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Abstract We compare estimators of the integral of a monotone function f that can
be observed only at a sample of points in its domain, possibly with error. Most
of the standard literature considers sampling designs ordered by refinements and
compares them in terms of mean square error or, as in Goldstein et al. (2011), the
stronger convex order. In this paper we compare sampling designs in the convex
order without using partition refinements. Instead we order two sampling designs
based on partitions of the sample space, where a fixed number of points is allocated
at random to each partition element. We show that if the two random vectors
whose components correspond to the number allocated to each partition element are
ordered by stochastic majorization, then the corresponding estimators are likewise
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convexly ordered. If the function f is not monotone, then we show that the convex
order comparison does not hold in general, but a weaker variance comparison does.

Keywords Convex order · Stochastic majorization · Stratified sampling ·
Exchangeable partitions of integers
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1 Introduction

Consider a function f whose values can be obtained only via costly experiments, so
that budget constraints limit the number of points where the function can be eval-
uated. Monte Carlo randomization is a standard way to choose these points, which
can either be sampled totally at random, or using some stratification. When properly
carried out, stratification is known to improve the performance of estimators; see, for
example, Glasserman (2004).

If the object of interest is the integral I( f ) = E[ f (U)], where U is a given random
variable, then it is easy to construct unbiased estimators of I( f ) by using different
stratified samples. In much of the literature estimators are compared in terms of a
given loss function, which may be arbitrary. Typically the loss function is quadratic,
so the criterion is the mean square error, i.e., the variance, when the estimator is
unbiased.

When stratified sampling is used, a partition A of U, the domain of f , is con-
structed and observations are drawn from each element Ai of the partition in propor-
tion to the probability P(U ∈ Ai). If another partition B is obtained by refining
A , i.e., by breaking the elements of A , and sampling accordingly, then it is well
known that the variance of natural unbiased estimators of I( f ) decreases, but, as
Goldstein et al. (2011) show, for natural unbiased estimators W such as Eq. 2.1
below, refinement of the stratification does not necessarily reduce E[|W − I( f )|p],
for p �= 2. However, in some circumstances stratified sampling is better not just in
L2, but in terms of the convex order, which in turn implies that it is better in Lp for
every p ≥ 1. For instance this happens when f is a monotone function, even if it is
observed with a random error.

The current paper is a follow-up of Goldstein et al. (2011), where references on
stratified sampling, estimation of functionals of unknown functions, and a discussion
of the convex order can be found. The latter paper contains comparisons of estima-
tors based on monotone partitions and their refinements in terms of convex order,
where the function f is monotone. The purpose of the present paper is to show that
the convex order can be used also to compare sampling designs that are not ordered
by refinements. We consider a monotone function f and unbiased estimators of
I( f ) based on sampling designs of the following type. A partition (A1, . . . , An) of U

satisfying P(U ∈ Ai) = 1/n for i = 1, . . . , n is fixed and a random sample of size Ki

is drawn from each Ai, where K = (K1, . . . , Kn) is an exchangeable random vector.
We consider two sampling designs corresponding to vectors K and L and show that
if they are ordered by stochastic majorization, then the corresponding estimators are
likewise convexly ordered.

The sampling method suggested here arises when it is not practical to sample one
observation (or any fixed number) from each stratum in the partition, and instead
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samples are drawn from some strata, and not from others, chosen at random. In
this case unbiased estimators can still be obtained by using a random exchangeable
design K as described above, and they can be compared in terms of the convex order.
Moreover the approach used in Goldstein et al. (2011) imposes some restrictions on
the relation between the maximal number of elements of the partition and the size of
the sample. Here instead, the total number of observations is arbitrary and does not
depend in any way on the size of the partition.

If the function f is not monotone, the above mentioned result does not go
through. We provide a counterexample. Nevertheless a weaker comparison in terms
of variances holds in this general case.

