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LOCAL CENTRAL LIMIT THEOREMS, THE HIGH-ORDER
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Let I1, . . . , In be independent but not necessarily identically distributed
Bernoulli random variables, and letXn = ∑n

j=1 Ij . For ν in a bounded re-
gion, a local central limit theorem expansion ofP(Xn = EXn + ν) is de-
veloped to any given degree. By conditioning, this expansion provides infor-
mation on the high-order correlation structure of dependent, weighted sam-
pling schemes of a populationE (a special case of which is simple random
sampling), where a setd ⊂ E is sampled with probability proportional to∏

A∈d xA, wherexA are positive weights associated with individualsA ∈ E.
These results are used to determine the asymptotic information, and demon-
strate the consistency and asymptotic normality of the conditional and un-
conditional logistic likelihood estimator for unmatched case-control study
designs in which sets of controls of the same size are sampled with equal
probability.

1. Introduction. The unmatched case-control study is one of the most widely
used designs in chronic disease epidemiologic research. Typically, a large number
of individuals, the cohort orstudy base, will be observed for occurrence of a
binary disease outcome. Because the number of subjects is large and only a
small proportion will becases that contract the disease of interest, nondiseased
controls are sampled to serve as a comparison group. Exposure and other covariate
information is then obtained for the case-control study subjects for use in statistical
analyses. As an example, in a study to assess the association of a variety of
hypertensive drugs and the risk of myocardio-infarction (MI), 623 MI cases who
used antihypertensive drugs were identified within an HMO in Washington State.
The cases were grouped by sex, 10-year age, and calendar year of MI [Psaty et al.
(1995)]. For each group, a number of controls from the antihypertensive drug users
were sampled in a fixed proportion to the number of cases. For each case-control
study member, the types of antihypertensive drugs used were ascertained through
computerized records, chart review and interview. The primary method of analysis
was unconditional logistic regression. It was found that risk of MI was 60%
higher among calcium channel blocker users compared to either diuretics alone
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or compared toβ-blockers, a finding that has resulted in a change in treatment
strategy.

The structure of these data isprospective in that disease occurrence is
conditional on the covariate information, and controls are randomly sampled from
the pool of nondiseased. This is the structure of a nested case-control study
from the study base [Mantel (1973)], which we call thenested case-control
data model. Another way to view case-control data isretrospectively in which
the case and control covariate values are taken to be independent realizations
from their respective distributions [e.g., Breslow and Powers (1978), Prentice
and Pyke (1979), Weinberg and Wacholder (1993) and Carroll, Wang and Wang
(1995)]. Although the nested case-control model is used in modern texts on
case-control studies in epidemiologic research [e.g., Breslow and Day (1980),
Kelsey, Whittemore, Evans and Thompson (1996) and Rothman and Greenland
(1998)], it has been the retrospective model that is invoked when developing
estimators and analyzing their properties. However, the assumption that the case
and control covariates are independent random replicates may not hold in practice.
For instance, if the distribution of drug types changed during the antihypertensive
drug-MI study, differences in treatment within the case and control populations
would make the modeling of the covariates by a common distribution within each
group untenable, so the conditions required by the retrospective model analysis
would not be met. But, it seems evident that valid results can still be drawn from
such a study since the assignment of drug type to subjects should not influence the
association between the drug type and disease.

In this paper we develop the theory necessary to determine the asymptotic
behavior of estimators of the odds ratio in the nested case-control model under
general conditions on the covariates and sampling methods. We then apply
this theory to the maximum conditional and unconditional logistic likelihood
estimators. Although the conditional logistic likelihood gives rise to valid
estimators in a wider range of case-control study settings than the unconditional
(e.g., individually matched case-control designs), its asymptotic properties for
“large strata” have not been studied. The path of our analysis leads us through some
unexpectedly broad territory, including a high-order local central limit theorem for
the Poisson–Binomial distribution and expansions for the inclusion probabilities
and correlation structure of rejective sampling.

