Gv

n is formed by adding edges to Gn between v and vertices in Rv
n, chosen with

uniform conditional distribution given Gn over all subsets of the nonneighbors
{u :u 
= v, ξu,v = 0} of v of size d − Dn(v).

Now let Xv
n,w be the indicator that vertex w has degree d in Gv

n and

Y v
n = ∑

w∈In

Xv
n,w,

the number of degree d vertices in Gv
n. When In is chosen uniformly over In,

independent of all other variables, Lemma 1.1 yields that Y s
n = Y

In
n has the Yn-size

biased distribution. Similarly setting Rs
n = RIn

n , all vertices not in {In} ∪ Rs
n have

the same degree in both Gn and Gs
n, and as In /∈ Rs

n, letting

An = {In} ∪ Rs
n we have |An| = 1 + |d − Dn(In)|.(20)

We prove Theorem 2.1 by verifying the hypotheses of Theorem 1.1 for the size
bias construction just given. With τn,θ as in (17), and recalling (16), let

δn,θ = τn,θ

[
(d − θ)2

θ(1 − θ/(n − 1))
− 1

]
+ 1 so that σ 2

n,θ = nτn,θ δn,θ ,(21)

and correspondingly, with τθ as in (18), let

δθ = τθ

[
(d − θ)2

θ
− 1

]
+ 1.(22)

With the help of a technical lemma placed at the end of this section, we present
the proof of Theorem 2.1. Throughout we let Cj denote a constant not depending
on n or θ , and not necessarily the same at each occurrence.

PROOF OF THEOREM 2.1. Let n0 = d + 1. For n ≥ n0 and θ ∈ �n the bi-
nomial and Poisson probabilities τn,θ and τθ in (17) and (18), respectively, lie in
(0,1), and hence σ 2

n,θ of (16) and rn,θ are positive for all such n and θ . Let r1 > 0
be arbitrary. In place of naming n1 explicitly, we show the remaining conditions of
Theorem 1.1 are satisfied for all n sufficiently large. Since rn,θ ≤ √

n inequality (4)
holds for any n1 ≥ n0.

From Chen, Goldstein and Shao [(2010), equation (12.17)], following Goldstein
and Rinott (1996), for Y s

n having the Yn-size biased distribution as constructed
above, we obtain

�2
n,θ ≤ C1n

−1(24θ + 48θ2 + 144θ3 + 48d2 + 144θd2 + 12)
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and hence

sup
θ∈�n

�n,θ ≤ C2√
n
.

To complete the verification of Condition 1, Lemma 2.1 gives that over �n the
ratio δθ/δn,θ = δθμn,θ/σ

2
n,θ converges uniformly to 1, and δθ in (22) is bounded

away from zero. Hence for all n sufficiently large and all θ ∈ �n, we have

μn,θ

σ 2
n,θ

≤ 2

δθ

≤ C3 and so
rn,θμn,θ�n,θ

σ 2
n,θ

≤ C4
√

τθ ≤ C4(23)

as τθ ≤ 1 for all θ ∈ �n.
Turning to Condition 2, let

Jn = (In,Dn(In)) and Fn = σ {Jn};
that is, Fn is the σ -algebra generated by the chosen vertex and its degree. Further,
let

Kn = 1 + d + Dn(In).

Clearly Kn is Fn-measurable, and recalling that vertices not in An of (20) have the
same degree in both Gn and Gs

n, taking the difference between Y s
n and Yn yields

Y s
n − Yn = ∑

w∈An

(XIn
n,w − Xn,w),

and (20) yields

|Y s
n − Yn| = 1 + |d − D(In)| ≤ Kn.

Next, for all m ∈ N we have

Km
n ≤ 2m−1(

(1 + d)m + Dn(In)
m)

.(24)

To bound the moments of Kn, using Riordan (1937) for the first equality be-
low, with Sj,m the Stirling numbers of the second kind, (n)j the falling factorial,
C5,m = mmax1≤j≤m Sj,m and D ∼ Bin(n − 1,p), we obtain

EDm =
m∑

j=1

Sj,m(n − 1)jp
j ≤

m∑
j=1

Sj,m(n − 1)jpj

≤ C5,m

(
(n − 1)p + (n − 1)mpm)

.

