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Abstract: Let X1� X2� � � � � Xn be independent and identically distributed with distribution
function F . A statistician may choose two X values from the sequence by means of two
stopping rules t1� t2, with the goal of maximizing E�Xt1

∨ Xt2
�. We describe the optimal

stopping rules and the asymptotic behavior of the optimal expected stopping values, V 2
n ,

as n → �, when F is the exponential distribution. Specifically, we show that limn→� n�1−
F�V 2

n �� = 1− e−1, and conjecture that this same limit obtains for any F in the (Type I)
domain of attraction of exp�−e−x�.
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1. INTRODUCTION AND SUMMARY

Let X1� � � � � Xn be independent and identically distributed (i.i.d.) random variables
from a known distribution F , where n is a fixed horizon. We consider the situation
where the aim of a statistician (optimal stopper) is to sequentially pick as large an X
value as possible, but unlike the classical case, where only one choice is permitted,
the statistician here is permitted two choices, and the second choice may depend
on the first. The value to the statistician for using stopping rules t1 and t2 is the
maximum of Xt1

and Xt2
, leading to the goal of maximizing E�Xt1

∨ Xt2
� over all

stopping rules t1� t2 satisfying 1 ≤ t1 ≤ t2 ≤ n. The statistician’s first choice, Xt1
, can

be thought of as a guaranteed fallback value. A situation as described may arise,
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e.g., if one is interested in buying a house, and while inspecting houses, and only
one house is needed, one may put one other house on hold. One interesting aspect
of this problem is that the usual backward induction does not apply directly, and a
two-stage backward induction is needed.

Consider first a one-choice situation, where a fixed value x has already been
promised. Let V 1

n �x� denote the optimal return for this situation. Then, clearly, with
X ∼ F ,

V 1
0 �x� = x and V 1

n �x� = E
[
X ∨ V 1

n−1�x�
]
for all n ≥ 1, (1.1)

and the optimal stopping rule in the n-horizon problem is

�n = min
{
i ≤ n � Xi ≥ V 1

n−i�x�
} ∧ n� (1.2)

If we denote g�x� = E�X ∨ x� then the recursion in (1.1) can be written as

V 1
n �x� = g�gn−1�x�� = gn�x�� (1.3)

The usual one-choice value, V 1
n , is clearly V 1

n �−��, or, if X ≥ 0, then also equal to
V 1
n �0�.

Let V 2
n denote the optimal value attainable in the two-choice situation, for

horizon n. Then, similar to the form of (1.1), we have the following backward
induction:

V 2
2 = E�X1 ∨ X2� and V 2

n = E
[
V 2
n−1 ∨ V 1

n−1�X�
]
for all n > 1� (1.4)

The interpretation of (1.4) is as follows: If the current observation (which we have
denoted as just X) is large enough, take it, and then continue optimally as in the
one-choice situation, where the value X is guaranteed. If X is not chosen, continue
optimally with the two-choice situation and horizon n− 1. The optimal strategy is,
therefore, for a first choice use

�1n = min
{
i ≤ n− 1 � V 1

n−i�Xi� ≥ V 2
n−i

} ∧ �n− 1�	

for a second choice, apply the rule of (1.2) adapted to the time �1n of the first choice,
and to the value X�1n

chosen, that is, use

�2n = min
{
i � �1n < i ≤ n�Xi ≥ V 1

n−i�X�1n
�
} ∧ n�

Our interest lies in finding the asymptotic behavior, as n → �, of the sequence
V 2
n of (1.4). It is well known that there are three types of asymptotic distributions

for the maximum (see Leadbetter et al., 1983, p. 4), corresponding to three domains
of attraction. The asymptotic behavior of V 1

n for the one-choice situation has been
studied by Kennedy and Kertz (1991), who show that the limiting behavior of V 1

n

depends upon the domain of attraction to which F belongs. This will therefore
clearly also be the case for the two-choice value sequence, V 2

n . It is evident that,
because of the much more complicated structure of the value sequence V 2

n over V 1
n ,

as given in (1.4) and (1.1) respectively, the study of the asymptotic behavior for two
choices will be more involved.
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In the present article, we study the case where F�x� = 1− e−
x, i.e., the
exponential distribution. This distribution belongs to the domain of attraction of
exp�−e−x�. Examples of the asymptotic behavior of V 2

n for the two-choice stopping
problem on i.i.d. sequences with distributions belonging to the two other domains
of attraction are studied in Assaf et al. (2004, 2006). Our main result here, for the
canonical representative of the distributions in the Type I domain of attraction, is
the following.