After formally introducing the problem of analysis of case-control data in
Section 1.1, in Section 2 we prove Theorem 2.1, a high-order local central limit
theorem for the sumXn of independent but not necessarily identically distributed
Bernoulli random variables having success probabilitypj , j = 1,2, . . . . This
result gives an expansion to any desired order for the probability that the sumXn

deviates from its meanEXn by the valueν, uniformly forν in any bounded region.
This result is of independent interest, as it provides a means to approximate, with
rates, the Poisson–Binomial distribution, for which no simple expression exists.



REJECTIVE SAMPLING ASYMPTOTICS 873

In Section 3 we extend Theorem 2.1 by showing that this local central limit
theorem expansion holds for the sumsXE of independent Bernoulli variables with
success probability

pA,λ = λxA

1+ λxA

, A ∈ E,

uniformly for all λ in an interval bounded away from zero and infinity, under
asymptotic stability conditions on the weightsxA,A ∈ E. For any λ > 0,
conditioning the Bernoulli variables on the eventXE = η gives Hájek’s rejective
sampling schemeEE,η on E, where a setd ⊂ E of size η is sampled with
probability proportional toxd, the product of the weightsxA over A ∈ d.
Choosingλ so that the expected number of successesEXE equalsη allows for
the application of local central limit Theorem 2.1, yielding Theorem 3.1, which
gives an expansion for the inclusion probabilities under the rejective sampling
schemeEE,η. This expansion is applied in Section 4 to derive Theorem 4.1,
yielding the high-order correlation structure of rejective sampling.

In Section 5 we apply the rejective sampling results to the asymptotics of
estimators under the nested case-control model. Theorems 5.1 and 5.2 give the
asymptotic information and demonstrate the consistency and asymptotic normality
of the conditional and unconditional logistic maximum likelihood estimators,
respectively.

Finally, in Section 6, we compare our approach to others, and, in particular, to
the derivation of asymptotics by Prentice and Pyke (1979) under the retrospective
model. Lastly, we discuss efficiency issues, extensions and directions for further
research.

1.1. The statistical model and likelihood. The prospective logistic model for
disease occurrence is as follows: with covariate vectorz ∈ R

p, the probability of
disease is

pλ(z;β) = λx(z;β)

1+ λx(z;β)
,(1)

wherex(z,0) = x(0,β) = 1, for all z ∈ R
p andβ in the parameter spaceB ⊂ R

p

[e.g., Breslow and Day (1980) and Cox and Snell (1989)]. The parameterλ > 0
is therefore the baseline odds andx(z,β) is the odds ratio associated withz. The
odds ratio parameterβ is typically of primary interest.

We consider a “study base”R = {1, . . . ,N} of N individuals with covariateszj ,
j ∈ R, and independent failure indicatorsIj having marginal distribution given
by (1) for some(λ0,β0), that is,Pλ0,β0(Ij = 1) = pλ0(zj ;β0). Definexj (β) =
x(zj ;β), pj,λ(β) = 1 − qj,λ(β) = pλ(zj ;β); we may further suppressβ0 and
write, for example,xj = xj (β0) andpj,λ = pj,λ(β0). Denoting the set of indices
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of diseased subjects byD, for d ⊂ R, the probability of observingD = d is
therefore

Pλ0,β0(D = d) = ∏
j∈R

p
Ij

j,λ0
q

1−Ij

j,λ0
= λ

|d|
0 xdqR,

where for anyF ⊂ R,

qF = qF (λ0,β0) = ∏
j∈F

(1+ λ0xj )
−1 and xd = ∏

j∈d

xj .(2)

When covariate values for all study base subjects are available, estimation of
the unknownβ0 (andλ0) can be achieved by maximizing the likelihoodPλ,β(D).
But when the study base is large or the collection of the full set of covariate values
is expensive or impractical, it is natural to sample subjects to form a sampled study
baseE ⊂ R and use the collected covariates in the sample for the estimation of
parameters. Generally, a sampling design is specified byπ(s|d), the probability
of choosings as the sampled risk setE whend is the observed set of diseased
subjects.