In particular EθDn(v)m ≤ C5,m(b +bm), and as Dn(In) is the mixture of the iden-
tical distributions Dn(v) over v ∈ In, it obeys the same upper bound. Taking ex-
pectation in (24), we find that there exists constants C6,m,m ∈ N such that

kn,θ,m ≤ C6,m for all n ∈ N, θ ∈ �n and m ∈ N.(25)
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Now, using (25) for the first inequality in (26), the first inequality in (23) for the
second inequality, the second equality of (21) for the first equality, and Lemma 2.1
both to obtain the third inequality, and the boundedness of δθ away from zero for
the fourth, we obtain that for all n sufficiently large and θ ∈ �n,

rn,θμn,θ k
1/2
n,θ,4

σ 3
n,θ

≤ C6,4
1/2rn,θμn,θ

σ 3
n,θ

≤ C7rn,θ

σn,θ

= C7
√

τθ√
τn,θ δn,θ

≤ C8√
δθ

≤ C9.(26)

Hence inequality (12), sufficient for (6), is satisfied, and Condition 2 holds.
Turning to Condition 3, for n ≥ d + 2, let

Ln = 1, sn,θ = 1, ψn,θ =
(

n − 2

n − 1

)
θ and Fn,θ = {Ln ≤ sn,θ },(27)

and note therefore that conditions holding on Fn,θ must hold on the entire probabil-
ity space. Clearly Ln takes values in {0,1, . . . , n} as required and n− sn,θ ≥ n0 for
any n ≥ d + 2. Being constants, Ln and ψn,θ are Fn measurable, hence Fn,θ ∈ Fn.
By (27) and θ ∈ �n we have that ψn,θ ∈ (0, b] ∩ (0, n − 2) = �n−1 = �n−Ln ,
verifying the first part of (7).

Regarding the second part of (7), let Hn be the graph Gn with the vertex In

and its incident edges removed, relabeling the remaining vertices {1, . . . , n−1} by
preserving their relative order. Let Vn be the number of degree d vertices of Hn.
By counting the number of degree d vertices, the distributional equality in (7) is a
consequence of

Lθ (Hn|In,Dn(In)) = Lψn,θ (Gn−1).(28)

The graph Hn is determined by {ξu,v : {u, v} ⊂ In \ {In}}, which is independent of
the σ -algebra generated by {In, ξIn,v, v ∈ In}, with respect to which In and Dn(In)

are measurable. Hence Hn is independent of the conditioning event in (28), and
therefore its conditional and unconditional distribution agree. In particular, condi-
tional on {In,Dn(In)}, the edge indicators of Hn are independent with common
success probability

θ

n − 1
= ψn,θ

n − 2
,

so (28) holds. Inequality (8) holds trivially, as P(Ln > 1) = 0. Hence Condition 3
holds.

By Lemma 2.1, Condition 4 holds with c1 = c2 = 2.
Regarding Condition 5, as only the degrees of vertex In and its neighbors are

different in the graphs Gn and Hn, we have

|Yn − Vn| ≤ 1 + D(In) ≤ Kn,

and we set Bn = Kn, so Fn-measurable. We now finish the verification of Condi-
tion 5 by showing (13), sufficient for (9), is satisfied. By (25), that μn,θ = nτn,θ
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and the second equality in (21), for all n sufficiently large and all θ ∈ �n, we have

r2
n,θμn,θ k

1/2
n,θ,4b

1/2
n,θ,2

σ 4
n,θ

≤ τθ (C6,4C6,2)
1/2

τn,θ δ
2
n,θ

≤ C10,

where the final inequality follows from Lemma 2.1, yielding that τn,θ/τθ and
δn,θ/δθ converge uniformly to 1 on �n, and that δθ is bounded away from zero
on (0, b].

Lastly, Condition 6a holds with ln,0 = 1 for all n ≥ d + 2, completing the veri-
fication of all conditions of Theorem 1.1. �

The proof of Lemma 2.1 is straightforward, and is therefore omitted.

LEMMA 2.1. With τn,θ , τθ , δn,θ and δθ given by (17), (18), (21) and (22), re-
spectively, for all d ∈ N and all b > 0 the function δθ is bounded away from zero
and infinity over (0, b], and the ratios

τn,θ

τθ

,
δn,θ

δθ

,
rn,θ

rn−1,ψn,θ

and
σ 2

n,θ

σ 2
n−1,ψn,θ

and their reciprocals converge uniformly to 1 on (0, b] as n tends to infinity.

3. Proof of Theorem 1.1. We begin the proof of Theorem 1.1 with the fol-
lowing lemma.

LEMMA 3.1. Suppose that for some n1 ∈ N0 the nonnegative numbers f ,
{pn,l}n≥n1,0≤l≤n and {an}n≥0 satisfy

an ≤
n∑

l=0

an−lpn,l + f for all n ≥ n1 and

(29)

τ ∈ (0,1) where τ = sup
n≥n1

n∑
l=0

pn,l.