Theorem 1.1. Let X1� X2� � � � � Xn be i.i.d. exponentially distributed random variables.
Then

lim
n→� n

(
1− F�V 2

n �
) = 1− e−1� (1.5)

where V 2
n is the optimal two choice value.

Let Mn = max�X1� � � � � Xn�. The corresponding asymptotic values for V 1
n and

EMn are

lim
n→� n�1− F�EMn�� = e−
� (1.6)

where 
 is Euler’s constant (see, e.g., Leadbetter et al., 1983), and, as obtained by
Kennedy and Kertz (1991),

lim
n→� n

(
1− F

(
V 1
n

)) = 1� (1.7)

Limit (1.6) for the maximum and limit (1.7) for the optimal one-choice rule hold
for any F belonging to the domain of attraction of exp�−e−x�. In addition, the two
corresponding limits over the other two domains of attraction behave in this same
fashion, as do all known limits for the optimal two-choice rule (see Assaf et al.,
2004, 2006). Based on this evidence, we conjecture that (1.5) holds for all F in the
Type I domain of attraction.

For the exponential distribution, we may assume without loss of generality that

 = 1, for which (1.5)–(1.7) are easily seen to be equivalent to

lim
n→�

(
V 2
n − log n

) = 1− log�e− 1� = 0�4586 � � � (1.8)

and

lim
n→��EMn − log n� = 
 = 0�5772 � � � and lim

n→�
(
V 1
n − log n

) = 0� (1.9)

respectively.

2. PRELIMINARIES AND HEURISTICS

For F�x� = 1− e−x we have V 1
1 �x� = g1�x� = E�x ∨ X� = x + e−x. To simplify

notation, we write Vn instead of V 2
n . Using (1.3), the recursion in (1.4) can be

written as

Vn+1 =
∫ �

0
�gn�x� ∨ Vn�e

−xdx� (2.1)
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or, if we let bn > 0 denote the unique value such that gn�bn� = Vn (also called the
indifference value), then (2.1) can be rewritten as

Vn+1 = �1− e−bn�Vn +
∫ �

bn

gn�x�e
−xdx� (2.2)

Set

hn�x� = gn�x + log n�− log n� an = log��n+ 1�/n�� (2.3)

Bn = bn − log n and Wn = Vn − log n = hn�Bn�� (2.4)

Then, (2.2) can be rewritten as

Wn+1 =
(
1− 1

n
e−Bn

)
Wn +

1
n

∫ �

Bn

hn�x�e
−xdx − an (2.5)

or

n�Wn+1 −Wn� = −e−BnWn +
∫ �

Bn

hn�x�e
−xdx − nan� (2.6)

To motivate our result, consider the following heuristics. Assume that for some B
and h,

Bn → B and hn�y� → h�y� as n → ��

Then, under regularity, using (2.4),

Wn = hn�Bn� → h�B� = W� (2.7)

But now, should n�Wn+1 −Wn� converge to a nonzero constant A, Wn would grow
like A

∑
k−1 ∼ A log n, giving a contradiction. Hence n�Wn+1 −Wn� must tend to

zero, and taking limits in (2.6) yields

0 = −We−B +
∫ �

B
h�x�e−xdx − 1� (2.8)

Substituting h�B� = W from (2.7) into (2.8) gives an equation for the unknown B,
thus yielding W if h were known.

