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ON EFFICIENT ESTIMATION
OF SMOOTH FUNCTIONALS

The problem of the estimation of smooth functionals A defined on a set of densities
F is considered. A simple ¢plug-in» estimator A(}n) is shown to be asymptotically
efficient in the sense of Levit [5], [6], where J, is an «undersmootheds kernel estimate
of the density f. The approach is compared to others in the literature.

Key words and phrases: independent observations, a «plug-in» estimator, a ker-
nel estimator, a locally asymptotically minimax estimator, a smooth functional, asyrp-
totic efficiency.

Introduction. " Given independent observations from an unknown density function
f the question of estimating the value of a smooth functional A at f has been considered
in a number of papers, for instance, {6], [3], [1].

In this note we restrict ourselves to the problem of determining what conditions are
necessary to insure the asymptotic efficiency, in the sense of Levit [5] and Ibragimov
and Khas’minskii [4], of the simple «plug-in» estimator A(f,.), where f,, is an «under-
smoothed» kernel estimator of f. Our approach is similar to [6] and [2]. As in [2], the
bandwidth b used in the estimate f, is not optimal for the estimation of f; rather, we take
advantage of the smooth, integral nature of the derivative of the functional A and under-
smooth. That is, as a certain variance may be bounded independently of b, by choosing
a small bandwidth, that is, by undersmoothing, the bias term becomes negligible and the
estimator’s behavior is determined by the average of a sum of independent and identically
distributed random variables, which, when scaled, converge to normal with an appropriate
constant.

1. Assumptions and notation. Given X;, X3,..., X, independent random vari-
ables with density f, we consider the estimation of A{f), where A is a functional defined
on a set of densities F in which f is known to lie. We use ||h||; to denote the usual
Lg-norm of the function h and ||h||§ to denote [h?f. For positive constants r and L with
r=p++,p an integer and 0 < v € 1, let

Wi = {recrs [ f0 +3)- 10 <z}

We use X to denote a random variable with density function f and C will denote a positive

constant, not necessarily the same at each occurrence. Qur result requires the following
assumptions.
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A1l. The functional A is Fréchet differentiable in L, with derivative T(f, z); that is,

with h, f € Lz and with

Tyg = / T(f,z) o(z) dz,

we have

AGR) = A(F) = Ty (h = 1) = o(lIh — l2)

Furthermore, T(f, z) satisfies a Holder condition of index a:

”T(h, Y =T(f, -)|(2 < Cllh - flig.

A2. There exist positive constants r and L such that F C W7 (L) for ¢ € {2, 00}.

A3. The Holder index o satisfies @ > 1/(2r —1).

A4. There exist positive constants ¢y, c3 such that ¢; < Var T(f, X) < ¢ for all

feF.

Furthermore,

sup 707, +9) - (), —0 s v,

fsg;})_ |lT(f")H/ < oo and fstelg_ ”T(_f,-)“z7 < 0.

Let f be the kernel estimator of f and bandwidth b based on the independent observations

X1,X2,...,Xn with density f;

R ]

i=1
We take the kernel K to have support [~1, 1], be bounded, and satisfy

y

1 1
/ K(zr)dzr =1, / 2?K(z)dz =0, j=1,2,...,p.
-1 -1

With ¢ an arbitrary positive constant, we take the bandwidth b = b, as

[+1
a+1

1
bp = cn~ 8, where — <8<
2r

(1)

(2)

(3)

2. Main result
Theorem 1. Le
of the form (1) with |
uniformly for f € F

c

where af, = Var ;T(/

Corollary 1. I
minimazr (LAM) wh
erists no estimator
of (5).

Proof 1Itfo

Hence, both assertio
Lemma 1. Let
A4, uniformly for f

and

Lemma 2. Let

For the proof of

into bias and error t

and

First we establish an
Proposition 1.
A2 there exists a co

Proof. By ¢

B(z) = (p

(p
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2. Main result. )

Theorem 1. Lethassumptions A1, A2, A3, and A4 be satisfied, and suppose f, is
of the form (1) with kernel K and bandwidth b satisfying (2) and (3) respectively. Then,
uniformly for f € F

‘C(\/f_l(x\(fn)—A(f))) =:»N(0,rrf.) as n — 00, (4)

where 03 = Var;T(f, X). Furthermore

Ef(ﬁ(Mﬂ)*Mf)))z—m?. (5)

Corollary 1. It follows from [5] that the estimator A(fn) is locally asymptotically
minimazr (LAM) when the conditions of the theorem are fulfilled. In particular, there
erists no estimator that uniformly achieves a smaller constant on the right-hand side

of (3).

