A Curious Connection Between Branching Processes and Optimal Stopping

David Assaf, Larry Goldstein and Ester Samuel-Cahn
Hebrew University, University of Southern California and Hebrew University

Abbreviated title: Branching Processes and Optimal Stopping

Key words and phrases: Optimal stopping problem, Galton-Watson process, extinction probability, varying environment, inhomogeneous Galton-Watson process, prophet inequalities.

A curious connection exists between the theory of optimal stopping for independent random variables, and branching processes. In particular, for the branching process Z_{n} with offspring distribution Y, there exists a random variable X such that the probability $P\left(Z_{n}=0\right)$ of extinction of the nth generation in the branching process equals the value obtained by optimally stopping the sequence X_{1}, \ldots, X_{n}, where these variables are i.i.d distributed as X. Generalizations to the inhomogeneous and infinite horizon cases are also considered. This correspondence furnishes a simple 'stopping rule' method for computing various characteristics of branching processes, including rates of convergence of the $n^{\text {th }}$ generation's extinction probability to the eventual extinction probability, for the supercritical, critical and subcritical Galton-Watson process. Examples, bounds, further generalizations and a connection to classical prophet inequalities are presented. Throughout, the aim is to show how this unexpected connection can be used to translate methods from one area of applied probability to another, rather than to provide the most general results.

AMS 1991 subject classification: Primary: 60G40, 60J80.

1. Introduction and Summary.

The purpose of the present note is to highlight what we believe to be a hitherto unnoticed connection between two seemingly unrelated topics in applied probability: Optimal Stopping Theory for independent random variables, and Branching Processes and their extinction probabilities. We show how results in one area can be used to easily establish results in the other. Our main result is based on a mapping $Y \rightarrow X$ from integer valued offspring distributions to a distribution on $[0,1]$ such that the probability of extinction by generation n of the Galton-Watson branching process with offspring distribution Y equals the value obtained by optimally stopping a sequence of n independent variables distributed as X. This correspondence is purely analytic, and in particular, we are not able to present a probabilistic reason, such as a coupling, which explains it. As the focus is on the 'unexplained' connection, in exploiting the analytic equivalence of the two areas we do not strive for the most general results, but rather emphasize how one area can inform another area which is seemingly unrelated.

In Section 2 we outline the basic concepts needed from each of the two topics. In Section 3 we present our main result, a mapping $Y \rightarrow X$, from integer valued offspring distributions to distributions on $[0,1]$ such that the probability of extinction by generation n of the Galton-Watson branching process with offspring distribution Y equals the value obtained by optimally stopping a sequence of n independent variables distributed as X. Examples of this correspondence are given in Section 4. Section 5 is devoted to proving, by means of "stopping rule" methods, various (known) results on rates of convergence of the probabilities of extinction of the $n^{t h}$ generation, denoted q_{n}, to the eventual probability of extinction, π, in the subcritical, critical and supercritical cases of the Galton-Watson process. In Section 6 we generalize the results to "inhomogeneous" Galton-Watson processes, and provide examples. In Section 7 we show, in the inhomogeneous case, how the use of sub-optimal stopping rules and prophet inequalities may provide bounds on branching process extinction probabilities, and explore further connections to the prophet value.

2. Basic Concepts.

a) Optimal Stopping Theory. Consider a sequence $X_{1}, X_{2}, \ldots, X_{n}$ of independent random
variables with known distributions. A statistician gets to view the values sequentially, and at each stage must decide whether to take the present variable or continue. Exactly one variable must be selected; there is no recall, and hence a variable which has been passed up is no longer available at a later stage to the statistician. The goal of the statistician is to pick as large a value as possible. If stopping has not occurred before time n the variable X_{n} is automatically selected. The number of variables, n, is called the horizon of the problem. The value to the statistician of using a stopping rule t is

$$
\begin{equation*}
E X_{t}=E \sum_{i=1}^{n} X_{i} I(t=i) \tag{2.1}
\end{equation*}
$$

where I is the indicator function. The goal is to maximize the value in (2.1) over all possible stopping rules.

The general theory of optimal stopping is developed in Chow, Robbins and Siegmund (1971). For the finite horizon case an optimal rule always exists and can be obtained by backward induction. (See Theorem 3.2, p. 50 of Chow, Robbins and Siegmund (1971)). In the case of independent random variables the optimal rule has a particularly simple form. Let V_{i}^{n} be the value obtained by optimally stopping the sequence X_{i}, \ldots, X_{n}; since stopping must occur at or before time n we set $V_{n+1}^{n}=-\infty$. If stopping has not occurred by time i, it is optimal to choose X_{i} only if it is better than or equal to what is expected in the future. That is, if $X_{i} \geq V_{i+1}^{n}$ the value X_{i} is selected, and passed up otherwise. Hence, the value V_{i}^{n} is the expectation of the larger of X_{i} and V_{i+1}^{n}, that is,

$$
V_{i}^{n}=E\left[X_{i} \vee V_{i+1}^{n}\right] .
$$

Alternatively, letting

$$
\begin{equation*}
h_{i}(a)=E\left[X_{i} \vee a\right] \tag{2.2}
\end{equation*}
$$

we may write the following recursion for the sequence of values V_{i}^{n};

$$
\begin{equation*}
V_{i}^{n}=h_{i}\left(V_{i+1}^{n}\right), \quad i=n, n-1, \ldots, 1 . \tag{2.3}
\end{equation*}
$$

An optimal stopping rule is

$$
\begin{equation*}
t_{n}^{*}=\min \left\{i: X_{i} \geq V_{i+1}^{n}\right\} \tag{2.4}
\end{equation*}
$$

Note that t_{n}^{*} will definitely stop by time n, if it has not stopped earlier. The value of this rule to the statistician is given by V_{1}^{n}. In the case where $X_{n} \geq 0, V_{n+1}^{n}=-\infty$ can be replaced by $V_{n+1}^{n}=0$. The case where the X_{i} 's are nonnegative and i.i.d. is of particular interest. In this case h_{i} in (2.2) does not depend on i, and the index i will be omitted. Letting

$$
\begin{equation*}
h^{(1)}(a)=h(a) \text { and } h^{(n+1)}(a)=h\left(h^{(n)}(a)\right), \quad n=1,2, \ldots, \tag{2.5}
\end{equation*}
$$

we have

$$
V_{1}^{n}=h\left(V_{2}^{n}\right)=h^{(2)}\left(V_{3}^{n}\right)=\cdots=h^{(n)}(0) .
$$

If we let V_{k} denote the value for a k-horizon problem, then $V_{i}^{n}=V_{n-i+1}, i=1, \ldots, n$, and

$$
\begin{equation*}
V_{k}=h^{(k)}(0), \quad k=1,2, \ldots, \tag{2.6}
\end{equation*}
$$