Here is a heuristic for determining h: By (1.9),

lim
n→�

[
V 1
n − log�n+ 1�

] = 0�

Since V 1
n is the value when nothing is guaranteed, we have V 1

n = gn�0�, and thus

gn�0� ≈ log�n+ 1�� (2.9)

Suppose that for large enough n and a fixed guaranteed value x, there is t such that

gn�x� = gn+t�0� = gn�gt�0��� (2.10)
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That is, there is some number of extra observations t such that the statistician is
indifferent to having n+ t variables from which to chose, or the guaranteed x and
n variables.

Equation (2.10) implies x = gt�0� ≈ log�t + 1�, yielding t + 1 ≈ ex. But on the
other hand, gn+t�0� ≈ log�n+ t + 1� ≈ log�n+ ex� ≈ gn�x�. Using (2.3), we have

hn�x� ≈ log�n+ ex+log n�− log n = log�1+ ex��

This suggests

lim
n→�hn�x� = h�x� = log�1+ ex� = x + log�1+ e−x�� −� < x < �� (2.11)

From (2.8), (2.7), and (2.11), B solves

1 = − log
(
1+ eB

)
e−B + e−B

∫ �

0
log

(
1+ eB+u

)
e−udu� (2.12)

Letting s = e−u, the integral in (2.12) can be evaluated as

∫ �

0
log

(
1+ eB+u

)
e−udu =

∫ 1

0
log

(
1+ eB

s

)
ds = eB

((
1+ e−B

)
log�1+ eB�− B

)
�

and now substitution back into (2.12) yields 1+ B = log�1+ eB�, the unique
solution of which is

B = − log�e− 1� = −0�54132 � � � �

and now, from (2.7) and (2.11), W = 1− log�e− 1� = 0�45867 � � � , which is
equivalent to conclusion (1.5) of Theorem 1.1. A rigorous proof of the theorem is
given in Section 4.

3. PROPERTIES OF hn AND THE LIMITING h

Lemma 3.1. hn�x� is strictly monotone increasing for − log n ≤ x < �.

Proof. We have that g�x�, and hence gn�x�, are strictly monotone increasing for
x ≥ 0, and now the result follows by (2.3). �

Lemma 3.2. Let h�x� be given in (2.11). Then, hn�x� > h�x� for x ≥ − log n,
n = 1� 2� � � � .

Proof. For n = 1 the claim is simply that h1�x� = x + e−x > x + log�1+ e−x� =
h�x� for all x ≥ 0, which is immediate. Now suppose the claim holds for n. We show
that it holds for n+ 1. By the induction hypothesis,

gn�x� = log n+ hn�x − log n� > log n+ h�x − log n�

= log n+ log�1+ ex−log n� = log�n+ ex�� (3.1)
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Thus, since g is increasing,

gn+1�x� = g�gn�x�� > g�log�n+ ex�� = log�n+ ex�+ e− log�n+ex�

= log�n+ ex�+ 1
n+ ex

� (3.2)

Thus, similar to (3.1) it suffices to show that the right-hand side of (3.2) is greater
than log�n+ 1+ ex�. The latter statement is equivalent to 1

n+ex
> log

(
1+ 1

n+ex

)
,

which clearly holds. �

Lemma 3.3. Let �n�x� = hn�x�− h�x�. Then, �n�x� < e−x/
√
n, for x ≥ − log n.

Proof. For n = 1 we have �1�x� = e−x − log�1+ e−x�, so clearly the statement holds
for n = 1. Now, using (2.3),

hn+1�x� = gn+1�x + log�n+ 1��− log�n+ 1�

= gn�x + log�n+ 1��+ e−gn�x+log�n+1�� − log�n+ 1�

= hn�x + an�− an + e−�hn�x+an�+log n�

= hn�x + an�+
1
n
e−hn�x+an� − an� (3.3)

In particular, for n = 1,

h2�x� = h1�x + a1�+ e−h1�x+a2� − a1 = x + a1 + e−�x+a1� + e−�x+a1+e−�x+a1�� − a1�

We shall show directly that the lemma is true for n = 2, for which

�2�x� =
1
2
e−x

(
1+ e−

1
2 e

−x)− log�1+ e−x�� (3.4)

For − log 2 ≤ x ≤ 0 we shall show

�2�x�−
e−x

√
2
< 0�

that is,

1
2
e−x

(
1−√

2+ e−
1
2 e

−x)− log�1+ e−x� < 0� (3.5)

Differentiation shows that the left-hand side of (3.5) is increasing in x for x ≤ 0. Thus
we shall show that for x = 0 inequality (3.5) holds, that is, that 1

2 �1−
√
2+ e−

1
2 �−

log 2 < 0, which is equivalent to 1−√
2+ e−

1
2 − log 4 < 0, which clearly holds.

Now, for x > 0 the inequality log�1+ e−x� > e−x − e−2x

2 holds. Substituting this
in (3.4) we have

�2�x� <
1
2
e−x

(−1+ e−
1
2 e

−x + e−x
)
� (3.6)

We shall show that the right-hand side of (3.6) is less than e−x/
√
2, which is

equivalent to

−1+ e−
1
2 e

−x + e−x <
√
2� (3.7)
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Now the left-hand side of (3.7) is decreasing in x: thus it suffices to show (3.7) for
x = 0, where the inequality simplifies to −1+ e−

1
2 + 1 <

√
2, which clearly holds.

Thus the lemma holds for n = 2.
Suppose the lemma holds for n ≥ 2. We shall show that it holds for n+ 1.

By (3.3), for x ≥ − log n

hn+1�x − an� = hn�x�+
1
n
e−hn�x� − an� (3.8)

We show that, for x ≥ − log n, �n+1�x − an� <
n+1
n
e−x/

√
n+ 1 =

√
n+1
n

e−x by a
Taylor expansion of h�x − an�. Note that

h′�x� = ex/�1+ ex�� h
′′
�x� = ex/�1+ ex�2 > 0	

thus, for some 
 ∈ �0� 1�,

h�x − an� = h�x�− an

ex−
an

1+ ex−
an
> h�x�− an

ex

1+ ex
� (3.9)

Thus, by (3.8) and (3.9),

�n+1�x − an� < �n�x�+
1
n
e−hn�x� − an + an

ex

1+ ex

< �n�x�+
1

n�1+ ex�
− an

1+ ex

< �n�x�+
1

n�1+ ex�
−

(
1
n
− 1

2n2

)
1

1+ ex

= �n�x�+
1

2n2�1+ ex�

<
e−x

√
n
+ e−x

2n2�1+ e−x�
�

where the second inequality uses hn�x� > h�x� by Lemma 3.2, the third inequality
uses log�1+ y� > y − y2

2 for 0 < y < 1, and the last inequality uses the induction
hypothesis. Thus we must show that for x ≥ − log n we have 1√

n
+ 1

2n2�1+e−x�
<

√
n+1
n

,

and hence it is sufficient to show 1+ 1
2n3/2 <

√
n+1
n
. But �1+ 1

n
�1/2 > 1+ 1

2n − 1
8n2 ;

hence it is sufficient to show that 1
2n3/2 < 1

2n − 1
8n2 , or equivalently that 1 <

√
n− 1

4
√
n
,

which holds for n ≥ 2. �

4. PROOF OF THEOREM 1.1

Lemma 4.1. For some constant Aq, let q be a continuous and strictly monotone
increasing function in the interval �Aq��� such that for all y ≥ Aq the integral∫ �
y
q�x�e−xdx is finite. Further, defining

Q�y� =
∫ �

y
q�x�e−xdx − q�y�e−y − 1� (4.1)
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suppose Q�Aq� > 0. Then,

lim
y→�Q�y� = −1� (4.2)

Q�y� is monotone decreasing, and there exists a unique value � ∈ �Aq��� such that
Q��� = 0.