Proof. It follows from assumption A1l that

AUn) = M) = Ty = £)] < Cllin = £+,

Hence, both assertion§ of the theorem follow from the two lemmas below.
Lemma 1. Let f, be given by (1), (2), and (3). Then, under assumptions A2 and
A4, unsformly for f € F,

L(\/ETI(}n - f)) @N(0,0‘;),

and

B (VaTy(jn - 1)’ — k.
Lemma 2. Let f, be given by (1), (2), and (3). Then, under conditions A2 and A3
nEf|lfa ~ f?*2*—0 as n — oo
For the proof of these lemmas, we will use the decomposition
In(z) = f(z) = B(z) + Z(z)

into bias and error term, where

B(z>=/:_’:b§1((“b’)f(t)dt—f(z) (6)

and
Z(z) = fa(z) = E fu(2).
First we establish an upper bound on the bias B.
Proposition 1. Let f, be given as in (1) with K as in (2). Then, under assumption
A2 there erists a constant C such that ||B||y < Cb" for ¢ € {2, o0}.
Proof. By equation (6), a change of variable, Taylor's formula and (2), we find

1 bu
B(z) = (P—;])'~/-1 du/; f(”)(z +t) (bu — )P "L K (u) dt

1 bu
= (11-—;1)'[_1 du/o (f(p)(z +t) - f(P)(z))(bu — )P~V K (u) dt.
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Therefore, by A2 with ¢ = co we have for all

’B(z)| < (7_1_1_)_!/—11 |K(u) |bulﬂ-1du/—”b V(P)(z 1) - 5| at

< Cv-lLptl g CbTy

hence [[Bllcoc € Cb". Analagously, [|Bll2 < Cb". ) '
Proof of Lemma 1. Since Ty is linear, T¢(fa — f) =Ty B+ T Z. Firstly we

have

1Ty Bl < |T(5,9)], 181 < €

so that v/n|TyB| < Cn'/2-7% _ 0 uniformly in f.
Consider Ty Z. Let

ei(z) = %K(x"b“) ~/%K(t_bz)f(t)dt.

T2 = %Z/T(f,:c)e,-(z)dz: -’I:Zm‘,
i=1

1=1

Then

the average of n independent and identically distributed mean zero random variables.
We have

E; [1 %K(Xb“’) T(f,z)dz - E,T(f,X)l

- ’//i %K(’"T") f(t)T(f,z)dzd:—/T(f,X)f(r)dr

1
~ '//_1 K () (5(z +bu) - £(2)) T(f, z) du dz
< /_11/lK(u)!lf(z+bu)—f(z)HT(f,:c)ldzdust"”T(f,-)”z—m

uniformly for f € . Hence,

Varn; = Var (/T(f,z:)-;-K(X;z) dz)
:/ [/T(f,x)%]((t;z) dz]2f(t)dt— (E,/%K(x;z)T(f,x)dz)z
[ [[romi(52) o] o (2rmg0) oo

by the above. Therefore

[Varn; — o3 = /{ [roro x(452) ] - T’(f,t)} £(0)dt + o(1)

<

/T(Lz)ik(%) iz - T(,")

!

uniformly for f € F.

the lemma follow.
Proof of L

n — oo. Further we

nllfa — fl|2*2

N

Notice that

lecl < blz{

Now,

E||Z||3 -

The terms are mean
contributions are the
terms where 1; = 13
1.1 :i2=i3:i4. H

;1; (/ Ee?(z)dr)

using the Cauchy-Sc

*

since b is chosen in a

3. Discussion.
(6], [3].

Goldstein and
functionals of regres
They show efficiency
Holder index.
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x /T(f,z)%x("b’) dz +T(f,)| +o(1)

!

< CH/T(f,z)%K('—'bi) dz —T(f,-)| +0(1)

!

< C{/_O; f(t)dt/—l1 ‘T(f,t—bu) —T(f,,t)rdu}”?

+0(1)—0 as b—0

uniformly for f € F. From this assertion and the central limit theorem both assertions of
the lemma follow.

Proof of Lemma 2. Itfollows from the proposition that \/n||Blj]2 — 0 as
n — oo. Further we have

N . (1+a)/2
nlfa - FI342 < n (BN - £11*)

(1+a)/2
<n8O(BZI3+(BIS)

Notice that

i < [ (XY oen  [ () e} < 2402
E{/ [%ie;(z)

2 2
dz}
i—=1
1

vy ) /_/E(5"1(I)Efg(z)fia(y)E;,(y))dzdy.

