Addendum to: A Statistical Characterization of Regular Simplices

Ian Abramson and Larry Goldstein
University of California, San Diego, and University of Southern California

The orthogonality $\mathrm{x}-\overline{\mathbf{x}}_{\mathbf{u}-\{\mathbf{x}\}} \perp \mathcal{V}_{\mathbf{u}-\{\mathbf{x}\}}$, in the proof of the converse near the claim that $\overline{\mathbf{x}}_{\mathbf{u}-\{\mathbf{x}\}}$ is the point closest to \mathbf{x} on the hyperplane \mathcal{H} containing the p points $\mathbf{u}-\{\mathbf{x}\}$, was not sufficiently justified.

Note that the matrix

$$
\mathbf{A}=\sigma^{-2} \mathbf{X}^{\prime} \mathbf{X} \in \mathbf{R}^{n \times n}
$$

is symmetric, $\mathbf{A}^{\prime}=\mathbf{A}$, and idempotent, $\mathbf{A}^{2}=\sigma^{-4} \mathbf{X}^{\prime} \mathbf{X} \mathbf{X}^{\prime} \mathbf{X}=\sigma^{-4} \mathbf{X}^{\prime} \mathbf{B}_{\mathbf{u}} \mathbf{X}=\mathbf{A}$. Hence \mathbf{A} is an orthogonal projection, and therefore has rank equal to its trace,

$$
\operatorname{rank}(\mathbf{A})=\operatorname{tr}(\mathbf{A})=\sigma^{-2} \operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{X}\right)=\sigma^{-2} \operatorname{tr}\left(\mathbf{X} \mathbf{X}^{\prime}\right)=\sigma^{-2} \operatorname{tr}\left(\mathbf{B}_{\mathbf{u}}\right)=p,
$$

using the cyclic invariance of the trace. With $\mathbf{1}_{n} \in \mathbf{R}^{n}$ the vector with all components equal to $1, \mathbf{A} \mathbf{1}_{n}=\mathbf{0}$ by virtue of $\overline{\mathbf{x}}_{\mathbf{u}}=0$. By the rank plus nullity theorem the null space of \mathbf{A} has dimension one, and must therefore equal $\operatorname{span}\left(\mathbf{1}_{n}\right)$, the span of $\mathbf{1}_{n}$. Hence $\mathbf{A}=\mathbf{I}_{n}-\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime}$, as this is the unique orthogonal projection of rank p with null space $\operatorname{span}\left(\mathbf{1}_{n}\right)$.

The inner products $\mathbf{x}^{\prime} \mathbf{y}$ for all $\mathbf{y} \in \mathbf{u}-\{\mathbf{x}\}$, being off-diagonal elements of \mathbf{A}, are equal, yielding $\mathbf{x}^{\prime} \mathbf{y}=\mathbf{x}^{\prime} \overline{\mathbf{x}}_{\mathbf{u}-\{\mathbf{x}\}}$, and therefore $\mathbf{x} \perp \mathbf{y}-\overline{\mathbf{x}}_{\mathbf{u}-\{\mathbf{x}\}}$. Hence $\mathbf{x} \perp \mathcal{V}_{\mathbf{u}-\{\mathbf{x}\}}$, and since $\overline{\mathbf{x}}_{\mathbf{u}-\{\mathbf{x}\}}=-\mathbf{x} / p$, we have justified $\mathbf{x}-\overline{\mathbf{x}}_{\mathbf{u}-\{\mathbf{x}\}} \perp \mathcal{V}_{\mathbf{u}-\{\mathbf{x}\}}=\mathcal{H}-\overline{\mathbf{x}}_{\mathbf{u}-\{\mathbf{x}\}}$.

We also note that once the matrix \mathbf{A} has been identified, as its elements are σ^{-2} times the inner products of the vectors in \mathbf{u}, the squared interpoint distances between $\mathbf{x}_{i} \neq \mathbf{x}_{j}$ in \mathbf{u} can be directly calculated by

$$
\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}=\mathbf{x}_{i}^{\prime} \mathbf{x}_{i}-2 \mathbf{x}_{i}^{\prime} \mathbf{x}_{j}+\mathbf{x}_{j}^{\prime} \mathbf{x}_{j}=2 \sigma^{2}\left(\left(1-\frac{1}{n}\right)+\left(\frac{1}{n}\right)\right)=2 \sigma^{2}
$$

The authors thank Richard E. Stone for bringing a shortcoming in the original version of this work to their attention.