The paper is organized as follows. Section 2 introduces some definitions and pres-
ents the main results. All proofs are in Section 3 together with some additional results
that have some interest per se. Section 4 contains some numerical examples.

2 Symmetric Designs

2.1 Definitions

We start with some definitions; throughout, all random quantities are defined on
some probability space (�,F , P).

Let U ⊂ R be a compact interval (without loss of generality choose U = [0, 1]),
and for given positive integers n and N, let K be the class of vectors k = (k1, . . . , kn)

with nonnegative integer components such that
∑n

i=1 ki = N. If N = mn then clearly
m1n := m(1, . . . , 1) ∈ K . Let K be an exchangeable random vector with support in
K ; with an abuse of notation we write K ∈ K .

Definition 2.1 Given an exchangeable random vector K = (K1, . . . , Kn) ∈ K and
a partition A = (A1, . . . , An) of U such that P(U ∈ Ai) = 1/n for i = 1, . . . , n, the
associated symmetric random design K is the design consisting of N independent
random points Vij, j = 1, . . . , Ki, i = 1, . . . , n (at which f (Vij) will be observed,
possibly with noise), where Vi1, . . . , ViKi are i.i.d. random variables with distribution
PU |Ai , i = 1, . . . , n, that is, P(Vij ∈ B) = P(U ∈ B|U ∈ Ai).

In other words, a sample having the design K associated with the exchangeable
vector K can be realized by drawing a realization k of K and a random permutation
� of (1, . . . , n), and then sampling k�(i) observations from PU |Ai for all i. Note that
when N = mn, the associated symmetric random design m1n samples m observations
from each subset of a partition A = (A1, . . . , An) of U such that P(U ∈ Ai) = 1/n for
i = 1, . . . , n. We denote this design by m1n.

Assume that for any v in a sample of points on U we observe f (v) + ε where ε is a
mean zero independent random error. By exchangeability and the fact that the error
ε has mean zero, it is easy to see that the estimator

WK = 1

N

n∑

i=1

Ki∑

j=1

(
f
(
Vij

) + εij
)

(2.1)

is unbiased for I( f ) := E[ f (U)].
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For subsets G and H of the real line, we write G ≤ H if g ≤ h for every g ∈ G and
h ∈ H. We call a partition B = (B1, . . . , Bb ) of U monotone if B1 ≤ · · · ≤ Bb .

Given two vectors x = (x1, . . . , xn), y = (y1, . . . , yn), we write y ≺ x if

k∑

i=1

y↓
i ≤

k∑

i=1

x↓
i for k = 1, . . . , n − 1, and

n∑

i=1

yi =
n∑

i=1

xi,

where y↓
1 ≥ · · · ≥ y↓

n is the decreasing rearrangement of y, and analogously for x.
Clearly m1n ≺ k for any vector k of length n with nonnegative components summing
to nm.

A function ψ : R
n → R is called Schur convex if y ≺ x implies ψ(y) ≤ ψ(x). If

ϕ : R → R is convex then ψ(x) = ∑n
i=1 ϕ(xi) is Schur convex. For the majorization

order ≺ and properties of Schur convex functions see, e.g., Marshall and Olkin
(1979).

Definition 2.2 Given two random vectors X, Y we say that Y ≤st X if

E[φ(Y)] ≤ E[φ(X)] (2.2)

for every nondecreasing function φ; we say that Y ≤cx X if Eq. 2.2 holds for every
convex function φ; we say that Y ≺S X if Eq. 2.2 holds for every Schur convex
function φ.

Properties of the stochastic order ≤st and the convex order ≤cx are extensively
studied in Müller and Stoyan (2002) and Shaked and Shanthikumar (2007). The state-
ment Y ≤st X depends only on the marginal laws L (Y) and L (X), so sometimes
we write L (Y) ≤st L (X), and analogously for ≤cx. Since an increasing function of a
Schur convex function is also Schur convex, it is easy to see that X ≺S Y is equivalent
to g(X) ≤st g(Y) for every Schur convex function g (see Nevius et al. 1977, where the
concept of stochastic majorization was introduced).