For an infinite horizon problem in this i.i.d. setting, the value $V_{\infty}=\lim _{n \rightarrow \infty} V_{n}$ is the supremum over all stopping rules t with $P(t<\infty)=1$. It equals the rightmost value of the support of X, that is, the essential supermum of X. An optimal rule achieving V_{∞} will, however, not exist unless X attains this value with positive probability.
(b) The Galton-Watson branching process:

Let \mathcal{Y} be the set of all nonnegative, nondegenerate integer valued random variables excluding the variables for which $P(Y=0)=0$. For $Y \in \mathcal{Y}$ let $p_{k}=P(Y=k), k=0,1, \ldots$ and

$$
\begin{equation*}
g(s)=\sum_{k=0}^{\infty} p_{k} s^{k} \tag{2.7}
\end{equation*}
$$

be the generating function of Y, which is well defined for $0 \leq s \leq 1$, with $g(0)=p_{0}$ and $g(1)=1$. Note that if $E Y<\infty$ then $g^{\prime}(1)=E Y$, and if $E Y^{2}<\infty$ then $g^{\prime \prime}(1)=E Y^{2}-E Y$. All derivatives of $g(s)$ for $s \in[0,1)$ exist and are nonnegative, thus in particular $g(s)$ is increasing and convex; the function g will be strictly convex unless it is linear, that is, unless $p_{0}+p_{1}=1$.

For given $Y_{n} \in \mathcal{Y}, n=1,2, \ldots$, define the (inhomogeneous, or varying environments) Galton-Watson branching process, with offspring distribution Y_{n} at generation n, as the
discrete time stochastic process $\left\{Z_{n}\right\}_{n=0}^{\infty}$ with $Z_{0}=1$ and

$$
\begin{equation*}
Z_{n+1}=\sum_{i=1}^{Z_{n}} W_{n i} \tag{2.8}
\end{equation*}
$$

where $W_{n i}$ are i.i.d. distributed like Y_{n}. The value Z_{n} is the size of the $n^{t h}$ generation of a population which begins with a single individual at time 0 , where each member of generation n gives rise to offspring for the next generation with distribution Y_{n}, independently of all the other members. Letting $g^{(n)}$ be the generating function of Z_{n}, and g_{n} be the generating function of Y_{n}, we have the well known relation

$$
\begin{equation*}
g^{(n)}(s)=g_{1}\left(g_{2}\left(\cdots g_{n}(s)\right)\right), \tag{2.9}
\end{equation*}
$$

which can be verified by induction. A quantity of major interest is the probability that the $n^{t h}$ generation is extinct

$$
\begin{equation*}
P\left(Z_{n}=0\right)=g^{(n)}(0)=q_{n} . \tag{2.10}
\end{equation*}
$$

Since $Z_{n}=0$ implies $Z_{n+1}=0$, we have $0 \leq \tilde{q}_{1} \leq \tilde{q}_{2} \leq \ldots$, and thus $\lim _{n \rightarrow \infty} \tilde{q}_{n}=\tilde{\pi} \leq 1$ exists. The limit $\tilde{\pi}$ is the probability of eventual extinction. Furthermore, it is easily seen that $E Z_{n}$, the expected size of generation n, equals $\prod_{j=1}^{n} E Y_{j}$. This follows by computing $\left[g^{(n)}\right]^{\prime}(1)$ in (2.9) and using $g_{j}(1)=1$.

When all the Y_{n} have identical distributions with generating function g,

$$
\begin{equation*}
g^{(1)}(s)=g(s), \quad g^{(n+1)}(s)=g\left(g^{(n)}(s)\right) \quad n=1,2, \ldots, \tag{2.11}
\end{equation*}
$$

and we denote $q_{n}=P\left(Z_{n}=0\right)=g^{(n)}(0)$, and $\lim _{n \rightarrow \infty} q_{n}=\pi$. As is well known (see e.g. Karlin and Taylor (1975), Chapter 8) in this instance π is the smallest root of the equation

$$
\begin{equation*}
g(s)=s \tag{2.12}
\end{equation*}
$$

The value $s=1$ is always a root of (2.12), and it is the smallest root if and only if $E Y<1$ (the subcritical case), or $E Y=1$ (the critical case). There is positive probability of never becoming extinct, that is, of having $\pi<1$, iff $E Y>1$ (the supercritical case).
3. Connection. Our main result in the present section is to exhibit the connection between Optimal Stopping and homogeneous Galton-Watson Processes. In particular we link the optimal stopping value V_{n} to the extinction probability q_{n} using the following Theorem.

Theorem 3.1. Let $Y \in \mathcal{Y}$ have generating function g, and let π be the smallest root of the equation $g(s)=s$. Then the function $F(x)$ given by

$$
F(x)= \begin{cases}0 & x<0 \tag{3.1}\\ g^{\prime}(x) & 0 \leq x<\pi \\ 1 & \pi \leq x\end{cases}
$$

is a distribution function. Let X have distribution (3.1), and $h(a)=E[X \vee a]$. Then

$$
\begin{equation*}
h(a)=g(a) \text { for } 0 \leq a \leq \pi . \tag{3.2}
\end{equation*}
$$

Also

$$
\begin{equation*}
E X=P(Y=0), \quad P(X=0)=P(Y=1) \quad \text { and when } \pi=1, \quad P(X<1)=E Y . \tag{3.3}
\end{equation*}
$$

The variable X has an atom of size $P(Y=1)$ at 0 , an atom of size $1-g^{\prime}(\pi)$ at π, and density $g^{\prime \prime}(x)$ on $(0, \pi)$. Exactly one distribution satisfies (3.2).

Proof: The function $g^{\prime}(x)$ is non-negative and nondecreasing for $0 \leq x \leq \pi$. Note that $g^{\prime}(\pi) \leq 1$, since g is convex and $s<g(s)$ for all $0 \leq s<\pi$. Further, by definition, for $0 \leq a \leq \pi$,

$$
h(a)=E[X \vee a]=\int_{0}^{\infty} P([X \vee a]>x) d x=\pi-\int_{a}^{\pi} g^{\prime}(x) d x=\pi-g(\pi)+g(a)=g(a),
$$

which is (3.2). For $a=0,(3.2)$ yields $h(0)=g(0)$, or $E X=P(Y=0)$, and $P(X=0)=$ $g^{\prime}(0)=P(Y=1)$. When $\pi=1, E Y \leq 1$ and (3.1) yields $E Y=g^{\prime}(1)=F\left(1^{-}\right)=P(X<$ 1).