For the calculation of a likelihood, additional information thatD ∈ S for some
S may be included. Conditioning onE andS leads to the probability

Pλ0,β0(D|E,S) = λ
|D|
0 xD(β0)π(E|D)∑

u⊂S λ
|u|
0 xu(β0)π(E|u)

.(3)

A likelihood is formed by allowing the parameters in (3) to vary to obtain the
likelihood functionLE,S(λ,β) = Pλ,β(D|E,S).

Of particular interest for epidemiologic unmatched case-control studies is the
likelihood which results from (3) when conditioning on the number of cases in the
case-control set. In practice, in unmatched case-control studies one typically has
information on all cases and a set of controls obtained using sampling schemes
such as frequency matching, fixed size sampling, Bernoulli trials and case-
base sampling [e.g., Kupper, McMichael and Spirtas (1975), Breslow and Day
(1980), Wacholder, Silverman, McLaughlin and Mandel (1992) and Langholz and
Goldstein (2001)]. For each of these designs, the probabilityπ(s|d) is zero unless
s containsd, and is otherwise constant in|d|. Then, settingS = {u ⊂ E : |u| = η},
whereη = |D|, λ0 and the sampling probabilitiesπ(s|d) cancel from (3), and
noting the dependence of the resulting probability onE andη only, we define

PE,η(D) = Pβ0(D|E,η) = xD∑
u⊂E : |u|=η xu

.(4)

This is the basis for the “standard” conditional logistic likelihoodLE,η(β) =
Pβ(D|E,η) [e.g., Cox (1972) and Cox and Snell (1989)] for the designs mentioned
above, which have log likelihood

LE,η(β) = ∑
A∈D

logxA(β) − log

{ ∑
u⊂E,|u|=η

xu(β)

}
.
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The conditional logistic likelihood estimatorβ̂N is a value maximizingLE,η(β).
Differentiation of an arrayFβ = {Fi1,...,ia (β)} ∈ R

n1×···×na with respect
to β will be denoted by “′”, resulting in the arrayF′

β = {F ′
j,i1,...,ia

(β)} =
{(∂/∂βj )Fi1,...,ia (β)} ∈ R

p×n1×···×na . ForU ∈ R
n1×···×na andV ∈ R

m1×···×mb , the
tensor productU ⊗ V ∈ R

n1×···×na×m1×···×mb has componentsUi1,...,ia · Vj1,...,jb
,

and we set|U| = ∑
i1,...,ia

|Ui1,...,ia |, theL1 norm.

CONDITION 1.1. The real valued functionx is positive, three times differen-
tiable inβ and 0< inf|z|≤c x(β0,z) ≤ sup|z|≤c x(β0,z) < ∞ for all c > 0.

Under Condition 1.1, following Barlow and Prentice (1988), define the
“effective covariates”zj by

zj = x′
j x

−1
j ∈ R

p;
in the model wherexj (β) = exp(βTzj ), we havezj = zj . Now for u ⊂ E, define
the inclusion probabilities

pu(β) = Pβ(u ⊂ D|E,η) = ∑
s⊃u

Pβ(s|E,η),

and the inclusion probability for an individualA aspA(β) = p{A}(β). With IA the
failure indicator forA ∈ E and suppressing the dependence ofZA andpA on β,
the score∂LE,η(β)/∂β equals

UE,η(β) = ∑
A∈E

ZA(IA − pA) = ∑
A∈D

ZA − Eβ

( ∑
A∈D

ZA

∣∣∣∣∣E,η

)
,

whereEβ is the expectation underPE,η(β). Using that for a functionFβ(D) =∑
A∈D ZA we have

∂

∂β
Eβ

(
Fβ(D)|E,η

) = Eβ

(
Fβ(D)′|E,η

) + Eβ

(
U(β) ⊗ Fβ(D)|E,η

)
,(5)

with pA + qA = 1, the information−∂UE,η(β)/∂β is given by

IE,η(β) = ∑
A∈E

Z⊗2
A pAqA + ∑

A,B∈E,A �=B

ZAZT
B(pAB − pApB)(6)

−
( ∑

A∈D

Z′
A − ∑

A∈E

Z′
ApA

)
.(7)

Note that (6) containspAB − pApB , the correlation of the joint inclusion of
A andB.