2.2 Main Result

Recall Definition 2.1 of symmetric random designs.

Theorem 2.3 Let f be a nondecreasing function on U and A = (A1, . . . , An) a
monotone partition of U satisfying P(U ∈ Ai) = 1/n. Consider exchangeable vectors
L, K ∈ K satisfying L ≺S K, and let L and K be their associated symmetric random
designs. Then

WL ≤cx WK. (2.3)

In particular, when N = mn, for any symmetric random design K we have

Wm1n ≤cx WK.

A special case of Eq. 2.3 is obtained when L and K are random permutations of
some fixed � and k satisfying � ≺ k. For example, if n = N = 4 and � = (2, 2, 0, 0),
and k = (3, 1, 0, 0), then Eq. 2.3 provides a comparison that does not involve a
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refinement. Note that in the above monotone partition, the sets Ai are intervals
whose end points are the (i − 1)/n and i/n quantiles of the random variable U .

A result similar to the above theorem holds also for non-monotone functions,
provided that the stratification is into sets Ai such that the ranges f (Ai) satisfy
f (Ai1) ≤ f (Ai2) ≤ . . . ≤ f (Ain) for some permutation (i1, . . . , in) of (1, . . . , n).

The notion of symmetric design involves additional randomization and is there-
fore different from the kind of sampling treated in Goldstein et al. (2011). Such
symmetric randomization is required in order to preserve unbiasedness, a property
shared by all the estimators of integrals considered here. The interpretation of
Theorem 2.3 is that more balanced designs, in the sense defined by the majorization
order, are better.

The last part of Theorem 2.3 shows that for a sample of size N = mn, a partition
A into subsets of equal probability with a sample of m from each is best in the sense
of convex order.

2.3 Integrals of Nonmonotone Functions

If we drop the hypothesis of monotononicity of the function f in Theorem 2.3, then
the conclusion does not hold, as the following counterexample shows.

Example 2.4 Let U = [0, 1], n = 2, A1 = [0, 1/2], A2 = (1/2, 1], and let U have a
uniform distribution on [0, 1]. Define

f (x) = 2I[0,1/2](x) + 4I(3/4,1](x).

Moreover let L = (1, 1) almost surely, and

K =
{

(0, 2) with probability 1/2,
(2, 0) with probability 1/2.

Then L ≺S K and
∫ 1

0 f (x) dx = 2. For N = 2, we have

WL =
{

1 with probability 1/2,
3 with probability 1/2,

and

WK =

⎧
⎪⎨

⎪⎩

0 with probability 1/8,
2 with probability 3/4,
4 with probability 1/8.

This implies that E[|WL − 2|] = 1 and E[|WK − 2|] = 1/2, hence it is not true that
WL ≤cx WK.

Nevertheless, the variances of the estimators exhibit monotonicity with respect to
≺S without any monotonicity assumption on f .

Proposition 2.5 Let f : U → R be bounded and let A = (A1, . . . , An) be a monotone
partition of U satisfying P(U ∈ Ai) = 1/n. Consider exchangeable vectors L, K ∈ K
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satisfying L ≺S K, and let L and K be their associated symmetric random designs.
Then

Var[WL] ≤ Var[WK]. (2.4)

Moreover, if E[ f (U)|U ∈ Ai] does not depend on i, then Var[WL] = Var[WK].

A similar phenomenon was described in Goldstein et al. (2011), where under
a different ordering of designs, monotonicity of the variance does not require
monotonicity of the function whose integral is estimated, but for the stronger convex
ordering monotonicity is required.

3 Proofs and Additional Results

The following lemma is a very special case of a well-known result of Strassen (1965)
(see also Alfsen 1971; Lindvall 2002).

Lemma 3.1 Let X and Y be n-dimensional random vectors with compact support such
that X ≺S Y . Then there exists a coupling of (X, Y) such that P(X ≺ Y) = 1, that is, a
coupling where the vector X is majorized by Y with probability 1.

