[1] Let $X \in \mathbb{R}^{n \times p}$ with $p \leq n$. Show that $r(X)=p$ if and only if $X^{T} X \in \mathbb{R}^{p \times p}$ is invertible.
[2] Consider the linear model

$$
\begin{equation*}
\mathbf{Y}=X \beta+\epsilon \tag{1}
\end{equation*}
$$

where \mathbf{Y} and ϵ are in $\mathbb{R}^{n}, X \in \mathbb{R}^{n \times p}$, and $\beta \in \mathbb{R}^{p}$, with $p \leq n$ and $r(X)=p$.
Show, using matrix algebra only, that

$$
\|\mathbf{Y}-X \widehat{\beta}\|^{2}=\inf _{\beta \in \mathbb{R}^{p}}\|\mathbf{Y}-X \beta\|^{2} \quad \text { for } \quad \widehat{\beta}=\left(X^{T} X\right)^{-1} X^{T} Y
$$

[3] For the linear model in (1), prove (2) using only calculus. Compare to the method used in item ([2])
[4] When $r(X)<p$ prove a statement parallel to (2) for the quantity $\|\widehat{\mathbf{Y}}-\mathbf{Y}\|^{2}$ for a suitably defined $\widehat{\mathbf{Y}}$. State in what ways this situation differs from the one where X has full rank.
[5] For the linear model (1) and $\widehat{\beta}$ as given in (2) with $E[\epsilon]=0$ and $\operatorname{Cov}(\epsilon)=$ $\sigma^{2} I$, consider the variance estimator

$$
S^{2}=\frac{1}{n-p} \sum_{i=1}^{n} \widehat{\epsilon}_{i}^{2}
$$

where the 'residual' $\widehat{\epsilon}_{i}$ is given by

$$
\widehat{\epsilon}_{i}=y_{i}-\widehat{\beta_{1}} x_{i, 1}-\cdots-\widehat{\beta_{p}} x_{i, p}
$$

Write out S^{2} in terms only of vector and matrices, and prove that it is unbiased for σ^{2} using only the results of the previous relevant exercises, and also identities and properties such as $P X=X$ for the projection matrices P and N.
[6] In the setting of the previous exercise, prove that the sum of the residuals is zero when the vector $\mathbf{1}_{n}=(1, \ldots, 1)^{T} \in \mathbb{R}^{n}$ is an element of $\mathcal{R}(X)$.
[7] Apply the results developed to derive estimates of β_{1}, β_{2} and σ^{2} in the basic 'Galton' linear regression. Can one interpret the estimate of the slope parameter in terms of the estimated correlation between X and Y, and their estimated standard deviations?
[8] For the Galton linear regression, with x_{2} restricted to take values in the interval $[-1,1]$, at which values should n observations be taken so as to minimize the variance of the least squares estimate of the slope parameter β_{2} ? Generalize the result to an arbitrary interval $[a, b]$.
[9] Suppose that $\mathbf{X} \sim \mathcal{N}_{n}(\mu, \Sigma)$ where

$$
\mathbf{X}=\left[\begin{array}{l}
\mathbf{X}_{1} \tag{3}\\
\mathbf{X}_{2}
\end{array}\right] \quad \mu=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right] \quad \text { and } \quad \Sigma=\left[\begin{array}{cc}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]
$$

with $\mathbf{X}_{i} \in \mathbb{R}^{n_{i}}, n_{1}+n_{2}=n$, and the mean μ and covariance matrix Σ similarly partitioned.
a) Show that \mathbf{X}_{1} and \mathbf{X}_{2} are independent if and only if $\Sigma_{12}=0$. Show one direction using the definition of independent, and the other using the moment generating function.
b) Show, without using any density or conditional density functions, that if Σ_{22} is invertible, then

$$
\mathcal{L}\left(\mathbf{X}_{1} \mid \mathbf{X}_{2}\right) \sim \mathcal{N}\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(\mathbf{X}_{2}-\mu_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)
$$