To show uniqueness, suppose (3.2) holds for some X^{*} with distribution function F^{*}. Since $\pi=g(\pi)=h(\pi)=E\left[X^{*} \vee \pi\right]$, it follows that $P\left(X^{*}>\pi\right)=0$, i.e. $F^{*}(x)=1$ for all $x \geq \pi$. Also, since g is differentiable in $0<s<\pi$, so is h. But for $0 \leq s \leq \pi, h(s)=$ $E\left[X^{*} \vee s\right]=1-\int_{s}^{1} F^{*}(x) d x=g(s)$, thus $g^{\prime}(s)=F^{*}(s)$ for $0<s<\pi$, and thus, by right continuity, $F^{*}(x)=F(x)$ for all x.

Theorem 3.2. Let Z_{n} be a Galton-Watson process with offspring distribution $Y \in \mathcal{Y}$ and extinction probability $q_{n}=P\left(Z_{n}=0\right)$. Let X_{1}, \ldots, X_{n} be i.i.d. with distribution function (3.1), and let V_{n} be its optimal stopping value. Then,

$$
\begin{equation*}
V_{n}=q_{n}, \quad n=1,2, \ldots \tag{3.4}
\end{equation*}
$$

Proof: For $0 \leq a \leq \pi$ we have $0 \leq g(a) \leq \pi$. By (3.2) and induction,

$$
\begin{equation*}
h^{(n)}(a)=g^{(n)}(a) \text { for } \quad 0 \leq a \leq \pi . \tag{3.5}
\end{equation*}
$$

Using (2.6) and (2.10) and setting $a=0$ in (3.5) yields (3.4).

Remarks:

3.1 Equality (3.2) cannot hold for $\pi<a<1$ since in this interval $g(a)<a$, while $h(a)=E[X \vee a] \geq a$.
3.2 The distribution of Y is uniquely determined by the sequence $\left\{q_{n}\right\}_{1}^{\infty}$, since an analytic function g is uniquely determined by its values on an infinite sequence of values having a limit point. Thus there are no two different Y 's with the same q_{n}-sequence.
3.3 In contrast to Remark 3.2, there are many different i.i.d. sequences of X 's with values $\left\{V_{n}\right\}_{1}^{\infty}$. For a construction, see Hill and Kertz (1982).
3.4 We excluded from \mathcal{Y} the variables for which $P(Y=0)=0$. For such variables $\pi=0$ is the smallest root of (2.12). Note that for this case F of (3.1) gives unit mass to 0 , thus (3.2) and (3.4) are formally true also for this case.
3.5 Theorem 3.1 shows that for each $Y \in \mathcal{Y}$ there exists an X taking values in $[0,1]$ such that (3.2) holds. However, it is not true that for each X taking values in $[0,1]$ there exists a corresponding $Y \in \mathcal{Y}$. Necessary and sufficient conditions for X to correspond to a $Y \in \mathcal{Y}$ is that X has a distribution function F of the form

$$
F(x)= \begin{cases}0 & x<0 \tag{3.6}\\ k(x) & 0 \leq x<\pi \\ 1 & \pi \leq x\end{cases}
$$

for some $0<\pi \leq 1$, and that
(i) k () has a power series expansion with all coefficients nonnegative, and (ii) There exists a constant $c>0$ such that $g(s)=\int_{0}^{s} k(x) d x+c$ satisfies (a) $g(1)=1, \quad(\mathrm{~b}) g(\pi)=\pi$. This fact suggests that it will be easier to use the correspondence to translate properties of optimal stopping into properties about Galton-Watson processes, than vice versa.

4. Examples.

The correspondence between Y and X of (3.1), yields some interesting relationships. Example 4.1: $Y \sim \mathcal{B}(p)$ Bernoulli. In this case $P(Y=1)=p=1-P(Y=0)$ and clearly $\pi=1$. As $g(s)=(1-p)+p s, F(s)=p$ for $0 \leq s<1$, and $F(1)=1$. Hence, $X \sim \mathcal{B}(1-p)$.

Example 4.2: $Y \sim m \mathcal{B}(p), m \geq 2$, that is, $P(Y=m)=p=1-P(Y=0), g(s)=$ $(1-p)+p s^{m}$, and $E Y=m p$. Using (3.3), since $P(Y=1)=0, X$ has no mass at zero, but has mass $1-g^{\prime}(\pi)=1-m p \pi^{m-1}$ at π. Therefore, for $0 \leq s \leq \pi$,

$$
F(s)=m p \pi^{m-1}\left(\frac{s}{\pi}\right)^{m-1}+I(s=\pi)\left(1-m p \pi^{m-1}\right)
$$

that is, X is a mixture of $\max _{i=1, \cdots, m-1} U_{i}$, where U_{i} are i.i.d. $U(0, \pi)$, with probability $m p \pi^{m-1}$, and a point mass at π with probability $1-m p \pi^{m-1}$. In particular, for $m=2$ (corresponding to a splitting of a cell), in the critical case $p=1 / 2, X \sim U(0,1)$. For $m=2$ and the supercritical case $p>1 / 2$, the eventual extinction probability is the smallest solution to $1-p+p s^{2}-s=0$, which is $\pi=(1-p) / p$. Therefore, X is a mixture of $U(0, \pi)$ variable with probability $2(1-p)$ and a point mass at $\pi=(1-p) / p$ with probability $2 p-1$. In the subcritical case $p<1 / 2, X$ is a mixture of a uniform $U(0,1)$ variable with probability $2 p$, and point mass at 1 with probability $1-2 p$.

Example 4.3: $Y \sim \mathcal{P}(\lambda), Y$ is Poisson with parameter λ, and $g(s)=e^{\lambda(s-1)}$. For $\lambda>1$, $\pi<1$ is the smallest root of $e^{\lambda(s-1)}=s$; for $\lambda \leq 1, \pi=1$. The distribution function of X is

$$
F(x)= \begin{cases}0 & x<0 \\ \lambda e^{\lambda(x-1)} & 0 \leq x<\pi \\ 1 & x \geq \pi\end{cases}
$$

Example 4.4: $Y \sim \mathcal{G G}(b, c)$, Generalized Geometric distribution: $P(Y=k)=b c^{k-1}, k=$ $1,2, \ldots$ and $P(Y=0)=1-\sum_{k=1}^{\infty} b c^{k-1}=(1-b-c) /(1-c)$, for any $b, c>0$ such that
$b+c<1$. The standard geometric distribution $\mathcal{G}(p)$ with success probability $p \in(0,1)$, $p+q=1$, is the special case $\mathcal{G G}(p q, q)$. Here $g(s)=P(Y=0)+b s /(1-c s)$ and can be written as

$$
\begin{equation*}
g(s)=(\alpha+\beta s) /(\gamma+\delta s) \tag{4.1}
\end{equation*}
$$

with

$$
\begin{equation*}
\alpha=1-(b+c), \quad \beta=b-c(1-c), \quad \gamma=1-c, \quad \delta=-c(1-c) . \tag{4.2}
\end{equation*}
$$