The next lemma is a central step for the proof of Theorem 2.3.

Lemma 3.2 Let ξ1, . . . , ξn be independent random variables having supports that
satisfy supp(ξ1) ≤ supp(ξ2) ≤ . . . ≤ supp(ξn), and let {ξij}i=1,...,n, j=1,2,... be independent
with L (ξij) = L (ξi). Consider two vectors having nonnegative integer components
� = (	1, . . . , 	n) and k = (k1, . . . , kn) such that � ≺ k. Let � be a random permutation
uniformly distributed over S, the permutation group of {1, . . . , n}, independent of {ξij}.
Def ine

Z� =
n∑

i=1

	�(i)∑

j=1

ξij and Zk =
n∑

i=1

k�(i)∑

j=1

ξij. (3.1)

Then

Z� ≤cx Zk

Proof It is a well known fact in majorization (see, e.g., Hardy et al. (1952, Proof of
Lemma 2, p. 47) and Marshall and Olkin (1979, Lemma B.1, p. 21)) that to prove
the lemma it suffices to consider k and � that differ in only two coordinates, and
moreover, it is easy to see that it suffices to consider the special case where k and �

satisfy

k1 − 1 ≥ k2 + 1, 	1 = k1 − 1, 	2 = k2 + 1, 	h = kh, for h = 3, . . . , n. (3.2)

For such k and � we may write the desired conclusion as

∑

i:�(i)∈{1,2}

	�(i)∑

j=1

ξij +
∑

i:�(i) �∈{1,2}

	�(i)∑

j=1

ξij ≤cx

∑

i:�(i)∈{1,2}

k�(i)∑

j=1

ξij +
∑

i:�(i) �∈{1,2}

k�(i)∑

j=1

ξij.
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By denoting the summands above by A�, B�, C�, D�, respectively, we may rewrite
the desired inequality as

A� + B� ≤cx C� + D�,

or, by explicitly writing out the mixture over �, equivalently as

1

n!
∑

π∈S

L (Aπ + Bπ ) ≤cx
1

n!
∑

π∈S

L (Cπ + Dπ ).

In order to prove the relation above we pair the summands in the following way: each
permutation π in this mixture is paired with the permutation σ for which σ−1(1) =
π−1(2), σ−1(2) = π−1(1) and σ−1(i) = π−1(i) for all i �∈ {1, 2}. It is easy to see that it
suffices to show for each given (nonrandom) such pair π, σ ,

1

2
L (Aπ + Bπ ) + 1

2
L (Aσ + Bσ ) ≤cx

1

2
L (Cπ + Dπ ) + 1

2
L (Cσ + Dσ ).

The above pairing and Eq. 3.2 readily imply that Bπ = Bσ = Dπ = Dσ , and they are
all independent of the A’s and C’s. Therefore, since translations and sums of convex
function are also convex, it now suffices to prove

1

2
L (Aπ ) + 1

2
L (Aσ ) ≤cx

1

2
L (Cπ ) + 1

2
L (Cσ ).

More explicitly, recalling the relation between π and σ , this last inequality may be
written

1

2
L

⎛

⎝
	1∑

j=1

ξπ−1(1) j +
	2∑

j=1

ξπ−1(2) j

⎞

⎠ + 1

2
L

⎛

⎝
	2∑

j=1

ξπ−1(1) j +
	1∑

j=1

ξπ−1(2) j

⎞

⎠

≤cx
1

2
L

⎛

⎝
k1∑

j=1

ξπ−1(1) j +
k2∑

j=1

ξπ−1(2) j

⎞

⎠ + 1

2
L

⎛

⎝
k2∑

j=1

ξπ−1(1) j +
k1∑

j=1

ξπ−1(2) j

⎞

⎠ .