Then supn≥0 an < ∞.

PROOF. As for all n ≥ n1 we have pn,0 ≤ τ < 1, letting

qn,l = pn,l

1 − pn,0
for 1 ≤ l ≤ n and a = f

1 − τ
,

(29) implies

an ≤
n∑

l=1

an−lqn,l + a with 0 ≤
n∑

l=1

qn,l ≤ τ − pn,0

1 − pn,0
≤ τ for all n ≥ n1.
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Letting α = max0≤n≤n1 an and c = max{a,α(1 − τ)}, the sequence {bn}n≥0 de-
fined by

bn = α for 0 ≤ n ≤ n1 and bn+1 = τbn + c for n ≥ n1

has, for n ≥ n1, the explicit form

bn = γ τn−n1 + c

1 − τ
where γ = α − c

1 − τ
.

Since γ ≤ 0 and τ ∈ (0,1), the sequence {bn}n≥0 is nondecreasing with limit
c/(1 − τ), and hence is bounded. We complete the proof by showing that for
all n ∈ N0 we have am ≤ bm for all 0 ≤ m ≤ n. Clearly the statement holds for
0 ≤ n ≤ n1. Assuming it true for some n ≥ n1, using the induction hypotheses, the
definition of c and that bn is nondecreasing,

an+1 ≤
n+1∑
l=1

an+1−lqn+1,l + a ≤
n+1∑
l=1

bn+1−lqn+1,l + c ≤ bn

n+1∑
l=1

qn+1,l + c

≤ τbn + c = bn+1. �

The following proof is based on the inductive argument of Bolthausen (1984).

PROOF OF THEOREM 1.1. With r ≥ 0, recall that �n,r = {θ ∈ �n : rn,θ ≥ r},
and let

δ(n, r) = sup
z∈R,θ∈�n,r

|Pθ(Wn,θ ≤ z) − P(Z ≤ z)| for n ≥ n0.(30)

First note that (11) of Theorem 1.1 can be made to hold whenever rn,θ < r1 by
taking C ≥ r1. By (4) the cases n0 ≤ n < n1 and rn,θ ≥ r1 can be handled in this
same manner. Hence it suffices to show that there exists some C such that

δ(n, r) ≤ C/r for n ≥ n1 and r ≥ r1.(31)

For z ∈ R and λ > 0 let hz,λ be the smoothed indicator

hz,λ(x) =
⎧⎨
⎩

1, x ≤ z,

1 + (z − x)/λ, z < x ≤ z + λ,

0, x > z + λ

and let Nhz,λ = Ehz,λ(Z) with Z a standard normal variable. Let f (x) be the
unique bounded solution to the Stein equation for hz,λ(x) [see, e.g., Chen, Gold-
stein and Shao (2010)]

hz,λ(x) − Nhz,λ = f ′(x) − xf (x).(32)

Let n ≥ n1, θ ∈ �n,r for some r ≥ r1, z ∈ R and λ > 0. Recalling Wn,θ = (Yn −
μn,θ )/σn,θ , with a slight abuse of notation, set

Ws
n,θ = Y s

n − μn,θ

σn,θ

.
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Substituting Wn,θ for x in (32) and taking expectation, and dropping the sub-
script θ when not essential below, we obtain

Eθhz,λ(Wn) − Nhz,λ = Eθ [f ′(Wn) − Wnf (Wn)].(33)

Beginning with the second term on the right-hand side of (33), from the definition
of Wn,θ and the size bias relation (1), we have

Eθ [Wnf (Wn)] = 1

σn

Eθ [(Yn − μn)f (Wn)] = μn

σn

Eθ

(
f (Ws

n) − f (Wn)
)
.