Hint: Consider

$$
\mathbf{W}=\left(\mathbf{X}_{1}-\mu_{1}\right)-\Sigma_{12} \Sigma_{22}^{-1}\left(\mathbf{X}_{2}-\mu_{2}\right)
$$

and use part a).
[10] For $\mathbf{Y} \in \mathbb{R}^{n}$, and partitioning as in (3), prove that

$$
\inf _{\phi} E\left\|\mathbf{Y}_{1}-\phi\left(\mathbf{Y}_{2}\right)\right\|^{2}=E\left\|\mathbf{Y}_{1}-E\left[\mathbf{Y}_{1} \mid \mathbf{Y}_{2}\right]\right\|^{2}
$$

where the infimum is over all (measurable) functions $\phi: \mathbb{R}^{n_{2}} \rightarrow \mathbb{R}^{n_{1}}$. Hint: Use properties such as the 'tower property' of conditional expectations.
[11] Suppose $\mathbf{Y} \in \mathbb{R}^{n}$ has mean μ and covariance matrix Σ. Partitioning as in (3), and assuming Σ_{22} invertible, prove that

$$
\left.\inf _{\mathbf{a} \in \mathbb{R}^{\mathbb{R}_{1}}, B \in \mathbb{R}^{n_{2} \times n_{1}}} E\left\|\mathbf{Y}_{1}-\mathbf{a}-B\left(\mathbf{Y}_{2}-\mu_{2}\right)\right\|^{2}=E \| \mathbf{Y}_{1}-\mu_{1}-\Sigma_{12} \Sigma_{22}^{-1}\left(\mathbf{Y}_{2}-\mu_{2}\right)\right] \|^{2} .
$$

Note that no assumption is being made regarding the distribution of \mathbf{Y}, other than the existence of first and second moments. Prove this result using only the facts provided by the previous two exercises.
[12] Find a non-Gaussian family of joint distributions $\mathbb{P}_{\rho}, \rho \in[-1,1]$ such that when $(X, Y) \sim \mathbb{P}_{\rho}$ then X and Y have mean zero and variance 1, satisfy $\operatorname{Corr}(X, Y)=\rho$, and have the property that
X and Y are independent if and only if $\operatorname{Cov}(X, Y)=0$.
The existence of such an example shows that the multivariate normal family is not the unique one with property (4).(Hint: Consider constructing \mathbb{P}_{ρ} as a mixture of one joint distribution where X and Y are independent, taken with probability $1-|\rho|$ and a second joint distribution where X and Y are maximally dependent, taken with probability $|\rho|$.)
[13] Find a pair of random variables (X, Y) such that, marginally, both X and Y have a $\mathcal{N}(0,1)$ distribution, but the pair is not bivariate normal.
[14] In the linear model with assumptions as in [2], and also assuming that $\epsilon \sim \mathcal{N}\left(0, \sigma^{2} I\right)$, show that

$$
(n-p) S^{2} / \sigma^{2} \sim \chi_{n-p}^{2}
$$

[15] Recall that we say X_{n} has the χ_{n}^{2} distribution if it has the same distribution as $Z_{1}^{2}+\cdots+Z_{n}^{2}$, for Z_{1}, \ldots, Z_{n} independent standard normal variables.
(a) Find the moment generating function of X_{n}.
(b) For μ_{1}, \ldots, μ_{n}, any real numbers, find the moment generating function of $X_{n, \nu}=\left(Z_{1}+\mu_{1}\right)^{2}+\cdots+\left(Z_{n}+\mu_{n}\right)^{2}$. We say $X_{n, \nu}$ has a non-central chi squared distribution with parameter ν. What function of the means μ_{1}, \ldots, μ_{n} should we take for the non-centrality parameter ν ?
[16] For the linear model under the assumptions that $X \in \mathbb{R}^{n \times p}$ with $r(X)=$ $p \leq n$, and $\epsilon \sim \mathcal{N}_{n}\left(0, \sigma^{2} I\right)$, using matrix methods and the properties of the multivariate normal distribution, show that the least squares estimate $\widehat{\beta}$ and the variance estimate

$$
S^{2}=\frac{1}{n-p} \sum_{i=1}^{n}\|Y-X \widehat{\beta}\|^{2}
$$

are independent.