Set π−1(1) = a and π−1(2) = b . Then, by Eq. 3.2, L (ξb	2) = L (ξbk1), L (ξa	2) =
L (ξak1), and independence, it is easy to see that the above is equivalent to

1

2
L

⎛

⎝
k1−1∑

j=1

ξaj +
k2∑

j=1

ξb j + ξbk1

⎞

⎠ + 1

2
L

⎛

⎝
k2∑

j=1

ξaj + ξak1 +
k1−1∑

j=1

ξb j

⎞

⎠

≤cx
1

2
L

⎛

⎝
k1∑

j=1

ξaj +
k2∑

j=1

ξb j

⎞

⎠ + 1

2
L

⎛

⎝
k2∑

j=1

ξaj +
k1∑

j=1

ξb j

⎞

⎠ . (3.3)
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Now, with

(α1, α2) =
⎛

⎝
k1−1∑

j=1

ξaj +
k2∑

j=1

ξb j + ξbk1 ,

k2∑

j=1

ξaj + ξak1 +
k1−1∑

j=1

ξb j

⎞

⎠ and

(β1, β2) =
⎛

⎝
k1∑

j=1

ξaj +
k2∑

j=1

ξb j,

k2∑

j=1

ξaj +
k1∑

j=1

ξb j

⎞

⎠ ,

we prove that (α1, α2) ≺ (β1, β2). First note that α1 + α2 = β1 + β2, so it suffices to
show that max{α1, α2} ≤ max{β1, β2}. Suppose first that a < b . Then, since k1 − 1 ≥
k2 + 1, we have

β2 − α1 =
k1−1∑

j=k2+1

(
ξb j − ξaj

) ≥ 0, and β2 − α2 = ξbk1 − ξak1 ≥ 0,

and therefore max{α1, α2} ≤ β2 ≤ max{β1, β2}. A similar calculation holds when
a > b .

Recalling that if ϕ is convex on R then
∑

ϕ(xi) is Schur convex, it follows that for
any convex function ϕ we have ϕ(α1) + ϕ(α2) ≤ ϕ(β1) + ϕ(β2), and Eq. 3.3 follows
readily. 
�

The next generalization is of possible interest by itself. For � = (	1, . . . , 	n) let

ϒ� =
n∑

i=1

	i∑

j=1

ξij

Proposition 3.3 Let {ξij} be as in Lemma 3.2 and let L and K be exchangeable random
vectors having nonnegative integer valued components, independent of {ξij}. If L ≺S

K, then

ϒL ≤cx ϒK . (3.4)

Proof Since K is exchangeable L (ϒK) = L (Z K) where Zk is defined in Eq. 3.1, so
it suffices to show Z L ≤cx Z K . By Lemma 3.1 we may take L ≺ K almost surely, and
now, using the assumed independence, Lemma 3.2 may be invoked to complete the
argument. 
�

Corollary 3.4 Let {ξij} be as in Lemma 3.2. If K is an exchangeable random vector in
K , independent of {ξij}, and if N = mn then

ϒm1n ≤cx ϒK .

Proof of Theorem 2.3 Consider first the case of εij = 0. Recalling that Vij is the jth

sampled value in the partition element Ai, by the monotonicity of f and of the
partition A , the variables ξij = f (Vij) satisfy the hypotheses of Lemma 3.2. Hence
the theorem now easily follows by applying Proposition 3.3. Since the convex order
is preserved under addition of independent equally distributed random variables, the
general case with additive noise follows. 
�
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Proof of Proposition 2.5 It is easy to see that it suffices to consider the case where
all εij in Eq. 2.1 are zero. Once this is proved, for the first part of the proposition the
general result follows using the same argument as in the proof of Theorem 2.3, and
for the second it is obvious.

Call P the set of all permutations of {1, . . . , n} and for k ∈ K define

ψ(k) := 1

n!
∑

π∈P

[
1

N

n∑

i=1

kπ(i)E
[

f (Vi)
] − I( f )

]2

, (3.5)

where Vi have the distribution PU |Ai , see Definition 2.1. The function ψ is symmetric
and convex, hence Schur convex (see Marshall and Olkin 1979, page 67, Proposi-
tion C.2).