Taking absolute value and applying the triangle inequality, we obtain

|Eθhz,λ(Wn) − Nhz,λ|
= |Eθ [f ′(Wn) − Wnf (Wn)]|
=

∣∣∣∣Eθ

[
f ′(Wn) − μn

σn

(
f (Ws

n) − f (Wn)
)]∣∣∣∣

= μn

σn

∣∣∣∣Eθ

[
σn

μn

f ′(Wn) − (
f (Ws

n) − f (Wn)
)]∣∣∣∣

(34)

= μn

σn

∣∣∣∣Eθ

[(
σn

μn

− (Ws
n − Wn)

)
f ′(Wn) + (Ws

n − Wn)f
′(Wn)

− (
f (Ws

n) − f (Wn)
)]∣∣∣∣

≤ μn

σn

∣∣∣∣Eθ

[(
σn

μn

− (Ws
n − Wn)

)
f ′(Wn)

]∣∣∣∣

+ μn

σn

∣∣∣∣Eθ

[∫ Ws
n−Wn

0
[f ′(Wn) − f ′(Wn + t)]dt

]∣∣∣∣.
From the size bias relation (1) with f (x) = x, we obtain μnEθ [Y s

n ] = Eθ [Y 2
n ],

and therefore

Eθ [Ws
n − Wn] = Eθ

[
Y s

n − Yn

σn

]
= 1

σn

[
EθY

2
n

μn

− μn

]
= 1

σnμn

σ 2
n = σn

μn

.(35)

Now applying (35) and |f ′(x)| ≤ 1 from Chen and Shao [(2004), equation (4.6)]
[see also Chen, Goldstein and Shao (2010), Lemma 2.5], by conditioning on Wn

the first term of (34) may be bounded by

μn

σn

∣∣∣∣Eθ

[
Eθ

(
σn

μn

− (Ws
n − Wn)

∣∣∣Wn

)
f ′(Wn)

]∣∣∣∣
(36)

≤ μn

σn

√
VarEθ(Ws

n − Wn|Wn) = μn

σ 2
n

�n,

recalling the definition of �n in (5).
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Moving now to the second term of (34), Bolthausen [(1984), equation (2.4)]
gives

|f (x)| ≤ 1 and |xf (x)| ≤ 1,

and combining these inequalities with |f ′(x)| ≤ 1 and (32) as in Bolthausen
[(1984), equation (2.5)] yields

|f ′(x) − f ′(x + t)| ≤ |t |
(

1 + |x| + 1

λ

∫ 1

0
1[z,z+λ](x + ut) du

)
.

Hence, applying the bound |Y s
n − Yn| ≤ Kn, the second term in (34) may be

bounded by

μn

σn

Eθ

∫ Kn/σn

−Kn/σn

|t |
(

1 + |Wn| + 1

λ

∫ 1

0
1[z,z+λ](Wn + ut) du

)
dt,(37)

yielding three terms.
For the first two terms in (37) we obtain

2μn

σn

Eθ

(
(1 + |Wn|)

∫ Kn/σn

0
t dt

)
= μn

σ 3
n

Eθ [(1 + |Wn|)K2
n].(38)

Next, as |t | ≤ Kn/σn in the region of integration, we may bound the expectation
of the remaining term in (37) by

μn

λσ 2
n

Eθ

(
Kn

∫ Kn/σn

−Kn/σn

∫ 1

0
1[z,z+λ](Wn + ut) dudt

)
.(39)

Clearly,

1[z,z+λ](Wn + ut) ≤ (1 − 1Fn,θ ) + 1[z,z+λ](Wn + ut)1Fn,θ .(40)

Substituting (40) into (39), the first term in (40) gives rise to the expression

μn

λσ 2
n

Eθ

(
Kn

∫ Kn/σn

−Kn/σn

∫ 1

0
(1 − 1Fn,θ ) dudt

)
= 2μn

λσ 3
n

Eθ [K2
n(1 − 1Fn,θ )].(41)

Substituting the second term in (40) into (39), conditioning on Fn and invoking
the Fn measurability of Kn and Fn,θ provided by Conditions 2 and 3, respectively,
yields

μn

λσ 2
n

Eθ

(
Kn

∫ Kn/σn

−Kn/σn

∫ 1

0
1(z ≤ Wn + ut ≤ z + λ)1Fn,θ dudt

)

(42)

= μn

λσ 2
n

Eθ

(
Kn

∫ Kn/σn

−Kn/σn

∫ 1

0
P

Fn

θ (z ≤ Wn + ut ≤ z + λ)1Fn,θ dudt

)
,

where P
Fn

θ denotes conditional probability with respect to Fn. To handle the in-
dicator in (42), note that Condition 3 implies that n − Ln ≥ n0 on Fn,θ . Hence on
Fn,θ we may define

Wn,θ = Vn − μn−Ln,ψn,θ

σn−Ln,ψn,θ
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and write

Wn =
(

σn−Ln,ψn

σn

)
Wn +

(
Yn − Vn

σn

)
−

(
μn − μn−Ln,ψn

σn

)

(43)
:= ρnWn + Tn,1 − Tn,2.