In general, we have

Eβ0UE,η(β0) = 0,
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since the score is the difference between a quantity and its conditional expectation.
For this same reason, when taking expectation in (7), we find that

Eβ0IE,η(β0) = Varβ0{UE,η(β0)}.
The standard likelihood argument to show the consistency ofβ̂N requires that

the information|E|−1I(β0) converge in probability. Since the information is a
double sum overA andB, the inclusion correlationspAB − pApB need to decay
at rate |E|−1. Further, the remainder term in the Taylor expansion of the log
likelihood, which is required to stay bounded in probability, contains a triple sum
of terms multiplied by the third-order correlation,

Eβ[(IA − pA)(IB − pB)(IC − pC)|E,η];
hence, to satisfy the boundedness condition, such triple correlations need to decay
as |E|−2. The dependence inPE,η created by having the probability of a set
proportional to the product of its individual weights has been explored only under
very restrictive situations [Harkness (1965) and Farewell (1979); see also Hájek
(1964)]. Theorem 4.1 gives information on the rate of decay on all correlation
orders, and, in particular, provides that the third-order correlation decays at the
required rate. This result allows for the full treatment of the asymptotic theory for
the conditional logistic maximum likelihood estimator for a large class of case-
control sampling designs (Section 5).

More commonly used in practice, and making use of the same case-control
subject data, is the estimator ofβ0 based on maximizing the “unconditional
logistic likelihood” which, withpA,λ(β) as in (1) andqE(λ,β) as in (2), is given
by

L̃E(λ,β) = ∏
A∈E

pA,λ(β)IAqA,λ(β)1−IA = λ|D|xD(β)qE(λ,β).(8)

The unconditional logistic likelihood estimatorβ̃N is a value maximizing̃LE(β).
Note that, in general,L̃E is not a true likelihood when data is collected
using sampling methods such as frequency matching, since the contributions
from individual subjects are not independent. The asymptotic analysis of the
unconditional logistic estimator is carried out in Section 5.

1.2. The probabilistic setup. For any setE and 0≤ η ≤ |E|, consider the
probability measurePE,η(d) given by (4), supported on the sizeη subsets ofE.
With IA = 1(A ∈ D), the indicator thatA is included inD, pA = EE,η(IA), and
H ⊂ E, we study high-order correlations of the form

Corr(H) = EE,η

( ∏
A∈H

(IA − pA)

)
.(9)
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When H = {A,B}, a set of size 2, Corr(H) = pAB − pApB , the covariance
between the Bernoulli variablesIA andIB .

WhenxA = 1 for all A ∈ E [corresponding toβ0 = 0 in (1)], PE,η reduces to
simple random sampling. In this case, when there existsτ ∈ (0,1/2] such that the
sampling fractionη/|E| ∈ [τ,1− τ ], then as|E| → ∞,

EE,η[(IA − pA)(IB − pB)] = −η(|E| − η)

|E|2(|E| − 1)
= Oτ(|E|−1)(10)

and

EE,η[(IA − pA)(IB − pB)(IC − pC)] = Oτ(|E|−2).(11)

Hence, simple random sampling has the rates needed for the stability of the
information and the control on the remainder in our likelihood analysis; the exact
meaning ofOτ is given in Definition 2.1.

For simple random sampling a straightforward calculation shows that

Corr(H) =
|H |∑
j=0

(|H |
j

)(|E|−j
η−j

)
(|E|

η

) (−η

|E|
)|H |−j

.