This is (according to Athreya and Ney (1972, p. 6)) essentially the only nontrivial example where $g^{(n)}(s)$, and hence $g^{(n)}(0)=q_{n}$, can be computed explicitly. This example is also discussed in most other texts on branching processes, see e.g. Harris (1963, p. 9), and Karlin and Taylor (1975, p. 402). See also the continuation of this example in Example 6.2, below. Since $E Y=b /(1-c)^{2}$ it follows easily that for $b>(1-c)^{2}$ the eventual extinction probability is $\pi=[1-(b+c)] / c(1-c)=-\alpha / \delta$. In all other cases $\pi=1$. Here X has c.d.f.

$$
F(x)= \begin{cases}0 & x<0 \tag{4.3}\\ b /(1-c x)^{2} & 0 \leq x<\pi \\ 1 & x \geq \pi\end{cases}
$$

5. Convergence rates of the extinction probabilities for the Galton-Watson process.

The purpose of the present section is not to derive new results, but rather to show how well-known results in branching theory have simple proofs by means of stopping rules. We do not strive for the most far-reaching results, and are content with obtaining rates for which $q_{n} \rightarrow \pi$.

Theorem 5.1.
(a) Supercritical case: If $E Y>1$ then $\pi<1$ and

$$
\begin{equation*}
0<\pi-q_{n}<\pi\left[g^{\prime}(\pi)\right]^{n} \tag{5.1}
\end{equation*}
$$

(b) Subcritical case: If $E Y<1$ (and $P(Y=0)<1)$, then $\pi=1$ and

$$
\begin{equation*}
0<1-q_{n} \leq[E Y]^{n} \tag{5.2}
\end{equation*}
$$

and the inequality on the right in (5.2) is strict if and only if $P(Y \leq 1)<1$.
(c) Critical case: If $E Y=1$, $\operatorname{Var}(Y)=\sigma^{2}<\infty$ then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left[1-g^{\prime}\left(q_{n}\right)\right]=2 \tag{5.3}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left(1-q_{n}\right)=2 / \sigma^{2} \tag{5.4}
\end{equation*}
$$

More generally, if $E Y=1$ and

$$
\begin{equation*}
\lim _{s \rightarrow 1^{-}}(1-s) g^{\prime \prime}(s) /\left[1-g^{\prime}(s)\right]=\alpha \tag{5.5}
\end{equation*}
$$

for some $0<\alpha \leq 1$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left[1-g^{\prime}\left(q_{n}\right)\right]=1+\alpha^{-1} \tag{5.6}
\end{equation*}
$$

Proof: (a) According to Theorem 3.1, for X corresponding to $Y, P(X=\pi)=1-g^{\prime}(\pi)$, which is positive. Now consider the suboptimal stopping rule t which stops at the smallest i for which $X_{i}=\pi$, and if no such i exists, stops at time n anyway. Since this rule is suboptimal, $E X_{t}$, the expected value to the statistician using rule t, is at most V_{n}, but is greater than π times the probability that the value π will be observed, since stopping at $t=n$ with some value smaller than π will still yield a positive expected return. The probability of never observing a value π is $\left[g^{\prime}(\pi)\right]^{n}$. Thus $\pi\left(1-\left[g^{\prime}(\pi)\right]^{n}\right)<E X_{t} \leq V_{n}=q_{n}$, from which (5.1) follows.
(b) The proof of (b) is essentially the same as (a), using $\pi=1$, and $P(X=1)=1-g^{\prime}(1)=$ $1-E Y$. Equality in (5.2) holds if and only if the "suboptimal" rule t is actually optimal. This happens if and only if X is Bernoulli. This case is described in Example 4.1, where $P(Y \leq 1)=1$, and by the uniqueness of X, as stated in Theorem 3.1, this is the only case. (c) We shall draw on the results of Kennedy and Kertz (1991), who show that the asymptotic behavior of the value sequence V_{n} for optimal stopping of i.i.d. random variables depends on to which extremal distribution domain X belongs. In the present case, X has no mass at 1 , is bounded above by 1 , has distribution function $g^{\prime}(x)$, and the non-zero density $g^{\prime \prime}(x)$ for $0<x<1$. In terms of the given c.d.f. and density, condition (5.5) is equivalent to the condition for a Type III extreme value distribution given in Theorem
1.6.1. of Leadbetter, Lindgren and Rootzén (1983) (See also e.g. de Haan (1976), Theorem 4 and the remark which follows). Theorem 1.1 of Kennedy and Kertz (1991) now yields (5.6). Note that when $\operatorname{Var}(Y)=\sigma^{2}<\infty$ then $g^{\prime \prime}(1)=\sigma^{2}$, (since $E Y=1$), and the value of the limit in (5.5) is necessarily 1 . Thus (5.3) is the particular case of (5.6) with $\alpha=1$. Note that by convexity the value in the left hand side of (5.5) for every fixed s is necessarily less than 1 , and hence only α-values less than or equal to one can be obtained as limits in (5.5).

To see that (5.3) is equivalent to (5.4), note that since $q_{n} \rightarrow 1$ and $\lim _{n \rightarrow \infty}(1-$ $\left.g^{\prime}\left(q_{n}\right)\right) /\left(1-q_{n}\right)=\sigma^{2}$ we obtain $\lim _{n \rightarrow \infty} n\left(1-g^{\prime}\left(q_{n}\right)\right)=\lim _{n \rightarrow \infty} n\left(1-q_{n}\right) \sigma^{2}$. Remarks:
5.1 Standard proofs of various parts of Theorem 5.1 can be found in most standard texts in Branching processes.
5.2 We see that the convergence of q_{n} to π is at a geometric rate in both the supercritical and subcritical cases. It is at the order of $0(1 / n)$ in the critical case when $\operatorname{Var}(Y)<\infty$, but $1-q_{n}$ converges to zero faster when $\operatorname{Var}(Y)=\infty$.
5.3 The branching process with $E Y=1$ and $\operatorname{Var}(Y)=\infty$ is studied in Slack, (1968). Note that all values of $\alpha, 0<\alpha \leq 1$ can be attained as the limit in (5.5), as seen from the following

Example 5.1: For $0<\alpha \leq 1$, and $0<c \leq 1 /(1+\alpha)$, let Y have generating function

$$
\begin{equation*}
g(s)=s+(1-s)^{1+\alpha} c \tag{5.7}
\end{equation*}
$$

It is easily seen that this corresponds to the distribution

$$
\begin{align*}
& P(Y=0)=c, P(Y=1)=1-(1+\alpha) c \\
& P(Y=k)=(-1)^{k} c \prod_{j=-1}^{k-2}(\alpha-j) / k!, \quad k=2,3, \ldots \tag{5.8}
\end{align*}
$$

(For $\alpha=1$ it follows that $P(Y=k)=0$ for $k>2$). Since $g^{\prime}(1)=1$ it follows that $E Y=1$ and easy arithmetic yields (5.5). Here (5.6) can be stated as

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left(1-q_{n}\right)^{\alpha}=(c \alpha)^{-1} \tag{5.9}
\end{equation*}
$$

and shows that q_{n} tends to 1 faster, the smaller α. (Note that for $\alpha=1$ one has $\operatorname{Var}(Y)=$ $2 c$ and (5.9) agrees with (5.4) in this case).
5.4 Though in most natural situations the limit in (5.5) does exist, one can exhibit generating functions for which the limit in (5.5) fails to exist. One such construction is a function having a coefficient sequence which essentially alternates between the coefficient sequences of generating functions of the form (5.7) for two different values of α.