By Conditions 5 and 3 we have |Tn,1| ≤ Bn/σn and that ρn,Bn and Tn,2 are
Fn-measurable. Using (43) we may write

P
Fn

θ (z ≤ Wn + ut ≤ z + λ)1Fn,θ

= P
Fn

θ

(
ρ−1

n (z − Tn,1 + Tn,2 − ut) ≤ Wn

≤ ρ−1
n (z − Tn,1 + Tn,2 − ut + λ)

)
1Fn,θ

(44)
≤ P

Fn

θ

(
ρ−1

n (z + Tn,2 − ut) − Bn/σn−Ln,ψn ≤ Wn

≤ ρ−1
n (z + Tn,2 − ut) + Bn/σn−Ln,ψn + ρ−1

n λ
)
1Fn,θ

= P
Fn

θ (Qn − Bn/σn−Ln,ψn ≤ Wn ≤ Qn + Bn/σn−Ln,ψn + ρ−1
n λ)1Fn,θ ,

where we have set

Qn = ρ−1
n (z + Tn,2 − ut).

Recalling (30), we have

Pθ(z ≤ Wn,θ ≤ z + λ)

≤ |Pθ(z ≤ Wn,θ ≤ z + λ) − P(z ≤ Z ≤ z + λ)| + P(z ≤ Z ≤ z + λ)(45)

≤ 2δ(n, rn,θ ) + λ/
√

2π.

Since the endpoints of the interval bounding Wn in (44) are Fn-measurable,
using Condition 3 and (45) with the appropriate substitutions, expression (44) is
bounded by

(
2δ(n − Ln, rn−Ln,ψn,θ ) + (2Bn/σn−Ln,ψn,θ + ρ−1

n λ)/
√

2π
)
1Fn,θ

≤ (
2δ(n − Ln, rn,θ/c2) + (

2
√

c1Bn/σn,θ + √
c1λ

)
/
√

2π
)
1Fn,θ ,

where we have applied Condition 4, and that δ(n, r) is nonincreasing in r . As this
last quantity does not depend on u or t , substitution into (42) yields the bound

2μn,θ

λσ 3
n,θ

Eθ

[
K2

n

(
2δ(n − Ln, rn,θ/c2) + (

2
√

c1Bn/σn,θ + √
c1λ

)
/
√

2π
)]

1Fn,θ .(46)

Expression (46) leads to three terms. By (6), that Fn,θ ⊂ {Ln ≤ sn,θ }, and since
n − sn,θ ≥ n0 for all θ ∈ �n,r1 implies sn = supθ∈�n,r1

sn,θ ≤ n − n0, there exists a
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positive constant C1 such that the first term satisfies

4μn,θ

λσ 3
n,θ

Eθ [K2
nδ(n − Ln, rn,θ/c2)1Fn,θ ]

= 4μn,θkn,θ,2

λσ 3
n,θ

Eθ

[
K2

n

EθK2
n

δ(n − Ln, rn,θ/c2)1Fn,θ

]

(47)

≤ C1

λrn,θ

Eθ

[
K2

n

EθK2
n

δ(n − Ln, rn,θ/c2)1Fn,θ

]

≤ C1

λrn,θ

sn∑
l=0

δ(n − l, rn,θ /c2)tn,θ,l,

where tn,θ,l , given in (10), satisfy
n∑

l=0

tn,θ,l = 1 for all θ ∈ �n,r .(48)

Dropping the indicator 1Fn,θ , the sum of the second and third terms of (46) are
bounded by

4
√

c1μnEθ [K2
nBn]√

2πλσ 4
n

+
√

2c1μn√
πσ 3

n

EθK
2
n.(49)

Collecting terms (36), (38), (41), (48) and (49), and letting

cn,θ,1 = μn,θ

σ 2
n,θ

�n,θ + μn,θ

σ 3
n,θ

Eθ

[((
1 +

√
2c1√
π

)
+ |Wn,θ |

)
K2

n

]
and

cn,θ,2 = 2μn,θ

σ 3
n,θ

Eθ [K2
n(1 − 1Fn,θ )] + 4

√
c1μn,θEθ [K2

nBn]√
2πσ 4

n,θ

,

for all z ∈ R we have

|Eθhz,λ(Wn,θ ) − Nhz,λ|
(50)

≤ C1

λrn,θ

sn∑
l=0

δ(n − l, rn,θ /c2)tn,θ,l + cn,θ,1 + 1

λ
cn,θ,2.