We start by proving the result for the special case where K = (K1, . . . , Kn) is such
that Ki = k�(i) for a fixed k and a uniformly chosen random permutation � with
values in P . For this case it is required to prove that Var[WK] is a Schur convex
function of k. Note that in this case, for any functions φi, i = 1, . . . , n, we have

E

n∑

i=1

φi(Ki) = 1

n!
∑

π∈P

n∑

i=1

φi
(
kπ(i)

)
. (3.6)

By the variance decomposition formula, we have

Var
[
WK

] = Var
[
E

[
WK|K]] + E

[
Var

[
WK|K]]

. (3.7)

Both terms on the r.h.s. above depend on k. We prove now that the first is Schur
convex in k and that the second is constant for all k ∈ K .

Since

E
[
WK|K = k

] = 1

N

n∑

i=1

kiE
[

f (Vi)
]
,

using Eqs. 3.6 and 3.5, we obtain

Var
[
E

[
WK|K]] = ψ(k). (3.8)

Therefore Var[E[WK|K]] is Schur convex in k.
For the second term we have

Var
[
WK|K = k

] = E

⎡

⎢
⎣

⎧
⎨

⎩

1

N

n∑

i=1

⎛

⎝
ki∑

j=1

f (Vij) − kiE
[

f (Vi)
]
⎞

⎠

⎫
⎬

⎭

2
⎤

⎥
⎦

= 1

N2

n∑

i=1

ki Var
[

f (Vi)
]
,



416 Methodol Comput Appl Probab (2012) 14:407–420

where L (Vij) = L (Vi) for each i, with {Vij} independent. Therefore

E
[

Var
[
WK|K]] = 1

n!
1

N2

n∑

i=1

∑

π∈P

kπ(i) Var
[

f (Vi)
]

= 1

n!
1

N2

∑

π∈P

n∑

i=1

ki Var
[

f (Vπ(i))
]

= 1

N

n∑

i=1

Var
[

f (Vi)
]
,

which does not depend on k ∈ K .
It follows that if � ≺ k, then Var[WL] ≤ Var[WK]. This implies the required result

for L ≺S K when L and K are concentrated on permutations of some � and some k,
respectively, and � ≺ k.

Now suppose L ≺S K, and they are not (necessarily) concentrated on permu-
tations of some � and some k. The variance decomposition (Eq. 3.7) still holds.
Moreover, by Lemma 3.1, we can assume that P(L ≺ K) = 1, i.e., that the joint
distribution of (L, K) is supported on the set

A = {
(�, k) : �, k ∈ K , � ≺ k

}

with probabilities pk,�. It follows easily from Eq. 3.8 that

Var
[
E

[
WL|L]] =

∑

(k,�)∈A

pk,�ψ(�) ≤
∑

(k,�)∈A

pk,�ψ(k) = Var
[
E

[
WK|K]]

, (3.9)

where the inequality follows from the fact that ψ is Schur convex, as shown above.
It is immediate to see that the second summand in Eq. 3.7 is constant, and Eq. 2.4
follows.

To prove the second part of the proposition notice that, if E[ f (U)|U ∈ Ai] =
E[ f (Vi)] are all equal, and therefore all equal to I( f ), then it follows easily from
Eqs. 3.5 and 3.9 that Var[E[WK|K]] is zero. Since the other summand in Eq. 3.7 was
shown to be constant, the result follows. 
�

4 Numerical Examples

We consider a function f on the interval [0, 1]. We partition the interval [0, 1] into
n = 10 subintervals of equal length, and we take a total of N = 15 observations.