6. Inhomogeneous branching processes.

In this section we consider the inhomogeneous branching process, as presented in Section 2(b). Here the offspring distribution in generation i is Y_{i}, where the Y_{i} need not have identical distributions. To each Y_{i} there is a corresponding X_{i} defined through (3.1), where g there is replaced by g_{i}, and π by π_{i} (where π_{i} is the eventual extinction probability of an ordinary Galton-Watson process with fixed offspring distribution Y_{i}.) Now consider an optimal stopping problem where X_{1}, \ldots, X_{n} are observed sequentially. From (2.2) and (2.3) it follows that the value V_{1}^{n} to the statistician, of this sequence is

$$
\begin{equation*}
V_{1}^{n}=h_{1}\left(h_{2}\left(\cdots h_{n}(0)\right)\right) . \tag{6.1}
\end{equation*}
$$

If we denote more generally

$$
\begin{equation*}
h^{(n)}(a)=h_{1}\left(h_{2}\left(\cdots h_{n}(a)\right)\right) \tag{6.2}
\end{equation*}
$$

then, using (2.9), we can generalize Theorem 3.1 and (3.5) as follows.
Theorem 6.1. Suppose $\pi_{1} \geq \pi_{2} \geq \cdots \geq \pi_{n}$. Then

$$
h^{(n)}(a)=g^{(n)}(a) \text { for } 0 \leq a \leq \pi_{n},
$$

and thus also $V_{1}^{n}=\tilde{q}_{n}$.
The proof is straightforward and hence omitted.
Inhomogeneous Galton-Watson processes have been studied quite extensively in the literature. The earlier references are Jagers (1974) and Jirina (1976). See also Section 3.5 in Jagers (1975). One of the latest references we have come across is D'Souza (1995). See also all related references mentioned there. All papers deal with various aspects of the limiting value of Z_{n} under different assumptions on the Y_{i} 's. The following theorem has a very simple "stopping rule" proof.

Theorem 6.2. Suppose $\pi_{i}=\pi_{0}$ for all $i=1,2, \cdots$, and denote $r_{i}=P\left(Y_{i} \neq 1\right)$. Then $\tilde{\pi} \leq \pi_{0}$ with

$$
\begin{equation*}
\tilde{\pi}=\pi_{0} \text { if and only if } \sum_{i=1}^{\infty} r_{i}=\infty \tag{6.3}
\end{equation*}
$$

Proof: Let X_{i} correspond to Y_{i} through the relation (3.1). By Theorem 6.1, $\tilde{q}_{n}=V_{1}^{n}$, and hence $V_{\infty}=\lim _{n \rightarrow \infty} V_{1}^{n}=\lim _{n \rightarrow \infty} \tilde{q}_{n}=\tilde{\pi}$. Since by (3.1) $X_{i} \leq \pi_{0}, i=1,2, \ldots,, \tilde{\pi}=V_{\infty} \leq \pi_{0}$.

We will show that $\tilde{\pi}=\pi_{0}$ if and only if for all $0<\varepsilon<\pi_{0}$,

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left[1-g_{i}^{\prime}\left(\pi_{0}-\varepsilon\right)\right]=\infty \tag{6.4}
\end{equation*}
$$

and then prove that (6.4) is equivalent to the condition $\sum r_{i}=\infty$. Note that $P\left(X_{i} \geq\right.$ $\left.\pi_{0}-\varepsilon\right)=1-g_{i}^{\prime}\left(\pi_{0}-\varepsilon\right)$. Thus if (6.4) holds then $P\left(X_{i} \geq \pi_{0}-\varepsilon\right.$ infinitely often $)=1$. Hence, for the rule $t=\inf \left\{i: X_{i} \geq \pi_{0}-\varepsilon\right\}$, we have $P(t<\infty)=1$, and the value for this rule, $E X_{t}$, is at least $\pi_{0}-\varepsilon$, and hence $\pi_{0}-\varepsilon \leq V_{\infty} \leq \pi_{0}$. Since this is true for every $\varepsilon>0$ it follows that $\tilde{\pi}=V_{\infty}=\pi_{0}$. Conversely, if (6.4) fails for some $0<\varepsilon_{0}<\pi_{0}$ then by the Borel-Cantelli lemma, $P\left(X_{i} \geq \pi_{0}-\varepsilon_{0}\right.$ infinitely often $)<1$, and hence there is positive probability of never seeing a value greater than $\pi_{0}-\varepsilon$, thus the supremum of the expected return over all stopping rules is less than π_{0}, that is, $\tilde{\pi}<\pi_{0}$.

It remains to verify that (6.4) is equivalent to the condition $\sum r_{i}=\infty$. Let $P\left(Y_{i}=\right.$ $k)=p_{i k}, \quad k=2,3, \ldots$. Then

$$
g_{i}^{\prime}(s)=1-r_{i}+\sum_{k \geq 2} k p_{i k} s^{k-1}
$$

Note that for any $k \geq 1,\left(\pi_{0}-\varepsilon\right)^{k} \leq\left(\pi_{0}-\varepsilon\right) \pi_{0}^{k-1}=\left(1-\varepsilon / \pi_{0}\right) \pi_{0}^{k}$, and also that $g_{i}^{\prime}\left(\pi_{0}\right) \leq 1 ;$ thus

$$
\begin{align*}
& 1-g_{i}^{\prime}\left(\pi_{0}-\varepsilon\right)=r_{i}-\sum_{k \geq 2} k p_{i k}\left(\pi_{0}-\varepsilon\right)^{k-1} \geq r_{i}-\left(1-\varepsilon / \pi_{0}\right) \sum_{k \geq 2} k p_{i k} \pi_{0}^{k-1} \tag{6.5}\\
& =r_{i}-\left(1-\varepsilon / \pi_{0}\right)\left[g_{i}^{\prime}\left(\pi_{0}\right)-1+r_{i}\right] \geq r_{i}-\left(1-\varepsilon / \pi_{0}\right) r_{i}=\left(\varepsilon / \pi_{0}\right) r_{i} .
\end{align*}
$$

Thus, if $\sum r_{i}=\infty,(6.4)$ holds for every $0<\varepsilon<\pi_{0}$ (and $\tilde{\pi}=\pi_{0}$). On the other hand, from the first equality in (6.5) it follows that $1-g_{i}^{\prime}\left(\pi_{0}-\varepsilon\right) \leq r_{i}$. Thus $\sum r_{i}<\infty$ implies that the sum in (6.4) converges.