Proof. The assumption that the integral in (4.1) is finite and q is increasing implies
that q�y�e−y → 0 as y → �; thus (4.2) holds. The function Q is differentiable with
dQ�y�/dy = −q′�y�e−y < 0; thus Q is monotone decreasing. Since Q�Aq� > 0, Q�y�
is continuous, and negative for all y sufficiently large. Hence the root � exists and
is unique in �Aq���. �

Theorem 4.1. Let Aq and q be as in Lemma 4.1. Then, there exists n0 such that for any
r ≥ n0 and �r ∈ �Aq���, the sequence �n for n ≥ r is well defined by the recursion

q��n+1� = q��n�

(
1− 1

n
e−�n

)
+ 1

n

∫ �

�n

q�x�e−xdx − an� (4.3)

and satisfies

lim
n→� �n = ��

where � is the root of (4.1) whose existence and uniqueness in �Aq��� is guaranteed
in Lemma 4.1.

Proof. First, rewrite (4.3) as

q��n+1�− q��n� =
Q��n�

n
+

(
1
n
− an

)
� (4.4)

Note that for all n ≥ 1,

0 <
1
n
− an <

1
2n2

� (4.5)

and that

Q�c�

n
+

(
1
n
− an

)

is positive and decreasing in n with limit 0 for all c ≤ �, and is decreasing in n and
negative for all n sufficiently large with limit 0 for c > �.

We show that for any � and �̄ with Aq < � < � < �̄, for all n sufficiently large,
�n is well defined and � < �n < �̄; clearly the theorem follows.

Let Aq < � < � < �̄ be given, and let n0 be so large that for all n ≥ n0

Q�Aq�

n
+

(
1
n
− an

)
< q��̄�− q��� (4.6a)

(
1
n
− an

)
< q��̄�− q

(
� + �̄

2

)
(4.6b)
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1
n
Q

(
� + �̄

2

)
+

(
1
n
− an

)
< 0 (4.6c)

an < q���− q���� (4.6d)

We first show that if Aq < � < �n < �̄ for n ≥ n0, then �n+1 is well defined and
satisfies � < �n+1 < �̄; thus the sequence �n remains in the interval ��� �̄� for all
n≥ n0. We show this fact by considering the following cases.

Case A is

� < �n ≤ ��

By (4.4), (4.5), and (4.6a), and the fact that q is increasing and Q is decreasing,

q��n� < q��n�+
Q��n�

n
+

(
1
n
− an

)
= q��n+1�

< q��n�+
Q�Aq�

n
+

(
1
n
− an

)
< q��n�+ �q��̄�− q���� ≤ q��̄�	 (4.7)

thus �n+1 exists uniquely by the strict monotonicity of q and satisfies

� < �n < �n+1 < �̄�

Case B is

� < �n <
� + �̄

2
�

There are two subcases—B1,

Q��n�

n
+

(
1
n
− an

)
> 0�

which may happen for small n, and B2,

Q��n�

n
+

(
1
n
− an

)
≤ 0� (4.8)

In Subcase B1, by (4.6b),

q��� < q��n� < q��n�+
Q��n�

n
+

(
1
n
− an

)
= q��n+1�

< q��n�+
(
1
n
− an

)
< q��n�+

(
q��̄�− q

(
� + �̄

2

))
< q��̄��

so again �n+1 is well defined and � < �n+1 < �̄. Subcase B2 can be combined with
Case C.
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Case C is

� + �̄

2
≤ �n < �̄�

In this case, by (4.6a), and in subcase B2 by (4.8), if �n+1 exists, it must be smaller
than �n; thus q��̄� > q��n+1�, but also

q��n+1� = q��n�+
Q��n�

n
+

(
1
n
− an

)
> q��n�− an > q��n�− �q���− q���� > q����

(4.9)

where the inequalities are justified by (4.2), (4.6d), and �n > �, this last of which
holds for Case C as well as for Case B, so in particular for subcase B2. Thus again
�n+1 exists and � < �n+1 < �̄.

