
Midterm SMI Mathematical Statistics, Summer 2023

Each part of each problem is worth 20 points, for a total of 80 points.

1. Consider the standard linear model Y = Xβ + ε where Y ∈ Rn, X ∈ Rn×p

and r(X) = p ≤ n. Take ε ∼ Nn(0, σ2I). Let also D ∈ Rq×p with r(D) = q ≤ p. In

addition, assume that the columns ofX are mutually orthogonal and have Euclidean

length equal to 1.

1.1 Write out the formula for β̂H , the least squares estimator of β subject to

the constraint that Dβ = c in this special case.

Solution. Recall that in general we have

β̂H = β̂ + (XTX)−1DT [D(XTX)−1DT ]−1(c−Dβ̂).

As the columns of X are orthogonal and have length one, we obtain

X>X = Ip, the identity matrix in Rp, and the formula simplifies to

β̂H = β̂ +DT [DDT ]−1(c−Dβ̂) where β̂ = X>Y.(1)

1.2 Consider the regression model

Yi = β1xi,1 + β2xi,2 + β3xi,3 + εi

and assume the conditions stated above are satisfied. Use the previous

problem to find the least squares estimate β̂H of β subject to the constraint

that β2 = β3, that is, under the condition that each of these two predictors

have the same influence on the outcome. Express β̂H in terms of (only) β̂

and verify that it satisfies the given constraint.

Solution. In this case D = [0, 1,−1] and c = 0, and (1) specializes to

β̂H = β̂ −DT [DDT ]−1Dβ̂ = (I −DT [DDT ]−1D)β̂ = (I −DTD/2)β̂,

since DDT = 2. Further

DD> =


0

1

−1

 [0, 1,−1] =


0 0 0

0 1 −1

0 −1 1


1
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so

I −DTD/2 =


1 0 0

0 1/2 1/2

0 1/2 1/2


hence

β̂H = (I −DTD/2)β̂ = (β̂1, (β̂2 + β̂3)/2, (β̂3 + β̂2)/2)>.

The estimate of β1 is unchanged, and the two other slope estimates are

equal, as desired.

2. Again consider the linear model under the assumptions that Y ∈ Rn, X ∈

Rn×p and r(X) = p ≤ n. Take ε ∼ Nn(0, σ2I).

2.1 Compute the Information lower bound for the unbiased estimation of β,

and determine if the least squares estimator achieves it.

Solution: As Y is a linear transformation of a multivariate normal it is

also multivariate normal, and as it has mean Xβ and variance σ2I, we see

that Y ∼ N (Xβ, σ2I) and therefore has density

p(y;β) =
1√

(2πσ2)n
exp

(
− 1

2σ2
‖Y −Xβ‖2.

)
As the normalizing constant does not depend on β, taking the partial de-

rivative of the log with respect to β yields

∂β log p(y;β) = ∂β

(
− 1

2σ2
‖Y −Xβ‖2

)
= − 1

2σ2

(
−2XTY + 2XTXβ

)
= − 1

σ2

(
−XTY +XTXβ

)
.

Hence, the information matrix is given by

1

σ4
Varβ

(
−XTY +XTXβ

)
=

1

σ2
Varβ

(
XTY

)
=

1

σ4
X>Varβ (Y )X =

1

σ2
X>X.

As the variance of the least squares estimator is also equal to σ2(XTX)−1,

it achieves the information bound.

2.2 Now specialize to the one dimensional linear regression model

Yi = β1 + β2xi + εi
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and assume the conditions above are satisfied. In general, does one achieve

better estimates of β2 by having knowledge of β1? If so, are there any

conditions one can impose on the model so that the estimation of β2 is not

affected by the lack of knowledge of the value of β1?

Solution: The design matrix here is given by X = (1,x) where the first

column is all ones, and the second column is x = (x1, . . . , xn)T . Therefore

X>X =

 n
∑
i xi∑

i xi
∑
i x

2
i

 =: n

 1 x

x x2


With ρ the correlation between the components of the score function, the

effective information I∗22 for estimating β2 when β1 is unknown is given by

I∗11 = I11(1− ρ2) = n

(
1− x2

x2

)
.

Hence, in general this quantity takes on values strictly less than I11, showing

that ignorance of β1 will degrade the estimation of β2, except only in the

special case where
∑
i xi = 0.