REMARK 6.1: Suppose $E Y_{i} \leq 1$ for all i, and $\sum_{i=1}^{\infty}\left[1-E Y_{i}\right]=\infty$. Since $1-E Y_{i} \leq r_{i}$, $\sum_{i=1}^{\infty} r_{i}=\infty$ and $\tilde{\pi}=1$ follows.

Since $E Y_{i} \leq 1$, one has $P\left(X_{i}=1\right)=1-g^{\prime}(1)=1-E Y_{i}$. Thus the probability that $X_{i}=1$ infinitely often, equals one, so the rule which stops for the smallest i for which $X_{i}=1$, stops with probability 1 . Thus the value $V_{\infty}=1$ is, in this case, attainable by a stopping rule t with $P(t<\infty)=1$. In all other situations where $\sum r_{i}=\infty$, the value $V_{\infty}=1$ is not attainable, and only ε-optimal stopping rules exist.

REmARK 6.2: Note that $\pi_{i}=\pi_{0}$ for all i implies by (2.9) that $g^{(n)}\left(\pi_{0}\right)=\pi_{0}$ also. Thus unlike the situation in the homogeneous Galton-Watson process where $\lim _{n \rightarrow \infty} g^{(n)}(s)=\pi$ for $0 \leq s \leq \pi$, in the inhomogeneous case, it may happen that even though $\lim _{n \rightarrow \infty} g^{(n)}(s)$ exists for all $0 \leq s \leq 1$, this limit need not equal π_{0} for $0 \leq s<\pi_{0}$, unless $\sum r_{i}=\infty$. A similar remark is true also for the case $\pi_{0}=1$.

Example 6.1: Let Y_{i} take the values 0,1 and 2 only, with probabilities $P\left(Y_{i}=0\right)=r_{i} / 3$, $P\left(Y_{i}=1\right)=1-r_{i}$ and $P\left(Y_{i}=2\right)=2 r_{i} / 3$, where $0<r_{i} \leq 1$. Here $g_{i}(s)=r_{i} / 3+\left(1-r_{i}\right) s+$ $2 r_{i} s^{2} / 3$, and it is easily checked that $\pi_{i}=1 / 2$ for all i. Note that here $E Y_{i}=1+r_{i} / 3$. Since $E Z_{n}=\prod_{i=1}^{n} E Y_{i}$, the condition $\sum r_{i}=\infty$ is equivalent to $\lim _{n \rightarrow \infty} E Z_{n}=\infty$. Example 6.2: As in Keiding and Nielsen (1975), let Y_{i} have the Generalized Geometric distribution, $\mathcal{G G}\left(b_{i}, c_{i}\right)$, as described in Example 4.4; hence, Y_{i} has generating function as in (4.1)

$$
\begin{equation*}
g_{i}(s)=\left(\alpha_{i}+\beta_{i} s\right) /\left(\gamma_{i}+\delta_{i} s\right) \tag{6.6}
\end{equation*}
$$

where the constants are defined as in (4.2). Then it can be verified by induction that

$$
\begin{equation*}
g^{(n)}(s)=\left(\alpha^{(n)}+\beta^{(n)} s\right) /\left(\gamma^{(n)}+\delta^{(n)} s\right) \tag{6.7}
\end{equation*}
$$

and the values of $\alpha^{(n)}, \beta^{(n)}, \gamma^{(n)}$ and $\delta^{(n)}$ can be obtained explicitly. We shall consider in detail the case where all Y_{i} are "critical", i.e. $b_{i}=\left(1-c_{i}\right)^{2}$. For this case let

$$
\begin{equation*}
S_{i}^{(n)}=\sum c_{k_{1}} \cdots c_{k_{i}} \tag{6.8}
\end{equation*}
$$

where the summation is over all $1 \leq k_{1}<\cdots<k_{i} \leq n$. Set $S_{0}^{(n)}=1$. Then one can verify
that

$$
\begin{align*}
& \alpha^{(n)}=\sum_{j=1}^{n}(-1)^{j-1} j S_{j}^{(n)}, \quad \beta^{(n)}=\sum_{j=0}^{n}(-1)^{j}(j+1) S_{j}^{(n)} \tag{6.9}\\
& \gamma^{(n)}=1+\sum_{j=2}^{n}(-1)^{j-1}(j-1) S_{j}^{(n)}, \quad \delta^{(n)}=-\alpha^{(n)} .
\end{align*}
$$

Clearly here $\tilde{q}_{n}=\alpha^{(n)} / \gamma^{(n)}$. It follows from (6.8) and (6.9) that for any n, all n ! permutations of the order of the $Y_{i} \mathrm{~s}$ yield the same distribution for the $n^{t h}$ generation, Z_{n}. Note that here $P\left(Y_{i}=1\right)=1-r_{i}=\left(1-c_{i}\right)^{2}$ which implies that $r_{i}=c_{i}\left(2-c_{i}\right)$. Thus, by Theorem $6.2, \tilde{\pi}=1$ if and only if $\sum c_{i}=\infty$.

It is of interest to note that the permutation invariance mentioned above can be generalized. Let Y_{1} and Y_{2} have generating function of the form (4.1). Then the generating function of Z_{2} is (see (2.9))

$$
g_{1}\left(g_{2}(s)\right)=\frac{\left(\alpha_{1} \gamma_{2}+\beta_{1} \alpha_{2}\right)+\left(\alpha_{1} \delta_{2}+\beta_{1} \beta_{2}\right) s}{\left(\gamma_{1} \gamma_{2}+\delta_{1} \alpha_{2}\right)+\left(\gamma_{1} \delta_{2}+\delta_{1} \beta_{2}\right) s}
$$

and it can then be verified that $g_{1}\left(g_{2}(s)\right)=g_{2}\left(g_{1}(s)\right)$ if and only if $\alpha_{1} / \delta_{1}=\alpha_{2} / \delta_{2}$. But for $\pi_{i}<1$ one has $-\alpha_{i} / \delta_{i}=\pi_{i}$, thus the order does not matter if and only if $\pi_{1}=\pi_{2}$. This generalizes immediately for composing n such generating functions, and shows that the order of the Y_{i} s does not matter if and only if all $\pi_{i}=\pi_{0}<1$ in this case. We do not know if this property has been observed earlier. Translating to optimal stopping, we have obtained a sequence of non identically distributed variables for which the optimal stopping value is the same, no matter in which order the variables appear.

