Midterm SMI Mathematical Statistics, Summer 2023
Each part of each problem is worth 20 points, for a total of 80 points.

1. Consider the standard linear model $Y=X \beta+\epsilon$ where $Y \in \mathbb{R}^{n}, X \in \mathbb{R}^{n \times p}$ and $r(X)=p \leq n$. Take $\epsilon \sim \mathcal{N}_{n}\left(0, \sigma^{2} I\right)$. Let also $D \in \mathbb{R}^{q \times p}$ with $r(D)=q \leq p$. In addition, assume that the columns of X are mutually orthogonal and have Euclidean length equal to 1.
1.1 Write out the formula for $\widehat{\beta}_{H}$, the least squares estimator of β subject to the constraint that $D \beta=c$ in this special case.

Solution. Recall that in general we have

$$
\widehat{\beta}_{H}=\widehat{\beta}+\left(X^{T} X\right)^{-1} D^{T}\left[D\left(X^{T} X\right)^{-1} D^{T}\right]^{-1}(c-D \widehat{\beta})
$$

As the columns of X are orthogonal and have length one, we obtain $X^{\top} X=I_{p}$, the identity matrix in \mathbb{R}^{p}, and the formula simplifies to

$$
\begin{equation*}
\widehat{\beta}_{H}=\widehat{\beta}+D^{T}\left[D D^{T}\right]^{-1}(c-D \widehat{\beta}) \quad \text { where } \quad \widehat{\beta}=X^{\top} Y \tag{1}
\end{equation*}
$$

1.2 Consider the regression model

$$
Y_{i}=\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\beta_{3} x_{i, 3}+\epsilon_{i}
$$

and assume the conditions stated above are satisfied. Use the previous problem to find the least squares estimate $\widehat{\beta}_{H}$ of β subject to the constraint that $\beta_{2}=\beta_{3}$, that is, under the condition that each of these two predictors have the same influence on the outcome. Express $\widehat{\beta}_{H}$ in terms of (only) $\widehat{\beta}$ and verify that it satisfies the given constraint.

Solution. In this case $D=[0,1,-1]$ and $c=0$, and (1) specializes to

$$
\widehat{\beta}_{H}=\widehat{\beta}-D^{T}\left[D D^{T}\right]^{-1} D \widehat{\beta}=\left(I-D^{T}\left[D D^{T}\right]^{-1} D\right) \widehat{\beta}=\left(I-D^{T} D / 2\right) \widehat{\beta}
$$

since $D D^{T}=2$. Further

$$
D D^{\top}=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right][0,1,-1]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

so

$$
I-D^{T} D / 2=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 2 & 1 / 2 \\
0 & 1 / 2 & 1 / 2
\end{array}\right]
$$

hence

$$
\widehat{\beta}_{H}=\left(I-D^{T} D / 2\right) \widehat{\beta}=\left(\widehat{\beta}_{1},\left(\widehat{\beta}_{2}+\widehat{\beta}_{3}\right) / 2,\left(\widehat{\beta}_{3}+\widehat{\beta}_{2}\right) / 2\right)^{\top} .
$$

The estimate of β_{1} is unchanged, and the two other slope estimates are equal, as desired.
2. Again consider the linear model under the assumptions that $Y \in \mathbb{R}^{n}, X \in$ $\mathbb{R}^{n \times p}$ and $r(X)=p \leq n$. Take $\epsilon \sim \mathcal{N}_{n}\left(0, \sigma^{2} I\right)$.
2.1 Compute the Information lower bound for the unbiased estimation of β, and determine if the least squares estimator achieves it.

Solution: As \mathbf{Y} is a linear transformation of a multivariate normal it is also multivariate normal, and as it has mean $X \beta$ and variance $\sigma^{2} I$, we see that $\mathbf{Y} \sim \mathcal{N}\left(X \beta, \sigma^{2} I\right)$ and therefore has density

$$
p(y ; \beta)=\frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)^{n}}} \exp \left(-\frac{1}{2 \sigma^{2}}\|Y-X \beta\|^{2} .\right)
$$

As the normalizing constant does not depend on β, taking the partial derivative of the \log with respect to β yields

$$
\begin{aligned}
\partial_{\beta} \log p(y ; \beta)=\partial_{\beta}\left(-\frac{1}{2 \sigma^{2}}\|Y-X \beta\|^{2}\right)= & -\frac{1}{2 \sigma^{2}}\left(-2 X^{T} Y+2 X^{T} X \beta\right) \\
& =-\frac{1}{\sigma^{2}}\left(-X^{T} Y+X^{T} X \beta\right) .
\end{aligned}
$$

Hence, the information matrix is given by

$$
\begin{array}{r}
\frac{1}{\sigma^{4}} \operatorname{Var}_{\beta}\left(-X^{T} Y+X^{T} X \beta\right)=\frac{1}{\sigma^{2}} \operatorname{Var}_{\beta}\left(X^{T} Y\right) \\
=\frac{1}{\sigma^{4}} X^{\top} \operatorname{Var}_{\beta}(Y) X=\frac{1}{\sigma^{2}} X^{\top} X .
\end{array}
$$

As the variance of the least squares estimator is also equal to $\sigma^{2}\left(X^{T} X\right)^{-1}$, it achieves the information bound.
2.2 Now specialize to the one dimensional linear regression model

$$
Y_{i}=\beta_{1}+\beta_{2} x_{i}+\epsilon_{i}
$$

and assume the conditions above are satisfied. In general, does one achieve better estimates of β_{2} by having knowledge of β_{1} ? If so, are there any conditions one can impose on the model so that the estimation of β_{2} is not affected by the lack of knowledge of the value of β_{1} ?

Solution: The design matrix here is given by $X=(\mathbf{1}, \mathbf{x})$ where the first column is all ones, and the second column is $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$. Therefore

$$
X^{\top} X=\left[\begin{array}{cc}
n & \sum_{i} x_{i} \\
\sum_{i} x_{i} & \sum_{i} x_{i}^{2}
\end{array}\right]=: n\left[\begin{array}{cc}
1 & \bar{x} \\
\bar{x} & \overline{x^{2}}
\end{array}\right]
$$

With ρ the correlation between the components of the score function, the effective information I_{22}^{*} for estimating β_{2} when β_{1} is unknown is given by

$$
I_{11}^{*}=I_{11}\left(1-\rho^{2}\right)=n\left(1-\frac{\bar{x}^{2}}{\overline{x^{2}}}\right)
$$

Hence, in general this quantity takes on values strictly less than I_{11}, showing that ignorance of β_{1} will degrade the estimation of β_{2}, except only in the special case where $\sum_{i} x_{i}=0$.

