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Let Xn, . . . , X1 be i.i.d. random variables with distribution function F and finite
expectation. A statistician, knowing F , observes the X values sequentially and

is given two chances to choose X’s using stopping rules. The statistician’s goal

is to select a value of X as large as possible. Let V 2
n equal the expectation of

the larger of the two values chosen by the statistician when proceeding optimally.

We obtain the asymptotic behavior of the sequence V 2
n for a large class of F ’s

belonging to the domain of attraction (for the maximum) D(Gα
II), where Gα

II(x) =
exp(−x−α)I(x > 0) with α > 1. The results are compared with those for the

asymptotic behavior of the classical one choice value sequence V 1
n , as well as with

the “prophet value” sequence E(max{Xn, . . . , X1}), and indicate that substantial
improvement is obtained when given two chances to stop, rather than one.

Some key words:
Optimal Stopping, Prophet value, Two-choice, Domains of attraction,

Asymptotic value.

1. INTRODUCTION

Kennedy and Kertz (1991) study the asymptotic behavior of the value
sequence of a one choice optimal stopping problem, as n → ∞, where one
observes Xn, . . . , X1 independent, identically distributed random variables
with known distribution F , and the payoff is the random variable at which
one stops. The goal is to maximize the expected payoff. The value of such
a sequence is therefore sup EXt = V 1

n , where the supremum is over all
stopping times t, which stop after at most n observations, with probability
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one. They show that the asymptotic behavior depends on which of the
three well-known domains of attraction (for the maximum) F belongs to.

Recently Assaf and Samuel-Cahn (2000) and Assaf, Goldstein and
Samuel-Cahn (2002) study stopping problems in which the optimal stopper
is given more than one choice. There “Prophet Inequalities” are derived
for general finite sequences of independent, non-negative, not necessarily
identically distributed, random variables.

The present paper focuses on a different aspect of multiple choices. We
consider the situation where the observations are i.i.d. random variables,
and the stopper is given two choices. His payoff is the larger of the two
values chosen, and the goal is to maximize the expected return. As an
example, the situation we consider here may correspond to a situation in
which you put your first selected item (perhaps a house or a job offer) “on
hold” as a guaranteed fallback value. You then proceed sequentially to
select a second item (which should be of greater value than the first, unless
it is the last one) and finish by taking the better of the two items selected.

Let D(Gα
II) be the domain of attraction for the maximum to

Gα
II(x) = exp(−x−α)I(x > 0),

(see notation in Kennedy and Kertz (1991), or p.4 of Leadbetter, Lindgren
and Rootzen, (1983)), and V 2

n = sup1≤t1≤t2≤n E[max{Xt1 , Xt2}]. We study
the asymptotic behavior of V 2

n for F ∈ D(Gα
II). The case F ∈ D(Gα

III)
has recently been considered in Assaf, Goldstein and Samuel-Cahn (2003),
henceforth referred to as AGS. Because the distributions whose maxima are
attracted to Gα

III are bounded above, it was more natural there to consider
the goal to be the minimization of the expected value of the minimum
of the two values chosen. The results obtained there about the minimum
were then translated back to results about the maximum; see Remark 7.4
of AGS.

A necessary and sufficient condition for F ∈ D(Gα
II) (see Theorem 1.6.2

of Leadbetter, Lindgren and Rootzen, 1983) is xF = sup{x : F (x) < 1} =
∞, and that for some α > 0,

lim
t→∞

[1− F (tx)]/[1− F (t)] = x−α for all x > 0,

which can also be written as

1− F (x) = x−αL(x) as x →∞ (1)

where L(x) is slowly varying at ∞. We will treat the case where

lim
x→∞

L(x) = L ∈ (0,∞). (2)
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Throughout we will consider the case α > 1; the case 0 < α ≤ 1 is
uninteresting, as then the expectation of X is infinite. It is known that for
Xn, . . . , X1 i.i.d. with distribution F ∈ D(Gα

II) with finite expectation, for
Mn = max(Xn, . . . X1) we have

lim
n→∞

n[1− F (EMn)] = [Γ
(

1− 1
α

)
]−α. (3)

(See proposition 2.1 of Resnick, 1987). Let V 1
n be the optimal one-choice

value, when the goal is to maximize the expected value of the item chosen.
Then by Kennedy and Kertz (1991),

lim
n→∞

n[1− F (V 1
n )] =

α− 1
α

. (4)

When (2) is satisfied, then taking L = 1 for convenience, the limits in (3)
and (4) can be rewritten, respectively, as

lim
n→∞

n−1/αEMn = Γ(1− 1/α)

and lim
n→∞

n−1/αV 1
n =

(
α

α− 1

)1/α

. (5)

Thus if we denote by Vn = V 2
n the optimal two choice value, it is reasonable

to expect that lim
n→∞

n−1/αVn = dα, where
(

α
α−1

)1/α

< dα < Γ(1 − 1/α).
We prove the following

Theorem 1.1. Let Xn, Xn−1, . . . , X1 be i.i.d. random variables with finite
expectation, having distribution function F satisfying xF = ∞, 1− F (x) =
x−αL(x) where limx→∞ L(x) = L ∈ (0,∞). Define

h(u) =
(

α

α− 1
+

1
u

)1/α

for 0 < u < ∞

and let βα be the unique solution y to∫ y

0

h(u)du−
(

1
α

+ y

)
h(y) = 0. (6)

Then

lim
n→∞

n[1− F (V 2
n )] = [h(βα)]−α,

so in particular, for L = 1

lim
n→∞

n−1/αV 2
n = h(βα) = dα.
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The proof of Theorem 1.1 is given in Section 6.
The paper is organized as follows. In Section 2 we derive the optimality

equations and give a heuristic argument leading to Theorem 1.1. Section
3 contains some lemmas. In Section 4 we derive a general theorem for the
convergence of recursions. These are applied in Section 5 to the family of
Pareto distributions, and are then, in Section 6, generalized to all distribu-
tions considered in Theorem 1.1. Section 7 contains a table of numerical
evaluations and comparisons of the limiting scaled values, as n tends to
infinity, of the optimal one and two stop values, and EMn. It is seen that
considerable improvement is obtained, through the possibility of a second
choice. For example, numerical computations indicate that the limit, as n

tends to infinity, of the ratio [V 2
n −V 1

n ]/[EMn−V 1
n ] is never less than 78%.