Since here the weightsxA are equal, we may write Corr(k) for the common value
of Corr(H) for all H of sizek, and have verified fork ≤ 10, as|E|, η → ∞, with
η/|E| → f ∈ (0,1), for N a standard normal variate,

lim|E|→∞|E|k/2 Corr(k) = EN k(f (f − 1)
)k/2 for k even

and

lim|E|→∞|E|(k+1)/2 Corr(k)

= 1
3(k − 1)EN k+1(f (f − 1)

)(k−1)/2
(2f − 1) for k odd.

In particular, for simple random sampling we have

Corr(H) = O|H |,τ
(|E|−(|H |+|H |mod 2)/2),(12)

with (10) and (11) as special cases. Theorem 4.1 shows that the orders in (12) are
obtained quite generally for the weighted sampling schemePE,η.

1.3. Rejective sampling. The scheme corresponding to the probability measure
PE,η is known as rejective sampling [Hájek (1964)], and as seen in Section 1.2
includes simple random sampling as a particular case. Though simple random
sampling is the most ubiquitous of all statistical methods, in some cases it is
not possible to take a simple random sample. For example, the inclusion of
the population memberA might be influenced by a certain nonnegative “size”
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xA associated with the itemA, where the larger the size of an item, the easier it is
to locate and the higher the probability of its inclusion.

The term rejective sampling arises sincePE,η may be achieved by samplingη
individuals independently with replacement and rejecting those samples in which
theη individuals are not distinct. Hájek (1964) considers the inclusion probabili-
ties, second-order correlations and asymptotic normality of sums obtained by re-
jective sampling.

Schemes where objects are sequentially sampled proportional to their size
have been extensively studied [e.g., Rosén (1972) and Gordon (1983)]. However,
rejective sampling differs from sampling sequentially proportional to size when
η ≥ 2, as can be seen by comparison of the general probability that a sample of
sizeη = 2 results in the unitsA andB. However, both schemes reduce to simple
random sampling when the weights are constant.

2. A high-order local central limit theorem. The main result of this section
is Theorem 2.1, a local central limit theorem expansion for the distribution ofXn,
the sum of independent but not necessarily identically distributed indicator random
variables. The first step, Lemma 2.1, is to obtain an expression for the characteristic
function of the centered sum,Xn − EXn. In the following, we write� for a
complex number, not necessarily the same at each occurrence, such that|�| ≤ 1.

LEMMA 2.1. Let

Xn =
n∑

j=1

Ij ,

where Ij , j = 1, . . . , n, are independent Bernoulli variables with EIj = pj =
1− qj ; let

v2
n =

n∑
j=1

pjqj and wn =
n∑

j=1

pjqj (pj − qj ).(13)

Then, denoting the characteristic function of Xn − EXn by φn(t), for all n =
1,2, . . . and |t | ≤ 1,

φn(t) = exp
(
− t2v2

n

2
+ i

t3wn

6
+ t4

10
n�

)
.(14)

Furthermore, for all t ∈ [−π,π],
|φn(t)| ≤ exp(−t2v2

n/6).(15)

PROOF. The characteristic function of an indicatorI which has been centered
by subtraction of its meanp is

Eeit (I−p) = e−itp(q + peit ) = qe−itp + peitq .
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We have for allt ,

qe−itp = q

(
1− itp − t2

2
p2 + i

t3

6
p3 + t4

24
p4�

)
,

and adding the analogous expansion forpeitq , we obtain

Eeit (I−p) = 1− t2

2
pq + i

t3

6
pq(p − q) + �

t4

24
.

Using thatpq(p − q) ≤ √
3/18≤ 1/9, we have for|t | ≤ 1,∣∣∣∣− t2

2
pq + i

t3

6
pq(p − q) + �

1

24
t4

∣∣∣∣ ≤ t2

2

1

4
+ |t |3

6

1

9
+ t4

24
≤ 5

27
t2 ≤ 1

2
.

