Scuola Matematica Interuniversitaria University of Perugia 2016

5. Problem Set for the Course Mathematical Statistics

Version: August 24, 2016

1. Problem:

Suppose that U_1, \ldots, U_n are idependent and identically distributed according to the uniform distribution $\mathcal{U}(0,\theta)$ with $\theta > 0$ and let c > 0. Define $M_n = \max\{U_1, \ldots, U_n\}$.

- (a) Compute the power function $\beta_n(\theta) = \mathbb{P}_{\theta}(M_n \ge c)$ and show that it is non-decreasing in θ .
- (b) Testing the null hypothesis $\theta \leq \frac{1}{2}$ against $\theta > \frac{1}{2}$, what choice of c would make the test have size (or probability of type I error) exactly 5%?
- (c) Draw a rough graph of the power function for the test specified in (b) for n = 20.
- (d) Determine the minimal n so that the test specified in (b) has power at least 0.98 for $\theta = \frac{3}{4}$?
- (e) If $M_{20} = 0.48$, what is the *p*-value of the test?

2. Problem: Kolmogorov's test

Assume that the distribution functions F and F_0 are continuous. Define the Kolmogorov test statistic based on n observations by $D_n = \sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F_0(x)|$, where $\hat{F}_n = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{[X_i,\infty)}$ denotes the empirical distribution function based on independent $X_1, \ldots, X_n \sim F$.

(a) Show the following lower bound for the power of the test with critical value c:

$$\mathbb{P}_F(D_n \ge c) \ge \sup_{x \in \mathbb{R}} \mathbb{P}_F(|\hat{F}_n(x) - F_0(x)| \ge c).$$

(b) Show for $F \neq F_0$ and every level $\alpha \in (0, 1)$, that the power of Kolmogorov's test tends to 1 as $n \to \infty$.

Hint: You may use the Glivenko–Cantelli theorem. Note that the citical value $c_{\alpha,n}$ depends on the level α and the sample size n.

3. Problem: Fisher's method for aggregating independent tests

Suppose that T_1, \ldots, T_r are independent tests for a simple null hypothesis, under which each of them has a continuous distribution function. Let $\alpha(T_1), \ldots, \alpha(T_r)$ denote the *p*-values and define the test statistic $\tilde{T} = -2\sum_{j=1}^r \ln \alpha(T_j)$. Show that \tilde{T} under the null hypothesis has a χ^2 -distribution with 2r degrees of freedom.

Hint: You may use Problem 4 from Set 2.