After the present work was accepted, the paper of Kühne and
Rüschendorf (2002) came to our attention. That paper treats the same
problem as the one here, using Poisson-approximations, and in full gen-
erality, basing their results on their earlier detailed paper Kühne and
Rüschendorf (2000). Detailed results are given for the domain of attraction
D(e−e−x

), only. Our approach in the present paper is more direct, and our
results for the present domain of attraction are more explicit than theirs,
when (2) holds.

2. PRELIMINARIES AND HEURISTICS

For X an integrable random variable with distribution function F , let

g(x) = g1(x) = E[X ∨ x] and gn+1(x) = g(gn(x)), n ≥ 1.

The function gn(x) equals the optimal one-choice value when there are n

observations to be made, and one is guaranteed the value x; for this reason
when stressing this interpretation we denote gn(x) by V 1

n (x). On the other
hand, for notational clarity, we will drop the superscript on V 2

n , denoting
it Vn. Clearly gn(x) is increasing in x for all n. The optimality equations
for the two choice values are

V2 = E[X1 ∨X2]

Vn+1 = E[Vn ∨ V 1
n (Xn+1)] n ≥ 2. (7)

Note that we ‘reverse’ index our sequence of variables Xn, . . . , X1 for con-
venience, so that Xk denotes the kth variable from the end of the horizon.
The first term in the expectation (7) corresponds to passing up Xn+1 and
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keeping two choices on the remaining n variables; the second term corre-
sponds to choosing Xn+1 and continuing with one choice on the remaining
variables with the value Xn+1 guaranteed.

We now present an outline of the argument which yields our result and
an accompanying simple heuristic. From (7), letting bn be defined through

Vn = gn(bn), (8)

we see that if Xn+1 > bn then it should be chosen and otherwise passed
up. Write (7) in the form

Vn+1 = VnF (bn) +
∫ ∞

bn

gn(x)dF (x). (9)

As a representative of F ∈ D(Gα
II) we first consider, for α > 1 fixed,

the Pareto distribution with

Fα(x) = [1− x−α]I(x ≥ 1) and density αx−(α+1)I(x ≥ 1). (10)

For this family

g(x) = x +
1

α− 1
x−(α−1) for x ≥ 1 (11)

so gn+1(x) = gn(x) +
1

α− 1
gn(x)−(α−1) for x ≥ 1. (12)

Since P (X ≥ 1) = 1 we have V 1
n = gn(1).

In particular, for the Pareto family, (9) becomes

Vn+1 = Vn[1− b−α
n ] + α

∫ ∞

bn

gn(x)x−(α+1)dx. (13)

For y ≥ 1/n let

fn(y) = n−1/αgn((ny)1/α), that is, gn(x) = n1/αfn(xα/n) (14)

and

W 1
n = n−1/αVn, and Bn = n−1bα

n,

thus, from (8),

Wn = fn(Bn). (15)

Note that gn(x) is strictly increasing for x ≥ 1, and hence fn(x) is strictly
increasing for x ≥ 1/n. Rewriting (13) in this notation and multiplying by
n−1/α yields(

n + 1
n

)1/α

Wn+1 = Wn

[
1− 1

nBn

]
+ α

∫ ∞

bn

fn

(
xα

n

)
x−(α+1)dx,
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and making the change of variable y = xα/n, we obtain(
n + 1

n

)1/α

Wn+1 = Wn

[
1− 1

nBn

]
+ n−1

∫ ∞

Bn

fn(y)y−2dy. (16)

When the change of variable is done directly in (7), this expression can also
be written as(

n + 1
n

)1/α

Wn+1 = n−1

∫ ∞

1/n

[Wn ∨ fn(y)]y−2dy. (17)

Since ((n + 1)/n)1/α = 1 + 1/(αn) + O(n−2), if we multiply (16) by n we
have

n(Wn+1 −Wn) = − 1
α

Wn+1 −
1

Bn
Wn +

∫ ∞

Bn

fn(y)y−2dy + O(n−1). (18)

If Wn → W such that Wn = W + a/n + O(n−2), then n(Wn+1 −Wn) → 0
and if also Bn → Bα and fn(y) → f(y) then taking limits in (18) yields

0 = −
(

1
α

+
1

Bα

)
W +

∫ ∞

Bα

f(y)y−2dy (19)

and by (15)

W = f(Bα). (20)

To find f we use the following heusistics: set, for short ρ = α/(α− 1). By
(5)

V 1
n = gn(1) ≈ (nρ)1/α.

Suppose for a given x we can find k such that

gn(x) ≈ gn+k(1) ≈ ((n + k)ρ)1/α.

But

gn+k(1) = gn(gk(1)), thus x ≈ gk(1) ≈ (kρ)1/α,

i.e.

k ≈ xα/ρ,

and thus

gn(x) ≈ ((n + xα/ρ)ρ)1/α = (nρ + xα)1/α.

Set y = xα/n to get

gn((ny)1/α) ≈ n1/α(ρ + y)1/α.
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Thus by (14)

fn(y) ≈
(

α

α− 1
+ y

)1/α

.

Let

f(y) =
(

α

α− 1
+ y

)1/α

. (21)

Note that by (5) and (21)

lim
y→0

f(y) =
(

α

α− 1

)1/α

= lim
n→∞

n−1/αV 1
n .

Also, (20) translates to

W =
(

α

α− 1
+ Bα

)1/α

. (22)

Set y = 1/u and h(u) = f(1/u) in (22) and (21), and write βα = 1/Bα to
obtain

h(u) =
(

α

α− 1
+

1
u

)1/α

, (23)

and

W = h(βα).