It remains to show that for any r ≥ n0 and any starting value �r ∈ �Aq��� ∩
��� �̄�c, �n is well defined and �n will eventually enter the interval ��� �̄�. First,
suppose �r ∈ �Aq� ��. Then the sequence will be well defined and start out monotone
increasing, and (4.7) and its subsequent inequalities continue to hold as long as
�n ≤ �, and for all such n one has �n+1 < �̄. There are two possibilities: Either (a)
for some k the inequality

� < �k < �̄

holds, in which case we have shown that � < �n < �̄ for all n > k, or (b) the
sequence �n is monotone increasing throughout with lim �n = �0, which necessarily
satisfies �0 ≤ �. We show that (b) leads to a contradiction. Clearly Q��0� > 0.
By (4.4),

q��n+1�− q��n� >
Q��0�

n
+

(
1
n
− an

)
	

thus for n arbitrarily large and m > n,

q��m�− q��n� > Q��0�
m−1∑
k=n

1
k
+

m−1∑
k=n

(
1
k
− ak

)
�

Now, the right-hand side tends to infinity as m → �; thus the value q��m� must also
tend to infinity, contradicting the fact that �m ≤ �.

Now consider a starting value �r for r ≥ n0 satisfying �̄ ≤ �r < �. By (4.6c)
the sequence will be well defined and decreasing, as long as �n ≥ �� + �̄�/2, and
(4.9) continues to hold; thus �n+1 > �. Again there are two possibilities. Either
(a) for some n we have �̄ > �n > �, in which case the theorem holds, or (b) the
sequence is monotone decreasing for all n, with �n ≥ �̄, and thus the limit �0 ≥ �̄
exists, and clearly satisfies Q��0� < 0. We suppose (b) and show that this leads to a
contradiction. By (4.4) and (4.5),

q��n+1�− q��n� <
Q��0�

n
+ 1

2n2
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thus for m arbitrarily large,

q��m�− q��n� < Q��0�
m−1∑
k=n

1
m

+ 1
2

m−1∑
k=n

1
k2

� (4.10)

Now, the last summand on the right-hand side of (4.10) converges to a finite limit,
while the first term there tends to −� as m → �. Thus q��m� must also tend to
−�, contradicting the fact that q��m� ≥ q��̄�.

Let H be given by (4.1) with q replaced by h of (2.11); the change of variable
x=B + u in the integral in this definition of H shows that (2.12) is the equation
H�B� = 0, and using Lemma 4.1 we conclude that the solution − log�e− 1� is
unique. Let −� < A ≤ −1 be some constant, and define

h̃j�x� = h�x�+ e−x

√
j

for A ≤ x < ��

Then by Lemmas 3.2 and 3.3, for all j > j�A� = e−A we have

h�x� < hj�x� < h̃j�x� for A ≤ x < �� (4.11)

Also, since there is some j0�A� ≥ j�A� such that for all j ≥ j0�A�,

dh̃j�x�

dx
= ex

1+ ex
− e−x

√
j
> 0�

the functions h̃j�x�� j ≥ j0�A� are strictly increasing in �A���.

Lemma 4.2. Let H̃j�x� be defined as in (4.1), with q�x� replaced by h̃j�x�. Then, for
all j ≥ j0�A� there exists a value �̃j ∈ �A��� such that H̃j��̃j� = 0,

lim
j→�

�̃j = − log�e− 1� and lim
j→�

h̃j��̃j� = h�− log�e− 1�� = 1− log�e− 1�� (4.12)

Proof. Since H̃j�x� → H�x� uniformly on �A���, in particular limj→� H̃j�A� =
H�A� > H�− log�e− 1�� = 0. Thus for all j > j0�A� the value �̃j exists uniquely in
�A���. Now (4.12) follows from the uniform convergence of H̃j�x� and h̃j�x� to
H�x� and h�x�, respectively, on �A���. �

Note (2.5) can be rewritten as

Wn+1 = hn+1�Bn+1� =
1
n

∫ �

− log n

[
hn�Bn� ∨ hn�y�

]
e−ydy − an� (4.13)

whereas (4.3) can be rewritten, with h instead of q (keeping the �n notation), as

h��n+1� =
1
n

∫ �

− log n
�h��n� ∨ h�y��e−ydy − an� (4.14)

Comparing (4.13) and (4.14), we see that the only difference between the two
expressions is that in (4.13) the function in the integral depends on n, whereas in
(4.14) this function is fixed.