It is easy to show, by working out the distribution of Z_{2} in Example 6.1, that even though $\pi_{1}=\pi_{2}=1 / 2$ there, the Y_{i} s there do not have the permutation invariance property.

7. Connections to Prophet Values and Prophet Inequalities.

When not all π_{i} are equal, or when the necessary condition of Theorem 6.2 fails, one may still obtain meaningful, though sometimes crude, lower and upper bounds on $\tilde{\pi}$ through the use of suboptimal stopping rules, the 'prophet' value and the 'prophet inequality.' If $E X_{t}$ is the value of any (optimal or suboptimal) stopping rule t, for the n-horizon case, then $E X_{t} \leq V_{n}=\tilde{q}_{n} \leq V_{\infty}=\tilde{\pi}$, and if $E X_{t}$ is the value of a suboptimal rule for the infinite horizon case, $E X_{t} \leq V_{\infty}=\tilde{\pi}$, yielding lower bounds on \tilde{q}_{n} and $\tilde{\pi}$.

Let $V_{p}^{n}=E\left(\max \left(X_{1}, \ldots, X_{n}\right)\right)$ and $V_{p}^{\infty}=\lim _{n \rightarrow \infty} V_{p}^{n}$. V_{p}^{n} and V_{p}^{∞} are called "prophet values". The term "prophet value" stems from the fact that an individual with complete foresight of the future would simply select the largest X_{i} value in the sequence, and obtain the expected return V_{p}, the "prophet value". The prophet values V_{p}^{n} and V_{p}^{∞} are usually much easier to compute than the optimal stopping value. Since the value of any stopping rule is necessarily less than or equal to that of the prophet, we have the upper bound $\tilde{q}_{n}=V_{n} \leq V_{p}^{n} \leq V_{p}^{\infty}$ and hence $\tilde{\pi} \leq V_{p}^{\infty}$. In addition, the prophet value can also be used to obtain a lower bound on $\tilde{\pi}$. It is well-known, (see e.g. Hill and Kertz (1981)) that for a sequence of nonnegative independent random variables $V_{p}^{n}<2 V_{n}$, and thus $V_{p}^{n} / 2<V_{n}=\tilde{q}_{n} \leq \tilde{\pi}$ serves as a lower bound on \tilde{q}_{n} and $\tilde{\pi}$. Letting $n \rightarrow \infty$, we see that $V_{p}^{\infty} / 2$ is also a lower bound on $\tilde{\pi}$.
Example 7.1: Consider Example 6.1 with $\sum r_{i}<\infty$. Since $g_{i}^{\prime}(0)=1-r_{i}$, and $\pi_{i}=1 / 2$, the X_{i} corresponding to Y_{i} has mass $1-r_{i}$ at zero and is bounded above by $1 / 2$. Hence, the variable X_{i}^{*} where $P\left(X_{i}^{*}=0\right)=1-r_{i}$ and $P\left(X_{i}^{*}=1 / 2\right)=r_{i}$ is stochastically larger than X_{i}, and therefore the prophet value for the X_{i}^{*} sequence is an upper bound on the prophet value for the X_{i} sequence. The prophet value for the X_{i}^{*}-sequence is $1 / 2$ the probability that any of the X_{i}^{*} variables equals $1 / 2$, i.e., $\left(\frac{1}{2}\right)\left[1-\prod_{i=1}^{\infty}\left(1-r_{i}\right)\right]$. To obtain a lower bound on $\tilde{\pi}$, consider the suboptimal rule which stops for the smallest i such that $X_{i}>0$. It should be noted that since $\sum r_{i}<\infty$, this rule does not stop with probability one unless $r_{i}=1$ for some i. Even if $r_{i}<1$ for all i the value of this "rule" equals the limit of the value of the rule t_{n} which stops for the smallest i such that $X_{i}>0$, and stops at time n if no positive X_{i} is observed up to and including time n. The conditional expected return for stopping at X_{i}, given $X_{i}>0$, is $1 / 3$. Thus the value of this rule is $\left(\frac{1}{3}\right)\left[1-\prod_{i=1}^{\infty}\left(1-r_{i}\right)\right]$. A different lower bound can be obtained through the rule which stops for the smallest i such that $X_{i}=1 / 2$, if such an i exists. Its expected return is $\left(\frac{1}{2}\right)\left[1-\prod_{i=1}^{\infty}\left(1-r_{i} / 3\right)\right]$. Thus

$$
\max \left\{\frac{1}{2}\left[1-\prod_{i=1}^{\infty}\left(1-r_{i} / 3\right)\right], \frac{1}{3}\left[1-\prod_{i=1}^{\infty}\left(1-r_{i}\right)\right]\right\} \leq \tilde{\pi}<(1 / 2)\left[1-\prod_{i=1}^{\infty}\left(1-r_{i}\right)\right] .
$$

For example, if $r_{i}=1 /(i+1)^{2}$ we have

$$
\prod_{i=1}^{\infty}\left(1-r_{i}\right)=\lim _{n \rightarrow \infty} \prod_{i=1}^{n} \frac{i(i+2)}{(i+1)^{2}}=\lim _{n \rightarrow \infty} \frac{(n+2)}{2(n+1)}=1 / 2
$$

so that $1 / 6 \leq \tilde{\pi} \leq 1 / 4$. (Recall that $\pi_{0}=1 / 2$).
We have shown how the correspondence between Y and X can be used to obtain information about branching processes from computations involving an optimal stopping problem. The following theorem shows how the correspondence can be applied in the other direction.

Theorem 7.1. Let $Y \in \mathcal{Y}$ with $E Y \leq 1$, and let X be the corresponding random variable with distribution given in (3.1). With X_{1}, \ldots, X_{n} i.i.d. random variables distributed like X, let $X_{n}^{*}=\max \left(X_{1}, \ldots, X_{n}\right)$. Then X_{n}^{*} corresponds to a $Y_{n}^{*} \in \mathcal{Y}$, and the prophet value $E X_{n}^{*}$ can be computed using

$$
\begin{equation*}
E X_{n}^{*}=P\left(Y_{n}^{*}=0\right) \tag{7.1}
\end{equation*}
$$

Proof: The distribution function of $X_{n}^{*}=\max \left(X_{1}, \ldots, X_{n}\right)$ is

$$
F_{n}^{*}(x)= \begin{cases}0 & x<0 \tag{7.2}\\ {\left[g^{\prime}(x)\right]^{n}} & 0 \leq x<1 \\ 1 & 1 \leq x\end{cases}
$$

Clearly $k(x)=\left[g^{\prime}(x)\right]^{n}$ satisfies condition (i) of Remark 3.5. Now since $g^{\prime}(x) \leq g^{\prime}(1)=$ $E Y \leq 1,\left[g^{\prime}(x)\right]^{n} \leq g^{\prime}(x)$ for $0<x<1$ and $\int_{0}^{1}\left[g^{\prime}(x)\right]^{n} d x \leq \int_{0}^{1} g^{\prime}(x) d x<1$. Hence

$$
\begin{equation*}
g^{*}(s)=\int_{0}^{s} k(x) d x+\left(1-\int_{0}^{1} k(x) d x\right) \tag{7.3}
\end{equation*}
$$

further satisfies $g^{*}(0)>0$ and $g^{*}(1)=1$. Since here $\pi=1$, condition (ii) (b) of Remark 3.5, $g(\pi)=\pi$, is equivalent to (ii) (a).