Now substituting into (19)∫ βα

0

h(u)du−
(

1
α

+ βα

)
h(βα) = 0

which explains the theorem.

3. SOME LEMMAS

In this section we determine the limiting behavior of the sequence of func-
tions fn, n = 1, 2, . . . given in (14), for determining the asymptotic behavior
of the two stop value for an i.i.d. sequence with distribution (10), a repre-
sentative of F ∈ D(Gα

II).

Lemma 3.1. Let fn(y) and f(y) be given in (14) and (21), respectively.
Then

fn(y) > f(y) for all y ≥ 1/n. (24)
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Proof. We prove (24) by induction. For n = 1 by (11)

f1(y) = g1(y1/α) = y1/α +
1

α− 1
y−1+1/α = y1/α

(
1 +

1
(α− 1)y

)
, y ≥ 1

while

f(y) = y1/α

(
1 +

α

(α− 1)y

)1/α

.

But 1/α < 1, therefore (1 + x)1/α < 1 + x/α, thus f(y) <

y1/α
(
1 + 1

(α−1)y

)
= f1(y), and (24) holds for n = 1. Now assume (24)

holds for some n ≥ 1. Then by (14), for x ≥ 1,

gn(x) = n1/αfn

(
xα

n

)
> n1/αf

(
xα

n

)
= x

(
αn

(α− 1)xα
+ 1
)1/α

(25)

and thus, since g is increasing

gn+1(x) = g(gn(x)) > x

(
αn

(α− 1)xα
+ 1
)1/α

{
1 +

1
α− 1

[
xα

(
αn

(α− 1)xα
+ 1
)]−1

}

= x

(
αn

(α− 1)xα
+ 1
)1/α [

1 +
1

αn + (α− 1)xα

]
. (26)

Thus, similar to (25), it suffices to show that for x ≥ 1 the right hand side
of (26) is greater than

x

(
α(n + 1)
(α− 1)xα

+ 1
)1/α

,

i.e. that

αn + (α− 1)xα

(α− 1)xα

(
1 +

1
αn + (α− 1)xα

)α

>
α(n + 1) + (α− 1)xα

(α− 1)xα
.

Put over the common factor (α−1)xα, the numerator on the left hand side
is greater than (αn + (α− 1)xα)

(
1 + α

αn+(α−1)xα

)
= α(n + 1) + (α− 1)xα

which is the numerator of the right hand side.

Lemma 3.2. Let εn(y) = fn(y)− f(y). Then for n ≥ 1

εn(y) <
y1/α−2

2(α− 1)n
for y ≥ 1/n. (27)
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Proof: Consider (1 + t)δ where 0 < δ < 1, t > 0. Then by Taylor
expansion, for some 0 < θ < 1

(1 + t)δ = 1 + δt− δ(1− δ)t2

2(1 + θt)2−δ
> 1 + δt− δ(1− δ)t2

2
.

Hence for t = α/((α− 1)y) and δ = 1/α,

f(y) = y1/α

(
1 +

α

(α− 1)y

)1/α

> y1/α

[
1 +

1
(α− 1)y

− 1
2(α− 1)y2

]
.(28)

We prove (27) by induction. For n = 1 we have f1(y) = y1/α(1 + 1
(α−1)y ),

for y ≥ 1. Thus (27) follows immediately for n = 1 by (28). Now suppose
(27) holds for some n ≥ 1. Set an = n/(n + 1). Then by (14) and (12) it
follows, after setting y = xα/n, that

a−1/α
n fn+1(any) = fn(y) +

1
(α− 1)n

fn(y)−(α−1). (29)

We want to show that εn+1(y) < y1/α−2

2(α−1)(n+1) for y ≥ 1/(n + 1). This is
equivalent to

εn+1(any) <
a
1/α−2
n y1/α−2

2(α− 1)(n + 1)
=

a
1/α
n y1/α−2(n + 1)

2(α− 1)n2
for y ≥ 1/n. (30)

Now, by (29)

εn+1(any) = fn+1(any)− f(any) (31)

= a1/α
n

{
fn(y) +

1
(α− 1)n

fn(y)−(α−1) − a−1/α
n f(any)

}
.

Note that

f ′(y) =
1
α

f(y)−(α−1) > 0 and f
′′
(y) =

−(α− 1)
α2

f(y)−(2α−1) < 0.

Thus by Taylor expansion we can write, for some 0 < θ < 1,

f(x + ∆) = f(x) +
∆
α

f(x)−(α−1) − ∆2(α− 1)
2α2

f(x + θ∆)−(2α−1).

Thus with ∆ = α
n(α−1) , we have

a−1/α
n f(any) =

(
n + 1

n

α

α− 1
+ y

)1/α

= f

(
y +

α

n(α− 1)

)
(32)

= f(y) +
1

n(α− 1)
f(y)−(α−1) − 1

2n2(α− 1)
f(y +

θα

n(α− 1)
)−(2α−1).
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Substituting (32) into (31) we obtain εn+1(any) is a
1/α
n times

εn(y) +
1

n(α− 1)
(fn(y)−(α−1) − f(y)−(α−1))

+
1

2n2(α− 1)
f(y +

θα

n(α− 1)
)−(2α−1). (33)

Now by Lemma 3.1, since α > 1, we have fn(y)−(α−1) < f(y)−(α−1). Thus
the second term in (33) is negative. Also f(y) is increasing, thus f(y)−(2α−1)

is decreasing, and

f−(2α−1)

(
y +

θα

n(α− 1)

)
< f−(2α−1)(y) =

1(
α

α−1 + y
)2−1/α

< y1/α−2.

Thus from (33) and the induction hypothesis, for y ≥ 1/n, and therefore
for any ≥ 1/(n + 1), we have

εn+1(any) < a1/α
n { y1/α−2

2(α− 1)n
+

1
2n2(α− 1)

y1/α−2}

= a1/α
n y1/α−2(n + 1)/[2(α− 1)n2]

which shows (30).
The following Corollary is an immediate consequence of Lemmas 3.1

and 3.2.

