Problem Set 4

1. Consider replications of the linear model

$$
Y=\beta x+\epsilon
$$

where $x \in[-1,1]$ and $\epsilon_{1}, \ldots, \epsilon_{n}$ have mean zero and are uncorrelated with common variance σ^{2}.
(a) Find the least squares estimate of β and compute its variance.
(b) How should the observations x_{1}, \ldots, x_{n} be placed in order to minmize the variance in part a)? Is the solution unique?
2. For any matrix $A \in \mathbb{R}^{n \times m}$ let

$$
\mathcal{R}(A)=\left\{A x: x \in \mathbb{R}^{m}\right\}
$$

denote the range space of A, and $r(A)=\operatorname{dim}(\mathcal{R}(A))$, the rank of A. When $n=m$ let $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$, the sum of the diagonal elements of A.
Let P be an $n \times n$ matrix satisfying $P^{T}=P, P^{2}=P$.
(a) Prove that $v \in \mathcal{R}(P)$ if and only if $P v=v$.
(b) Prove that if λ is an eigenvalue of P then $\lambda \in\{0,1\}$.
(c) Prove that $r(P)=\operatorname{tr}(P)$.
(d) Let $X \in \mathbb{R}^{n \times p}$ with $p<n$ and $r(X)=p$. Prove that

$$
P=X\left(X^{T} X\right)^{-1} X^{T}
$$

is a projection matrix that satisfies $\mathcal{R}(P)=\mathcal{R}(X)$.
3. Let $\mathbf{Z} \in \mathbb{R}^{n}$ have components Z_{1}, \ldots, Z_{n}, independent $\mathcal{N}(0,1)$ random variables.
(a) Compute the moment generating function of \mathbf{Z},

$$
M(s)=E\left[\exp \left(s^{T} Z\right)\right], \quad s \in \mathbb{R}^{n}
$$

(b) Let Σ be a non-negative definite $n \times n$ matrix, diagonalized as $\Sigma=U^{T} \Lambda U$ for $U^{T} U=I$ and Λ diagonal, and let $\Sigma^{\alpha}=U^{T} \Lambda^{\alpha} U$ for all α, where the power of the diagonal matrix Λ is taken componentwise. With $\mu \in \mathbb{R}^{n}$, compute the moment generating function of

$$
X=\Sigma^{1 / 2} Z+\mu
$$

We write $X \sim \mathcal{N}_{n}(\mu, \Sigma)$, the multivariate normal distribution with mean μ and variance matrix Σ.
(c) Prove that any linear transformation of a multivariate normal is again multivariate normal.
(d) For $X \sim \mathcal{N}_{n}(\mu, \Sigma)$ and n_{1} and n_{2} positive integers summing to n, write $X=\left(X_{1}^{T}, X_{2}^{T}\right)^{T}$ for $X_{1} \in \mathbb{R}^{n_{1}}$ and $X_{2} \in \mathbb{R}^{n_{2}}$. Prove that X_{1} and X_{2} are independent if and only if the covariance matrix between X_{1} and X_{2} is zero, that is, if and only if $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$.
(e) With X decomposed into two subvectors X_{1}, X_{2} as in part d), show that if $\operatorname{Var}\left(X_{2}\right)$ is positive definite, then the conditional distribution of X_{1} given X_{2} is multivariate normal, and determine the parameters of this conditional distribution. Hint: Consider the covariance between $\left(X_{1}-E\left[X_{1}\right]\right)+\Sigma_{12} \Sigma_{22}^{-1}\left(X_{2}-E\left[X_{2}\right]\right)$ and $X_{2}-E\left[X_{2}\right]$, where $\Sigma_{i j}, 1 \leq i, j \leq 2$ are the block matrices resulting when the $n \times n$ matrix Σ is partitioned according to the dimensions of X_{1} and X_{2} as $\left(n_{1}+n_{2}\right) \times\left(n_{1}+n_{2}\right)$, e.g. $\operatorname{Var}\left(X_{2}\right)=\Sigma_{22}$.
4. Let $\mathbf{Z} \sim \mathcal{N}_{n}\left(0, \sigma^{2} I\right)$, and let $P \in \mathbb{R}^{n \times n}$ be a projection matrix. Prove that

$$
\mathbf{Z}^{T} P \mathbf{Z} \sim \sigma^{2} \chi_{k}^{2} \quad \text { where } k=\mathrm{r}(P), \text { the rank of } P .
$$

You may use the results of exercise 2.