Applying the estimate

log(1+ x) = x + �x2 ∀ |x| ≤ 1
2,

we obtain that for|t | ≤ 1,

log
(
Eeit (I−p)) = − t2

2
pq + i

t3

6
pq(p − q) + �

1

24
t4 + �

(
5

27
t2

)2

= − t2

2
pq + i

t3

6
pq(p − q) + t4

10
�,

and now summing,

logφn(t) = − t2

2

n∑
j=1

pjqj + i
t3

6

n∑
j=1

pjqj (pj − qj ) + n
t4

10
�.

Exponentiating gives (14).
To prove (15), observe that

|φn(t)| =
n∏

j=1

∣∣Eeit (I−pj )
∣∣ =

n∏
j=1

(
p2

j + q2
j + 2pjqj cos(t)

)1/2

=
(

n∏
j=1

(
1− 2

(
1− cos(t)

)
pjqj

))1/2

≤ exp

(
−(

1− cos(t)
) n∑
j=1

pjqj

)
,

and then use (13) and that 1− cos(t) ≥ t2/6 for all −π ≤ t ≤ π . �

DEFINITION 2.1. For a possibly empty set of parametersµ, we will write
fn = Oµ(gn) if there exist a constantCµ and an integernµ, both depending only
onµ, such that

|fn| ≤ Cµ|gn| for all n ≥ nµ;(16)

we writefn = oµ(gn) if for every ε > 0, there existsnµ such that (16) holds with
Cµ replaced byε. We writefn = �µ(gn) if fn = Oµ(gn) andgn = Oµ(fn).



880 R. ARRATIA, L. GOLDSTEIN AND B. LANGHOLZ

In the remainder of this section, recallingv2
n = ∑n

j=1 pjqj , we will assume the
following:

CONDITION 2.1. There existε > 0 andnε such thatv2
n ≥ εn for all n ≥ nε.

We will again letN denote a standard normal variable.

LEMMA 2.2. Let an = √
C logn/n for C > 0. Then under Condition 2.1,

1

2π

∫
|t |≤an

|t |j exp
(
− t2v2

n

2

)
dt = v

−(j+1)
n√

2π

(
E|N |j + oε,j,C(1)

)
(17)

= �ε,j,C

(
n−(j+1)/2).

PROOF. By the change of variablez = vnt , the left-hand side of (17) becomes

v
−(j+1)
n√

2π

∫
|z|≤anvn

|z|j exp(−z2/2)√
2π

dz

= v
−(j+1)
n√

2π

(
E|N |j − 2EN j1(N > anvn)

)
,

but

EN j1(N > anvn) ≤ EN j1
(
N >

√
Cε logn

) = oε,j,C(1),

asn → ∞, by the dominated convergence theorem.�

For a bounded function on[−π,π], define

‖f ‖∞ = sup
|t |≤π

|f (t)|.

LEMMA 2.3. Under Condition 2.1, for any K > 0 and f (t) a bounded
measurable function on [−π,π], setting

an =
√

C logn/n with C ≥ 6ε−1K,

we have ∫
an<|t |≤π

f (t)φn(t) dt = ‖f ‖∞O(n−K).

PROOF. Using Lemma 2.1,∣∣∣∣∫
an<|t |≤π

f (t)φn(t) dt

∣∣∣∣ ≤ ‖f ‖∞
∫
an<|t |≤π

|φn(t)|dt

≤ ‖f ‖∞
∫
an<|t |≤π

e−nεt2/6 dt

≤ 2π‖f ‖∞e−nεa2
n/6 ≤ 2π‖f ‖∞n−K. �
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LEMMA 2.4. Let φn(t) be the characteristic function of the sum of n

independent centered Bernoulli variables, and suppose that Condition 2.1 holds.
Define for j ≥ 0,

In,j = 1

2π

∫
|t |≤π

tjφn(t) dt and I0
n,j = In,j

In,0
.(18)

Then for j even,

In,j = �ε,j

(
n−(j+1)/2) and I0

n,j = v−j
n EN j + oε,j (n

−j/2),(19)

and for j odd,

In,j = Oε,j

(
n−(j+2)/2);

in particular,

I0
n,j = Oε,j

(
n−(j+j mod 2)/2) for all j ≥ 0.