Corollary 3.1. Let

hn(u) = fn

(
1
u

)
0 < u ≤ n, (34)

where fn is defined in (14). Then for all y > 0, as n →∞,

fn(y) → f(y) =
(

α

α− 1
+ y

)1/α

and

hn(y) → h(y) =
(

α

α− 1
+

1
y

)1/α

.

Note that

lim
y→∞

h(y) =
(

α

α− 1

)1/α

= lim
n→∞

n1/αV 1
n ,

and that (2) holds for (10) with L = 1.
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With the notation (34) we can rewrite (17) as(
n + 1

n

)1/α

Wn+1 = n−1

n∫
0

[hn(u) ∨Wn]du (35)

and if we let βn = 1/Bn, then, from (15)

Wn = hn(βn).

4. CONVERGENCE OF RECURSIONS

We consider functions q and Q satisfying the following condition. We allow
q(0) to take the value infinity.

Condition 4.1. There exist positive numbers A and a such that q(y) is
nonnegative for y ≥ 0, strictly monotone decreasing and differentiable for
0 < y < A, non-increasing for y ≥ A and

∫ a

0
q(u)du < ∞. Further,

Q(A) > 0 where Q(y) is defined by

Q(y) =

y∫
0

q(u)du− (1/α + y) q(y). (36)

Lemma 4.1. Under Condition 4.1, the function Q(y) is strictly increasing
in (0, A), non-decreasing for y > A and there exists a unique value b for
which Q(b) = 0 and b < A.

Proof. Let 0 ≤ y1 < y2. Elementary calculations yield

Q(y2)−Q(y1) ≥
(

1
α

+ y1

)
(q(y1)− q(y2)),

and monotonicity now follows from noting the latter expression is positive
if y1 < A, and non-negative otherwise. Since Q(0) < 0 and Q(A) > 0 the
claim on the root b follows.

Our aim is to prove

Theorem 4.1. Let Condition 4.1 be satisfied, and let m ≥ 1 and c be
arbitrary. Define

Zm = c and
(

n + 1
n

)1/α

Zn+1 =
1
n

n∫
0

(q(u) ∨ Zn)du for n ≥ m. (37)

Then the limit of Zn exists and satisfies

lim
n→∞

Zn = d = q(b)
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where b is the unique root of Q(y) = 0.

The crux of the proof of Theorem 4.1 is the following Lemma.

Lemma 4.2. Let Condition 4.1 be satisfied, and let m ≥ 1 be any integer
and c any constant, and suppose that Zn for n ≥ m is defined by (37).
Then for every δ ∈ (0,min{q(0) − d, d − q(A)}) there exist ∆ > 0 and n0

such that for all n ≥ n0,

if Zn > d + δ then Zn+1 ≤ (1−∆/n)Zn, (38)

if Zn < d− δ then Zn+1 ≥ (1 + ∆/n)Zn, (39)

if Zn > d then Zn+1 > d, and (40)

if |Zn − d| ≤ δ then |Zn+1 − d| ≤ δ. (41)

Proof: We have

(
n

n + 1
)1/α = 1− 1

αn
+

1
α

(
1
α

+ 1)
1

2n2
+ Oα(n−3),

and hence for any ρ 6= 0

(
n

n + 1
)1/α(1+

1
ρn

) = 1+
1
n

(
1
ρ
− 1

α
)+

1
n2

(
1
2α

(
1
α

+ 1)− 1
αρ

)
+Oα,ρ(n−3),

(42)
where we write Oλ(cn) to indicate a sequence bounded in absolute value
by cn times a constant depending only on λ, a collection of parameters.

Define

M(t) =
∫ q−1(t)

0

(
q(y)

t
− 1
)

dy for q(A) < t ≤ q(0).

From (36), Q(b) = 0 and d = q(b), we have

M(d) = 1/α.

It is not hard to see that M(t) is strictly decreasing over its range. Hence,
setting ∆2 = (M(d − δ) − 1/α)/2 and ∆1 = (1/α −M(d + δ))/2 we have
∆ = min{∆1,∆2} > 0.

Consider the function

rn(t) =
1
n

∫ n

0

(
q(y)

t
∨ 1
)

dy.

We first show that Zn < q(0) for all n sufficiently large. This is obvious
when q(0) = ∞. If q(0) < ∞ then note first that Zn < q(0) implies
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Zn+1 < q(0). Now assuming that Zn > q(0) for all n sufficiently large
gives Zn+1 ≤ (n/(n + 1))1/αZn and the contradiction that Zn → 0 by∏

k(k/(k + 1))1/α = 0.
Since Zm+1 > 0 we have Zn > 0 for all n ≥ m + 1, and now by (37)

Zn+1/Zn =
(

n

n + 1

)1/α

rn(Zn). (43)

By definition, for q(A) < t ≤ q(0)

rn(t) = 1 +
1
n

∫ q−1(t)∧n

0

(
q(y)

t
− 1
)

dy = 1 +
1
n

M(t) when n ≥ q−1(t).

To prove (38), assume Zn > d + δ. Since rn is decreasing, using (43)
and (42), we have for all n > q−1(d + δ),

Zn+1 ≤ Zn(
n

n + 1
)1/αrn(d + δ)

= Zn(
n

n + 1
)1/α(1 +

1
n

M(d + δ))

=
[
1 +

1
n

(M(d + δ)− 1
α

) + Oα,d−δ(n−2)
]

Zn

≤ (1− ∆1

n
)Zn ≤ (1− ∆

n
)Zn

for all n sufficiently large, showing (38).
Next we prove (39). When Zn < d − δ, we have similarly that for

n > q−1(d− δ),

Zn+1 ≥ Zn(
n

n + 1
)1/αrn(d− δ)

= Zn(
n

n + 1
)1/α(1 +

1
n

M(d− δ))

=
[
1 +

1
n

(M(d− δ)− 1
α

) + Oα,d−δ(n−2)
]

Zn

≥ (1 +
∆2

n
)Zn ≥ (1 +

∆
n

)Zn

for all n sufficiently large.
Turning now to (40) and (41), for Zn ≥ d−δ, since d−δ > q(A), βn < A

is well defined by

q(βn) = Zn.