Let ka
, kb

, kc
, kd ∈ N

10 be defined as follows:

ka = (0, 0, 0, 0, 0, 0, 0, 0, 0, 15),

kb = (0, 0, 0, 0, 0, 0, 0, 5, 5, 5),

kc = (0, 0, 0, 0, 0, 3, 3, 3, 3, 3),

kd = (1, 1, 1, 1, 1, 2, 2, 2, 2, 2).
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We have

kd ≺ kc ≺ kc ≺ ka
. (4.1)

Let K∗
i , i = 1, . . . , 7 be random vectors defined as follows:

K∗
1 = ka with probability 1,

K∗
2 = ka or kb with equal probabilities,

K∗
3 = ka or kb or kc with equal probabilities,

K∗
4 = ka or kb or kc or kd with equal probabilities,

K∗
5 = kb or kc or kd with equal probabilities,

K∗
6 = kc or kd with equal probabilities,

K∗
7 = kd with probability 1.

Define now Ki to be the random vector obtained by applying a random permutation
to K∗

i . Lemma 3.1 and Eq. 4.1 imply that

K∗
7 ≺S K∗

6 ≺S K∗
5 ≺S K∗

4 ≺S K∗
3 ≺S K∗

2 ≺S K∗
1,

hence

K7 ≺S K6 ≺S K5 ≺S K4 ≺S K3 ≺S K2 ≺S K1.

The integral I( f ) = ∫ 1
0 f (x) dx is estimated with

WK = 1

N

n∑

i=1

Ki∑

j=1

f (Vij),

1 2 3 4 5 6 7
Ki

0.05

0.10

0.15

0.20

0.25

0.30

0.35

p error

p 10

p 2

p 1

Fig. 1 Mean p-error for estimators of
∫ 1

0 x1/2 dx
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1 2 3 4 5 6 7
Ki

0.1

0.2

0.3

p error

p 10

p 2

p 1

Fig. 2 Mean p-error for estimators of
∫ 1

0 x dx

for K = Ki, as defined above, i = 1, . . . , 7. We repeat the operation M = 10,000
times. If we call W( j)

K
the j-th estimate, then the mean p-error is estimated with

⎛

⎝ 1

M

M∑

j=1

∣
∣
∣W( j)

K
− I( f )

∣
∣
∣

p

⎞

⎠

1/p

.

We compute this mean p-error for p = 1, 2, 10.
We choose the monotone functions f (x) = xα , for α = 0.5, 1, 2, 20. As expected

from Theorem 2.3, we obtain the following results. On the horizontal axis we have
the different sampling schemes corresponding to Ki, i = 1, . . . , 7 (Figs. 1, 2, 3 and 4).

1 2 3 4 5 6 7
Ki

0.1

0.2

0.3

0.4

p error

p 10

p 2

p 1

Fig. 3 Mean p-error for estimators of
∫ 1

0 x2 dx
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Fig. 4 Mean p-error for estimators of
∫ 1

0 x20 dx

1 2 3 4 5 6 7
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0.1

0.2

0.3

0.4

p error

p 10

p 2

p 1

Fig. 5 Mean p-error for estimators of
∫ 1

0 f (x) dx with f as in Eq. 4.2
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p error

p 10

p 2

p 1

Fig. 6 Mean p-error for estimators of
∫ 1

0 f (x) dx with f as in Eq. 4.3
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As Fig. 5 shows, monotonocity of the function f is fundamental to obtain the
comparison in Theorem 2.3. If we choose the nonmonotone function

f (x) =

⎧
⎪⎨

⎪⎩

2 if 0 ≤ x < .88,

1 if .88 ≤ x < .94,

3 if .94 ≤ x ≤ 1,

(4.2)

then, as in Example 2.4, for p = 1 the comparison goes the other way around. The
L2 error is decreasing, as expected from Proposition 2.5.

This happens also for the function

f (x) =

⎧
⎪⎨

⎪⎩

1 if 0 ≤ x < .9,

0 if .9 ≤ x < .95,

2 if .95 ≤ x ≤ 1.

(4.3)

In this case the conditions of the second part of Proposition 2.5 are satisfied, so in the
simulations the L2 error is approximately constant (Fig. 6).
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