Remark 7.1: If $E Y>1$ i.e. $\pi<1$, then $\max \left(X_{1}, \ldots, X_{n}\right)$ does not correspond to any $Y^{*} \in \mathcal{Y}$ since the distribution corresponding to (7.2) for this case cannot satisfy (ii) (a) and (b) of Remark 3.5 simultaneously.

Remark 7.2: When $E Y \leq 1$, then $E Y_{n}^{*}=d g^{*}(x) /\left.d x\right|_{1}=k(1)=\left[g^{\prime}(1)\right]^{n}=[E Y]^{n}$.
For the cases below which illustrate Theorem 7.1, the given $g(x)$ is sufficiently unaltered upon differentiation, taking powers, and integration that $g^{*}(x)$ of (7.3) correspondonds to a variable Y_{n}^{*} of the same 'type' as the original Y, with a mass at zero according to the constant term in (7.3).

Example 7.2: Let X be the variable corresponding to the Y of Example 4.2 with $p \leq 1 / m$, where $g^{\prime}(x)=m p x^{m-1}$. Hence $k(x)=\left(m p x^{m-1}\right)^{n}$ for $0 \leq x<1$ and hence

$$
g^{*}(x)=(m p)^{n} x^{n(m-1)+1} /[n(m-1)+1]+\left(1-(m p)^{n} /[n(m-1)+1]\right),
$$

and the prophet value $E X_{n}^{*}=P\left(Y_{n}^{*}=0\right)=g^{*}(0)=1-(m p)^{n} /[n(m-1)+1]$. Note that Y_{n}^{*} takes on only the two values 0 and $n(m-1)+1$, and hence is of the same type as the original Y.

Example 7.3: Let X correspond to a Poisson $\mathcal{P}(\lambda)$ variable Y, as in Example 4.3, with $\lambda \leq 1$. Then $k(x)=\left(\lambda e^{\lambda(x-1)}\right)^{n}$, so

$$
g^{*}(x)=\left(\lambda^{n-1} / n\right) e^{n \lambda(x-1)}+\left(1-\lambda^{n-1} / n\right),
$$

and hence Y_{n}^{*} is a mixture of a Poisson $\mathcal{P}(n \lambda)$ random variable with probability λ^{n-1} / n, and the constant 0 with probability $\left(1-\lambda^{n-1} / n\right)$. Thus the prophet value $E X_{n}^{*}$ can be computed by

$$
P\left(Y_{n}^{*}=0\right)=1-\frac{\lambda^{n-1}}{n}\left(1-e^{-n \lambda}\right)
$$

Example 7.4: Let X have distribution (4.4) with $p \in[0,1 / 2], q=1-p, b=p q, c=p$, and $\pi=1$. It follows that Y is geometric $\mathcal{G}(p)$, and $g(x)=q /(1-p x)$. Hence $k(x)=$ $\left(p q /(1-p x)^{2}\right)^{n}$ and we may write

$$
g^{*}(x)=\frac{p^{n-1}}{(2 n-1) q^{n-1}}\left(\frac{q}{1-p x}\right)^{2 n-1}+\left(1-\frac{p^{n-1}}{(2 n-1) q^{n-1}}\right) .
$$

Hence, Y_{n}^{*} is a mixture of a sum of $2 n-1$ independent $\mathcal{G}(p)$ variables, that is, a negative binomial, with probability $(p / q)^{n-1} /(2 n-1)$, and the constant 0 with probability $1-$ $(p / q)^{n-1} /(2 n-1)$. Thus the prophet value $E X_{n}^{*}$ equals

$$
\left.P\left(Y_{n}^{*}=0\right)=q^{n} p^{n-1} /(2 n-1)+(1-(p / q))^{n-1} /(2 n-1)\right)
$$

REmark 7.3: In a similar way it can also be shown that in the inhomogeneous case, when $E Y_{i} \leq 1$ for all $i=1, \ldots, n$, the prophet variable $X_{n}^{*}=\max \left(X_{1}, \ldots, X_{n}\right)$ again corresponds to a $Y^{*} \in \mathcal{Y}$.

References

[1] Athreya, K.B. and Ney, P.E. (1972), Branching Processes, Springer-Verlag, N.Y.
[2] Chow, Y., Robbins, H., and Siegmund, D. (1971). Great Expectations: The theory of optimal stopping, Houghton Mifflin.
[3] D'Souza, J.C. (1995). The extinction time of the inhomogeneous branching process. In: Branching Processes, C.C. Heyde, ed. Lecture Notes in Statistics, 99, Springer Verlag, 106-117.
[4] de Haan, L., (1976). Sample extremes: an elementary introduction, Statist. Neerlandica 30, 161-172.
[5] Harris, T.E. (1963). The Theory of Branching Processes, Springer-Verlag, Berlin.
[6] Hill, T.P. and Kertz, R.P. (1981). Ratio comparisons of supremum and stop rule expectations. Z. Wahrscheinlichkeitstheorie verw. Gebiete 56, 283-285.
[7] Hill, T.P. and Kertz, R.P. (1982). Comparisons of stop rule and supremum expectations of i.i.d. random variables. Ann. Probab. 10, 336-345.
[8] Jagers, P. (1974). Galton-Watson processes in varying environments. J. Appl. Prob. 11, 174-178.
[9] Jagers, P. (1975). Branching Processes with Biological Applications, John Wiley \& Sons, Ltd., London.
[10] Jirina, M. (1976). Extinction of non-homogeneous Galton-Watson processes. J. Appl. Prob. 13, 132-137.
[11] Karlin, S. and Taylor, H.M., (1975). A first course in stochastic processes, Second Ed., Academic Press, Inc., N.Y.
[12] Keiding, N. and Nielsen, J.E. (1975). Branching processes with varying and geometric offspring distribution. J. Appl. Prob. 12, 135-141.
[13] Kennedy, D.P. and Kertz, R.P. (1991). The asymptotic behavior of the reward sequence in the optimal stopping of i.i.d random variables. Ann. Probab. 9, 329-341.
[14] Leadbetter, M.R., Lindgren, G. and Rootzén H., (1983). Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, N.Y.
[15] Slack, R.S. (1968). A branching process with mean one and possibly infinite variance, Z. Wahrscheinlichkeitstheorie verw. Geb. 9, 139-145.