Note that Conditions 1 and 2, and 3 and 5, respectively, yield the existence of
positive constants C2 and C3 that

cn,θ,1 ≤ C2/rn,θ and cn,θ,2 ≤ C3/r2
n,θ .(51)

As 1(w ≤ z) ≤ hz,λ(w) ≤ 1(w ≤ z + λ) we obtain

Pθ(Wn,θ ≤ z) − P(Z ≤ z)

≤ |Eθhz,λ(Wn,θ ) − Ehz,λ(Z)| + Ehz,λ(Z) − P(Z ≤ z)
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with Ehz,λ(Z) − P(Z ≤ z) ≤ P(z ≤ Z ≤ z + λ) ≤ λ/
√

2π . Along with a similar
lower bound obtained by considering hz−λ,λ(w), in view of (50) and (51) we have
that for every z ∈ R

|Pθ(Wn,θ ≤ z) − P(Z ≤ z)|

≤ C1

λrn,θ

sn∑
l=0

δ(n − l, rn,θ /c2)tn,θ,l + C2

rn,θ

+ C3

λr2
n,θ

+ λ√
2π

.

Letting λ = 2c2C1/rn,θ , and, noting that the right-hand side does not depend
on z, taking supremum over z ∈ R yields

sup
z∈R

|Pθ(Wn,θ ≤ z) − P(Z ≤ z)|

≤
sn∑

l=0

δ(n − l, rn,θ /c2)tn,θ,l/2c2 + C4/rn,θ(52)

≤
sn∑

l=0

δ(n − l, r/c2)tn,θ,l/2c2 + C4/r

for C4 = C2 +C3/2c2C1 +2c2C1/
√

2π , where for the last inequality we have used
that θ ∈ �n,r , and that δ(n, r) and 1/r are nonincreasing functions of r . Taking
supremum over �n,r1 on the right-hand side of (52), then over �n,r ⊂ �n,r1 on the
left yields

δ(n, r) ≤ sup
θ∈�n,r1

sn∑
l=0

δ(n − l, r/c2)tn,θ,l/2c2 + C4/r.(53)

Suppose first that Condition 6a is satisfied, so that Ln = ln,0 almost surely
for some l0,n ∈ {0, . . . , n} for all θ ∈ �n,r1 . If l0,n > sn then (10) and (53) yield
δ(n, r) ≤ C4/r , proving (31). Otherwise tn,θ,l = 1(l = ln,0) for 0 ≤ ln,0 ≤ sn, and
inequality (53) specializes to

δ(n, r) ≤ δ(n − ln,0, r/c2)/2c2 + C4/r.(54)

When Condition 6b is satisfied, the sum in (53) is a continuous function of θ

on the compact set �n,r1 , and hence achieves its supremum at some θ∗
n ∈ �n,r1 .

Letting pn,l = tn,θ∗
n ,l/2, from (53) and (48) we have

δ(n, r) ≤
sn∑

l=0

δ(n − l, r/c2)pn,l/c2 + C4/r with
n∑

l=0

pn,l = 1/2.(55)

As (54) is the special case of (55) when pn,l = 1(l = ln,0)/2, it suffices to handle
the latter.
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Let an = 0 for 0 ≤ n < n0, and an = supr≥r1
rδ(n, r) for n ≥ n0. For all r ≥ r1

and n ≥ n0 we have

(r/c2)δ(n, r/c2) ≤ sup
s : s≥r1

(s/c2)δ(n, s/c2)

= sup
s : s≥r1/c2

sδ(n, s)

≤
[

sup
s : r1/c2≤s<r1

sδ(n, s)
]
1(c2 > 1) + sup

s : s≥r1

sδ(n, s)

≤ r1 + an.

Using that n ≥ n1 implies n − sn ≥ n0, multiplication by r in (55) yields, with
f = r1/2 + C4, that for all n ≥ n1

rδ(n, r) ≤
sn∑

l=0

(r/c2)δ(n − l, r/c2)pn,l + C4 ≤
sn∑

l=0

(r1 + an−l)pn,l + C4

≤
n∑

l=0

an−lpn,l + f.

Taking supremum on the left-hand side over r ≥ r1 and recalling (55) now yields

an ≤
n∑

l=0

an−lpn,l + f with
n∑

l=0

pn,l = 1/2 for all n ≥ n1.

Lemma 3.1 now implies supn≥n1
an < ∞. Hence, there exists a constant C such

that δ(n, r) ≤ C/r for all n ≥ n1 and all r ≥ r1; that is, (31) holds. �
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