Problem Set 2

1. Prove that the Gamma function $\Gamma(\cdot)$ satisfies $\alpha \Gamma(\alpha)=\Gamma(\alpha+1)$ for all $\alpha>0$
2. Find the mean, variance and moment generating function of the $\Gamma(\alpha, \beta)$ distribution. Using moment generating functions, show that the sum of two independent Gamma variables with the same scale parameter β is Gamma, and find the parameters of the sum.
3. Let X be a continuous random variable with support $[0, \infty)$. Show that

$$
P(X>t \mid X>s)=P(X>t-s)
$$

for all $t \geq s \geq 0$ if and only if $X \sim \mathcal{E}(\lambda)$ for some $\lambda>0$.
4. Let $Z \sim \mathcal{N}(0,1)$, and compute and identify the distribution of Z^{2}. Using moment generating functions, identify the distribution of $Z_{1}^{2}+Z_{2}^{2}$ where Z_{1}, Z_{2} are independent standard normals, and show that it is the same as that of $-2 \log U$ where $U \sim \mathcal{U}[0,1]$.
5. Prove the Cauchy Schwarz inequality

$$
|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\|
$$

for vectors in \mathbb{R}^{n}, but determine what the minimal requirements are for a space for it to be satisfied. Find a necessary and sufficient condition for the inequality to be an equality.
6. Let $p(\mathbf{x} ; \theta), \theta \in \Theta \subset \mathbb{R}$. Assuming sufficient smoothness, let and that differentiation and integration can be interchanged, prove that

$$
\operatorname{Var}_{\theta}(U(\theta, \mathbf{X}))=-E_{\theta}\left[\partial_{\theta} U(\theta, \mathbf{X})\right]
$$

where

$$
U(\theta, \mathbf{x})=\partial_{\theta} \log p(\mathbf{x} ; \theta)
$$

7. Find a formula for all the moments $E\left[Z^{n}\right], n \geq 1$ of a standard normal variable Z, and demonstrate that $\operatorname{Var}\left(Z^{2}\right)=2$.
8. For \mathbf{X} and \mathbf{Y} vectors in \mathbb{R}^{n} and \mathbb{R}^{m}, respectively, let

$$
\operatorname{Cov}(\mathbf{X}, \mathbf{Y})=E\left[(\mathbf{X}-E \mathbf{X})(\mathbf{Y}-E \mathbf{Y})^{T}\right]
$$

and

$$
\operatorname{Var}(\mathbf{X})=\operatorname{Cov}(\mathbf{X}, \mathbf{X})
$$

Prove that
(a)

$$
\operatorname{Cov}(A \mathbf{X}, B \mathbf{Y})=A \operatorname{Cov}(\mathbf{X}, \mathbf{Y}) B^{T}
$$

(b)

$$
\operatorname{Cov}(\mathbf{X}, \mathbf{Y})=\operatorname{Cov}(\mathbf{Y}, \mathbf{X})^{T}
$$

(c) That $\operatorname{Var}(\mathbf{X})$ is always non-negative definite, and fails to be positive definite if and only if \mathbf{X} has a linearly dependency, that is, when there exists a vector a and a constant c such that

$$
P\left(\mathbf{a}^{T} \mathbf{X}=c\right)=1
$$