August 5, 2006 9:3 WSPC/Trim Size: 9in x 6in for Proceedings assaf-cahn-goldstein-table-2

14

Now by (37) and (36), for n ≥ A,(
n + 1

n

)1/α

Zn+1 =
1
n

(∫ βn

0

q(y)dy + (n− βn)q(βn)

)
=

1
n

Q(βn)+(1+
1

αn
)Zn;

thus

Zn+1 =
(

n

n + 1

)1/α 1
n

Q(βn) + RnZn (44)

where

Rn = (
n

n + 1
)1/α(1 +

1
αn

). (45)

For u > q(A) consider

Q(q−1(u)) =
∫ q−1(u)

0

q(y)dy − (1/α + q−1(u))u.

Since q−1(u) is differentiable for u > q(A), for such u

d

du
Q(q−1(u)) = −

(
1/α + q−1(u)

)
.

Hence, evaluating Q(q−1(u)) by a Taylor expansion around d, and using
Q(b) = Q(q−1(d)) = 0, we obtain that there exists some ξZn

between d and
Zn such that

Q(βn) = Q(q−1(Zn)) = −(Zn − d)(1/α + q−1(ξZn
)). (46)

Subtracting d from both sides of (44) and using (46) we obtain

Zn+1−d =
{

1− (
n

n + 1
)1/α 1

n
(
1
α

+ q−1(ξZn
))
}

(Zn−d)+[Rn−1]Zn. (47)

Take n1 such that for all n ≥ n1

(
n

n + 1
)1/α 1

n
(
1
α

+ q−1(d− δ)) < 1 and 0 < Rn − 1,

where we use (45) and (42) with ρ = α > 1 for the second inequality.
Take now Zn > d. Then ξZn > d, q−1(ξZn) < q−1(d) < q−1(d− δ), and

for n ≥ n1

0 <

{
1− (

n

n + 1
)1/α 1

n
(
1
α

+ q−1(ξZn))
}

,

so that the first term on the right hand side of (47) is strictly positive. For
n ≥ n1 the second term on the right hand side is also positive, and the sum
of these two terms is therefore positive. This proves (40).
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Turning to (41), suppose that |Zn − d| ≤ δ. Then |ξZn
− d| ≤ δ, and

therefore

q−1(d + δ) ≤ q−1(ξZn) ≤ q−1(d− δ),

Hence, letting ∆3 = (1/α+q−1(d+δ))/2 > 0 we have (1/α+q−1(ξZn
))/2 ≥

∆3 and

0 ≤
{

1− (
n

n + 1
)1/α 1

n
(
1
α

+ q−1(ξZn))
}
≤ 1− ∆3

n.
(48)

Further, from (45), again using (42) with ρ = α, there exists Kα such that

|Rn − 1| ≤ Kα

n2
.

Then for all n so large that

Kα

n
(d + δ) ≤ ∆3δ

we have, using (47) and (48),

|Zn+1 − d| ≤ (1− ∆3

n
)|Zn − d|+ |Rn − 1|Zn

≤ (1− ∆3

n
)δ +

Kα

n2
(d + δ)

≤ δ.

This proves (41).

Proof of Theorem 4.1: Let 0 < δ < d− q(A), and n ≥ n0.

Case I: Zn0 < d− δ. If Zn < d− δ for all n ≥ n0 then by (39) we would
have

Zn+1 ≥
n∏

j=n0

(1 +
∆
j

)Zn0 →∞,

a contradiction. Hence for some n1 ≥ n0 we have Zn1 ≥ d − δ, and we
would therefore be in Case II or Case III.

Case II: Zn1 > d + δ for some n1 ≥ n0. If Zn > d + δ for all n ≥ n1 we
would have, by (38), that

Zn+1 ≤
n∏

j=n1

(1− ∆
j

)Zn1 → 0,
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again a contradiction. Hence there exists n2 ≥ n1 such that Zn2 ≤ d + δ.
By (40), Zn2 > d, reducing to Case III.

Case III: |Zn1 − d| ≤ δ for some n1 ≥ n0. In this case |Zn − d| ≤ δ for
all n ≥ n1 by (41). Since δ can be taken arbitrarily small, the Theorem is
complete. .

5. THE PARETO FAMILY

Let H be to h in (23) as Q is to q in (36). We first show

Lemma 5.1. There exists a unique value βα such that H(βα) = 0.

Proof. Note that h(y) is strictly decreasing and differentiable for 0 < y <

∞ and that
a∫
0

h(u) < ∞ for all a > 0 since α > 1. This Lemma therefore

follows from Lemma 4.1 if we show that H(y) is positive for some y.
Now

H ′(y) = −
(

1
α

+ y

)
h′(y) =

1
α

(
1
α

+ y

)
y−2h(y)−(α−1).

Since lim
y→∞

h(y) = (α/(α − 1))
1
α < ∞ it follows that

∞∫
a

H ′(y)dy = ∞, thus

lim
y→∞

H(y) = ∞ and the Lemma follows.

By Lemmas 3.1, 3.2 and (34), for j = 1, 2, . . . and 0 < y ≤ j

h(y) < hj(y) < h(y) +
y2− 1

α

2(α− 1)j
:= h̃j(y). (49)

Recall that h and hj are strictly monotone decreasing in their respective
ranges.

The derivative of h̃j as defined in (49) is

dh̃j(y)
dy

= − 1
α

y−2h(y)−(α−1) +
2α− 1

2α(α− 1)j
y1− 1

α .

Fix A > βα. It follows that for all j > j0(A) the function h̃j(y) is strictly
monotone decreasing in y ∈ (0, A]. For j > j0(A) let

h̃A
j (y) =

{
h̃j(y) for 0 < y ≤ A

h̃j(A) for A < y < ∞.