$1,02.93,04

Now,

E|Zl;

The terms are mean zero, hence there is no contribution when any index is unpaired. The
contributions are therefore in four parts, n(n — 1) terms where 1y = i3 # 13 = 14, n(n — 1)
terms where 1) = 13 # 13 = 14, n(n — 1) terms where 1; = i4 # i3 = i3, and n terms where
11 = t2 = 13 = i4. Hence the sum is majorized by

’ 2
%(/Es?(ﬂd:) +’—_?5-/./(EEl(Z)El(y)>2dzdy+;}B—E{/Ef(z)dz} < ;2,

using the Cauchy-Schwarz inequality on the second term. Hence,
L 4

nEan - f||;+2°’ £ Cnn~l-op-l-a o(1) = o(1),

since b is chosen in accordance with (3). This proves Lemma 2, and hence the theorem.

3. Discussion. It is interesting to compare Theorem 1 with analogous results in 2],
(6], [3]-

Goldstein and Messer [2] study the plug-in estimator above for the estimation of
functionals of regression and density functions and their derivatives on a finite interval.

They show efficiency in order only and under the more restrictive condition a = 1 on the
Holder index.
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Levit [6] considers the estimation of a functional of a distribution function and its
derivatives. Aside from studying an estimator whose form is different from the plug-
in estimator above, Levit’s results differ in two ways from those here. Firstly, Levit’s
assumptions are more restrictive in some cases. For example, if

s <]
A(f):/ o) dz, 0<a<l,

- 00
the assumptions of Levit’s paper [6] are never satisfied, yet the approach above is ap-
plicable. Furthermore, when specializing Levit’s results to cases where the functional A
depends only on the density f, Levit’s functionals are of the form

an= | " 8(f,2) f(z) d

for some function ®. In particular, his approach does not apply to functionals of the form,
say

A(f)=/_°° f(z— 1) f(z + 1) dz

Alf) = /:@(/; f’(u)du,z) dz

whereas the theorem above applies.

Khas’minskii and Ibragimov [3] consider an estimator of A(f) composed of two terms
and depending on an arbitrary optimal pointwise estimator of the density f. The first
term in their estimator is A(f,,), the same as what appears here except that f,, is chosen to
achieve the optimal rate for the estimation of f at a point; the next term is a second order
correction. As they consider the estimation of A independent of the method of estimating
[, undersmoothing is not considered. By using the second order term, they are able to
construct an estimator which is efficient under the weaker condition on the Hdélder index
a > 1/(2r), yet the form of their estimator is consequently scmewhat more complicated,
and their result requires an extra technical condition not assumed here.

Finally, we note that under further conditions it is possible to extend the result above
and show the efficiency of the plug-in estimator for a more general class of functionals as
considered in [6] and [2] which depend on f and its derivatives.

or
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LINEAR ESTIMATORS AND RADONIFYING OPERATORS

We consider the problem of estimating a signal Y with values in a Banach space
based on the observation X with values in another Banach space given their joint
Gaussian distribution. Linear estimators are defined to be measurable linear trans-
formations. A characterization of measurable linear transformations with respect to
a Gaussian measure by radonifying operators is established. The Bayes estimator
E(Y | X) is shown to be a measurable linear transformation and the associated
radonifying operator is derived.

Key words and phrases: radonifying operator, measurable linear transformation,
conditional Gaussian distribution.

1. Introduction. Consider the problem of estimating a signal ¥ in the observation
model X = GY + N, where the noise N and Y are independent Gaussian random vectors
in separable Banach spaces B and C with covariance operators Ry and Ry, respectively,
and G: C — B is a continuous linear operator. In case B is finite-dimensional, the Bayes
estimator for a broad class of loss functions is the linear estimator

LX =E(Y|X)=RyG*(GRyG* +Ry)"'X (1.1)

provided Ry is invertible and the means-are zero. In the infinite-dimensional model,
however, the linear operator on the right-hand side of (1.1) is only defined on a dense
subspace of B of measure zero and typically unbounded. Thus one is led to a notion of
a linear estimator which is weaker than that of a continuous linear operator. Here linear
estimators are measurable transformations which are linear on a subspace of measure one.
These are called measurable linear trarnsformations.

In Section 2 we establish a correspondence between measurable linear transformations
L: B — C with respect to a Gaussian measure and radonifying operators H — C for
a Hilbert space H which is up to an isometry the reproducing kernel Hilbert space of
the measure. Moreover, a Fourier type expansion of such transformations is derived. In
Section 3 we show that E (Y | X) is a measurable linear transformation provided that X
and Y are jointly Gaussian (but without any other model assumption). This implies the
possibility of a rigorous interpretation ‘of (1.1). Namely, LX = E(Y | X) is the unique
measurable linear transformation which extends the operator on the right-hand side of
(1.1).

This paper is motivated by the article of Mandelbaum [9]. He deals with Hilbert
spaces B = C and Hilbert-Schmidt operators H = C — C which are known to be the
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