We can now prove our main result.
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Proof of Theorem 1.1. We apply Theorem 4.1 to (4.14) for n ≥ n0 with starting
value �n0

= Bn0
as in (2.4), where n0 is the value given by Theorem 4.1 for A and h,

after which recursion (4.14) is well defined. For all j > j0�A� let rj = n0 ∨ j, and for
n ≥ rj , define the sequence �̃j�n through (4.14) with h replaced by h̃j , and initial value
�̃j�rj

= Brj
. Then by (4.11), (4.13), and (4.14), �n < Bn < �̃j�n, and thus the inequality

h��n� < hn�Bn� = Wn < h̃j��̃j�n�

holds for all n > rj , noting that the right-hand side of (4.14), say, is made larger by
replacing h by a larger function. Thus, as n → �,

1− log�e− 1� = lim h��n� ≤ lim inf Wn ≤ lim supWn ≤ lim h̃j��̃j�n� = h̃j��̃j��
(4.15)

Now, by Lemma 4.1, if we let j → �, from (4.15),

1− log�e− 1� ≤ lim inf Wn ≤ lim supWn ≤ 1− log�e− 1��

from which (1.8) follows, to which the theorem is equivalent. �

Remark 4.1. The limiting one-choice value can be obtained in a similar, but simpler
way. Let �V 1

n � denote the sequence of one-choice optimal values and let W 1
n = V 1

n −
log n. Since V 1

n+1 = E�X ∨ V 1
n � it follows that the �W 1

n � sequence satisfies (4.3) with
q�x� = x and �n = W 1

n . By Theorem 4.1, it therefore follows that limn→� W 1
n = W 1

is the solution � of Q��� = 0, where

Q�y� =
∫ �

y
xe−xds − ye−y − 1� i.e., Q�y� = e−y − 1�

which implies W 1 = 0. This clearly agrees with the more general result of Kennedy
and Kertz (1991); see (1.9).

Remark 4.2. A measure of the limiting effectiveness of having a second choice
is the value limn→��V 2

n − V 1
n �/�EMn − V 1

n �. It compares the relative advantage of
having two choices over having only one choice, divided by the similar advantage
for the “prophet,” whose value is EMn. For the exponential distribution we have

lim
n→�

V 2
n − V 1

n

EMn − V 1
n

= 1− log�e− 1�



= 0�7946 � � � � (4.16)

where 
 is the Euler constant. For the large subclasses of distributions of Types III
and II, treated in Assaf et al. (2004, 2006), the corresponding minimal values over
all �-values is (4.16) and 0�7880 � � � , respectively. Thus the minimal saving in all the
known cases is near 80%.

Remark 4.3. The model considered here is where observations arrive
deterministically, one per time unit. If instead observations were to arrive according
to a Poisson process with rate 1, various quantities that are approximate or
asymptotic here become exact. For example, it is easy to see that V�n�, the optimal
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value for the one-stop problem on the interval �0� n�, satisfies the differential
equation

V ′�n� =
∫ �

0
��x − V�n�� ∨ 0�e−xdx�

The equation can be solved explicitly, giving

V�n� = log�n+ 1��

as compared to the approximate expression (2.9). Subject to solving the
corresponding equations that give the optimal two-stop value, this approach may
be carried out to yield results such as Theorem 1.1; see Kennedy and Kertz (1990)
for use of the Poisson process setting in the one-stop problem.

Added in Proof: After the present work was completed, the paper of Kühne
and Rüschendorf (2002) came to our attention. That paper treats the same problem
as the one here using Poisson-approximations, basing their results on their earlier
detailed paper Kühne and Rüschendorf (2000). Detailed results are given for the
domain of attraction ��e−e−x

� considered here, and our conjecture, that (1.5) holds
for all F in this domain, is proven.
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