Since hj is strictly decreasing it follows from (49) that for 0 < y ≤ j

hj(y) ≤ h̃A
j (y). (50)
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Note also that the sequence h̃A
j (y) is monotone decreasing in j, that is, if

j < n

h̃A
n (y) < h̃A

j (y) for all 0 < y < ∞. (51)

Lemma 5.2. Let H̃A
j (y) be defined for h̃A

j (y) through (36). Then for all
j > j1(A) there exists a value βj,α such that H̃A

j (βj,α) = 0, and with
dα = h(βα) and dj,α = h̃A

j (βj,α),

lim
j→∞

βj,α = βα and lim
j→∞

dj,α = dα. (52)

Proof: Since H̃A
j (y) → H(y) uniformly on [0, A] as j →∞ it follows that

lim H̃A
j (A) = H(A) > H(βα) = 0. Hence for all j > j1(A) the value βj,α

exists. Now (52) follows from the uniform convergence of h̃A
j and H̃A

j to h

and H, respectively.

It will become convenient to consider value and scaled value sequences aris-
ing from stopping on the independent variables Xn, . . . , Xm+1, Ym, . . . , Y1.
The scaled value sequence Wn for this problem satisfies (35) for n ≥ m

with starting value Wm = m−1/αVm(Ym, . . . , Y1). Note that for any m and
c there exists Ym, . . . , Y1 such that c = m−1/αVm(Ym, . . . , Y1); the simplest
construction is obtained by letting Yj = cm1/α for 1 ≤ j ≤ m. Our suppres-
sion of the dependence of Wn on m and c is justified by Theorem 5.1, which
states that the limiting value of Wn is the same for all such sequences.

Lemma 5.3. Let m ≥ 1 be any integer and c be any constant. Let Wm = c

and for n > m let Wn be determined by the recursion (35). Let

Z−m = c and
(

n + 1
n

)1/α

Z−n+1 =
1
n

n∫
0

(h(y) ∨ Z−n )dy for n ≥ m. (53)

For j > j1(A) fixed let mj = max{m, j} and define the sequence Z+
j,n

through

Z+
j,mj

= Wmj
and(

n + 1
n

)1/α

Z+
j,n+1 =

1
n

n∫
0

(h̃A
j (y) ∨ Z+

j,n)dy, n ≥ mj . (54)

Then for all n ≥ mj

Z−n ≤ Wn ≤ Z+
j,n (55)
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and

lim
n→∞

Z−n = dα = h(βα) and lim
n→∞

Z+
j,n = dj,α = h̃A

j (βj,α) (56)

Proof. Since by (49), (51) and (50) for all n > j > j1(A)

h(y) < hn(y) ≤ h̃A
n (y) < h̃A

j (y), 0 < y ≤ n,

we obtain (55) directly by a comparison of the definitions in (35), (53) and
(54). The conclusions in (56) are immediate from Theorem 4.1.

Theorem 5.1. Let m ≥ 1 be any integer, let Xn, . . . , Xm+1, Ym, . . . , Y1 be
independent random variables, where Xi ∼ Fα of (10) and Ym, . . . , Y1 have
finite expectation. For n > m, let

Vn,m = Vn(Xn, . . . , Xm+1, Ym, . . . , Y1)

be the optimal two choice value. Then Wn = n−1/αVn,m satisfies

lim
n→∞

Wn = h(βα) = dα (57)

where βα is defined through (6). In particular, the optimal two stop value
Vn for the sequence of i.i.d. r.v.’s with distribution function Fα of (10)
satisfies

lim
n→∞

n−1V α
n = h(βα)α,

that is, Theorem 1.1 holds for the family of distributions Fα.

Proof. Applying Lemma 5.3 with c = m−1/αVm(Ym, . . . , Y1), for all j >

j1(A)

dα ≤ lim
n→∞

inf Wn ≤ lim sup
n→∞

Wn ≤ dj,α.

Now let j → ∞ and use (52) to get (57). Clearly the values Wn for the
i.i.d. sequence with distribution Fα are generated by recursion (35), m = 2
and c = 2−1/αE[X1 ∨X2].

6. EXTENSION TO GENERAL DISTRIBTUIONS

Let F ∈ D(Gα
II). By Proposition 2.1 of Resnick (1987),

if for some integer 0 < k < α,
∫ 0

−∞
|x|kdF (x) < ∞, (58)

then lim
n→∞

E[n−1/αMn]k = Γ(1− α−1k).
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Since we are considering random variables with finite expectation, it follows
that F satisfies (58) with k = 1.

It suffices to prove Theorem 1.1 for positive random variables. Indeed,
let X be a random variable with finite mean but otherwise arbitrary, X+ be
the positive part of X, and Vn and V +

n the corresponding two stop values.
Clearly we have

Vn ≤ V +
n . (59)

For an inequality in the other direction, note that when we apply the opti-
mal rules on the X+ sequence, if the first variable selected is at time t1 < n

it was because the positive threshold value bn was exceeded, so that

X+
t1 is positive on the event {t1 < n}.

Hence, applying the optimal X+ rules on the X sequence, which may not
be optimal for it, we obtain

Xt1 = X+
t1 on the event {t1 < n},

and moreover that

Xt1 ∨Xt2 = X+
t1 ∨X+

t2 on the event {t1 < n},

yielding

Vn ≥ V +
n P (t1 < n)− E[max(0,−X)]P (t1 = n).

Since E|X| < ∞ and P (t1 < n) → 1 as n →∞, we have

lim inf
n→∞

n−1/αVn ≥ lim
n→∞

n−1/αV +
n

which combined with (59) gives limn→∞ n−1/αVn = limn→∞ n−1/αV +
n .

Thus, without loss of generality, we henceforth assume that X ≥ 0.
We consider F satisfying (1), and (2). First note that without loss of

generality we may assume that (2) holds with L = 1, and prove Theorem
1.1 for this case only. This follows since if X is such that (1) and (2) hold,
then for Y = X/L1/α we have 1−FY (y) = y−αL̂(y) for L̂(y) → 1 as y →∞,
and 1 − FY (V Y

n ) = 1 − FX(V X
n ), where V X

n and V Y
n are the optimal two

choice values of iid sequences of length n from the FX and FY distributions,
respectively.

Lemma 6.1. Let Xα ∼ Fα, where Fα is given in (10) and let X ≥ 0 with
X ∼ F where 1 − F (x) = x−αL(x) and limx→∞ L(x) = 1. Then there
exists a bounded function L∗(x) satisfying limx→∞ L∗(x) = 1 such that

X =d XαL∗(Xα). (60)
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Proof: Let

F−1(u) = sup{x : F (x) < u} for u ∈ (0, 1],

and

L∗(y) = F−1(1− y−α)/y for y > 1.

It is well known (see e.g. Lemma 6.4 of AGS) that for U ∼ U [0, 1],

X =d F−1(U);

since Fα(Xα) = 1−X−α
α ∼ U [0, 1], (60) follows. Now writing

F−1(u) = sup{x : 1− x−αL(x) < u},

we have

F−1(1− y−α) = sup{x : 1− x−αL(x) < 1− y−α} = sup{x : xL−1/α(x) < y}.

Hence limy→∞ L∗(y) = 1 is equivalent to

lim
y→∞

sup{x

y
:

x

y
< L1/α(x)} = 1. (61)

Since for every fixed x, limy→∞ x/y = 0, it follows that x →∞ as y →∞.
But limx→∞ L1/α(x) = 1, and (61) follows. Let B be such that for y ≥ B

we have L∗(y) ≤ 2, say. Using X ≥ 0, on y ∈ (1, B] we have 0 ≤ F−1(0+) ≤
F−1(1 − y−α) ≤ F−1(1 − B−α). Hence the function L∗(y) is bounded on
its domain (1,∞).
Proof of Theorem 1.1 By (60) we write

Xi = Xα,iL
∗(Xα,i) a.s.

where Xn, . . . , X1 are i.i.d. with distribution satisfying the conditions of
the Theorem with L = 1, and Xα,i are distributed with distribution Fα

of (10). Let Xtn
and Xα,tn(α) be the optimally stopped two stop random

variables on the i.i.d. sequences Xn, . . . , X1 and Xn,α, . . . , X1,α, respec-
tively, where tn and tn(α) denote the respective times corresponding to the
optimal values. Let ε > 0 be given and let c+ be such that L∗(x) < 1 + ε
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for all x ≥ c+. Then

lim sup
n→∞

E[n−1/αXtn
] = lim sup

n→∞
E[n−1/αXα,tn

L∗(Xα,tn
)]

= lim sup
n→∞

(
E[n−1/αXα,tn

L∗(Xα,tn
)I(Xα,tn

≥ c+)]

+E[n−1/αXα,tn
L∗(Xα,tn

)I(Xα,tn
< c+)]

)
= lim sup

n→∞
E[n−1/αXα,tn

L∗(Xα,tn
)I(Xα,tn

≥ c+)] (62)

≤ lim sup
n→∞

E[n−1/αXα,tn
(1 + ε)I(Xα,tn

≥ c+)] (63)

= (1 + ε) lim sup
n→∞

E[n−1/αXα,tn
I(Xα,tn

≥ c+)]

= (1 + ε) lim sup
n→∞

E[n−1/αXα,tn
]

≤ (1 + ε) lim sup
n→∞

E[n−1/αXα,tn(α)] (64)

= (1 + ε)h(βα),

where to obtain (62) we have used Lemma (6.1) to conclude that
Xα,tn

L∗(Xα,tn
)I(Xα,tn

< c+) is bounded, and therefore the second ex-
pectation on the line above (62) has limit zero as n →∞; the last equality
follows from Theorem 5.1.

Since (63) holds for any ε > 0 we have

lim sup
n→∞

n−1/αVn(Xn, . . . , X1) ≤ h(βα). (65)

Now let c− be such that L∗(x) > 1 − ε for all x ≥ c−. Consider using the
rule tn(α) on the sequence Xn, . . . , X1. Since this rule may not be optimal
for that sequence, we have

lim inf
n→∞

[n−1/αVn(Xn, . . . , X1)] ≥ lim inf
n→∞

E[n−1/αXtn(α)]

= lim inf
n→∞

E[n−1/αXα,tn(α)L
∗(Xα,tn(α))]

= lim inf
n→∞

E[n−1/αXα,tn(α)L
∗(Xα,tn(α))I(Xα,tn(α) ≥ c−)]

≥ lim inf
n→∞

E[n−1/αXα,tn(α)(1− ε)I(Xα,tn(α) ≥ c−)] (66)

= (1− ε) lim inf
n→∞

E[n−1/αXα,tn(α)I(Xα,tn(α) ≥ c−)]

= (1− ε) lim inf
n→∞

E[n−1/αXα,tn(α)] = (1− ε)h(βα).

Since (66) is true for every ε > 0 we get, by (65),

h(βα) ≥ lim sup
n→∞

n−1/αVn(Xn, . . . , X1) ≥ lim inf
n→∞

n−1/αVn(Xn, . . . , X1) ≥ h(βα),
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and Theorem 1.1 follows.

7. NUMERICAL EVALUATIONS AND REMARKS

In Table 1, for α = 1.1, 1.2, . . . , 2, 3, . . . , 10, the values in column (1), we
tabulate for L = 1 the following quantities in the columns indicated

(2) βα

(3) lim
n→∞

n−1/α V 1
n

(4) lim
n→∞

n−1/α V 2
n

(5) lim
n→∞

n−1/α EMn

In columns (6), (7) and (8) we tabulate the ratios (4)/(3), (5)/(4) and
(5)/(3) respectively. The final column, column (9), of Table 1 represents
the relative (limiting) improvement attained by using two stops rather than
one, as compared to the reference value of the prophet, i.e.

lim
n→∞

(V 2
n − V 1

n )/(EMn − V 1
n ). (67)

The ratio in (67) has a minimum value of 0.788041 attained for α ≈ 2.32.
Thus the limiting improvement when using two choices rather than one is
never below 78.8%.

The following limiting statements can be shown to hold.
(i) For α →∞,

lim
α→∞

βα = e− 1

lim
α→∞

lim
n→∞

n(1− F (V 1
n )) = 1

lim
α→∞

lim
n→∞

n(1− F (V 2
n )) = 1− e−1

lim
α→∞

lim
n→∞

n(1− F (EMn)) = e−γ

and lim
α→∞

lim
n→∞

V 2
n − V 1

n

EMn − V 1
n

= [1− log(e− 1)]/γ = .7946 . . . ,

where γ = .5772 . . . is Euler’s constant.
(ii) For α → 1,

lim
α→1

βα = 0

lim
α→1

lim
n→∞

n(1− F (cn)) = 0 for cn = V 1
n , V 2

n and EMn,

but lim
α→1

lim
n→∞

(V 2
n − V 1

n )/(EMn − V 1
n ) = 1,
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so the limiting relative improvement for this case is 100%.

Remark 7.1. The present approach can easily be applied to obtain
the asymptotic behavior for the one-choice value (obtained in Kennedy
and Kertz (1991) by a different method) when F (x) satisfies (1) and
limx→∞ L(x) = L ∈ (0,∞). First assume X ∼ Fα of (10). Then for
the one choice value V 1

n we have V 1
n = EX and

V 1
n+1 = E[Xn+1 ∨ V 1

n ] = α

∞∫
1

[x ∨ V 1
n ]x−(α+1)dx. (68)

Set W 1
n = n−1/αV 1

n . Multiply (68) by n−1/α to obtain(
n + 1

n

)1/α

W 1
n+1 = α

∞∫
1

[n−1/αx ∨W 1
n ]x−(α+1)dx. (69)

Substituting u = nx−α, (69) can be rewritten as(
n + 1

n

)1/α

W 1
n+1 =

1
n

n∫
0

[u−1/α ∨W 1
n ]du.

Now q(u) = u−1/α satisfies Condition 4.1 and one can thus apply Theorem
4.1 directly to show that

lim
n→∞

W 1
n = d = b−1/α,

where b solves Q(y) = 0 with

Q(y) =

y∫
0

u−1/αdu−
(

1
α

+ y

)
y−1/α

that is, that

α

α− 1
y−1/α+1 −

(
1
α

+ y

)
y−1/α = 0,

from which it follows immediately that b = (α − 1)/α and limn→∞W 1
n =(

α
α−1

)1/α

. The general result for the wider class of distributions satisfying
(1) with lim L(x) = L ∈ (0,∞) now follows much in the same way as the
arguments in Section 6.
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Remark 7.2. Hill and Kertz (1982) and Kertz (1986) study one-choice
prophet inequalities for non-negative i.i.d. random variables. They show
that these prophet inequalities are n-dependent, and for each fixed n the
extremal ratio can be obtained by a random variable with n + 1 atoms,
(thus these variables do not belong to any domain of attraction for the
maximum). As n → ∞ the ratio tends to 1.34 . . .. It may therefore be of
interest to note, by comparison, that the extremal ratio of lim[EMn/V n

1 ] as
n →∞, for the family studied here is 1.2882 . . ., attained for α = 1.4628 . . ..

(1) (2) (3) (4) (5) (6) (7) (8) (9)

α βα lim
V 1

n

n1/α lim
V 2

n

n1/α lim Mn

n1/α (4)/(3) (5)/(4) (5)/(3)
[(4)−(3)]
[(5)−(3)]

1.1 0.54315 8.84546 10.18170 10.50590 1.15107 1.03184 1.18771 0.80477

1.2 0.68106 4.45102 5.34177 5.56632 1.20012 1.04204 1.25057 0.79867

1.3 0.78076 3.08932 3.77026 3.94584 1.22042 1.04657 1.27725 0.79501

1.4 0.85971 2.44692 3.00352 3.14912 1.22747 1.04848 1.28697 0.79266

1.5 0.92489 2.08008 2.55383 2.67894 1.22775 1.04899 1.28790 0.79109

1.6 0.98008 1.84599 2.26032 2.37044 1.22445 1.04872 1.28410 0.79003

1.7 1.02764 1.68530 2.05476 2.15338 1.21922 1.04800 1.27774 0.78931

1.8 1.06915 1.56912 1.90340 1.99289 1.21303 1.04702 1.27007 0.78881

1.9 1.10577 1.48182 1.78769 1.86974 1.20641 1.04590 1.26179 0.78848

2 1.13836 1.41421 1.69660 1.77245 1.19968 1.04471 1.25331 0.78827

3 1.33839 1.14471 1.30982 1.35412 1.14423 1.03382 1.18293 0.78846

4 1.43534 1.07457 1.19365 1.22542 1.11081 1.02662 1.14038 0.78939

5 1.49277 1.04564 1.13935 1.16423 1.08962 1.02184 1.11341 0.79017

6 1.53080 1.03085 1.10830 1.12879 1.07512 1.01849 1.09500 0.79077

7 1.55784 1.02227 1.08833 1.10577 1.06463 1.01602 1.08168 0.79124

8 1.57806 1.01683 1.07448 1.08965 1.05669 1.01412 1.07162 0.79161

9 1.59375 1.01317 1.06432 1.07776 1.05048 1.01263 1.06375 0.79191

10 1.60628 1.01059 1.05657 1.06863 1.04549 1.01142 1.05743 0.79215
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8. FINAL REMARKS

The last two authors are very saddened to announce that our invaluable
colleague and friend David Assaf passed away most suddenly on December
23rd 2003. On that very day, in a last email from Prof. Assaf to us he
wrote that he had some ideas and ‘I will say more on this in a few days.’
We regret on many levels that our work on two stage stopping can now only
remain more or less in its current form, without the benefit of those further
comments, now forever lost, which would have certainly greatly improved
it.
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7. KÜHNE, R. & RÜSCHENDORF, L. (2002) On optimal two-stopping prob-
lems. Limit theorems in probability and statistics, Vol. II, eds. Berkes, I, Csáki,
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