PROOF. Let an = √
C logn/n with C = 6ε−1 ((j + 3)/2). Lemma 2.3 yields∫

an<|t |≤π
tjφn(t) dt = πjO

(
n−(j+3)/2),

so it suffices to consider the region|t | ≤ an. Takenε,j so that forn ≥ nε,j , an ≤ 1
andna3

n ≤ 3. Since|t | ≤ an ≤ 1, (14) of Lemma 2.1 gives

φn(t) = exp
(
− t2v2

n

2
+ i

t3wn

6
+ nt4 1

10
�

)

= exp
(
− t2v2

n

2

)
exp

(
i
t3wn

6
+ nt4 1

10
�

)
.

For n ≥ nε,j , we see thatna4
n/10≤ na3

n/6 ≤ 1/2. Therefore, for|t | ≤ an, |x| ≤ 1,
wherex = it3wn/6+ nt4�/10. Now using the fact that for|x| ≤ 1,

ex = 1+ x + O(x2),

we have

φn(t) = exp
(
− t2v2

n

2

)(
1+ i

t3wn

6

)
+ exp

(
− t2v2

n

2

)
O(nt4 + t6w2

n).

Lemma 2.2 shows that the second term contributesOε,j (n
−(j+3)/2) to In,j ,

since

n

∫
|t |≤an

|t |j+4 exp
(
− t2v2

n

2

)
= n�ε,j

(
n−(j+5)/2) = �ε,j

(
n−(j+3)/2)

and

w2
n

∫
|t |≤an

|t |j+6 exp
(
− t2v2

n

2

)
= Oε,j

(
n2n−(j+7)/2) = Oε,j

(
n−(j+3)/2).
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Now focusing on the contribution from the first term, usingv2
n = �(n) by

Condition 2.1, symmetry and Lemma 2.2 forj even, we have

vj+1
n In,j = v

j+1
n

2π

∫
|t |≤an

tj exp
(
− t2v2

n

2

)(
1+ i

t3

6
wn

)
dt + Oε,j (n

−1)

= v
j+1
n

2π

∫
|t |≤an

tj exp
(
− t2v2

n

2

)
dt + Oε,j (n

−1)

= 1√
2π

(
EN j + oε,j (1)

)
,

yielding (19).
For j odd, again using symmetry,

n(j+2)/2In,j = n(j+2)/2 1

2π

∫
|t |≤an

tj exp
(
− t2v2

n

2

)(
1+ i

t3wn

6

)
dt + Oε,j (n

−1/2)

= n(j+2)/2 iwn

12π

∫
|t |≤an

tj+3 exp
(
− t2v2

n

2

)
dt + Oε,j (n

−1/2)

= i(wn/n)

6
√

2π

(
n

v2
n

)(j+4)/2(
EN j+3 + oε,j (1)

) + Oε,j (n
−1/2);

the right-hand side is now seen to beOε,j (1). �

For EXn + ν an integer, define

fn,ν = P(Xn = EXn + ν).(20)

The following theorem gives a high-order local central limit for the probabilities
of such deviations from the meanEXn.

THEOREM 2.1. Let I1, I2, . . . be independent Bernoulli variables with pj =
EIj satisfying Condition 2.1.For any nonnegative integer s, define

mν(s) =
s∑

j=0

(−iν)j

j ! In,j .(21)

Then for given κ and even s,

fn,ν = mν(s) + �ε,κ,s

(
n−(s+3)/2) for all |ν| ≤ κ with EXn + ν ∈ N.

PROOF. Let

Rn,ν = fn,ν −
s∑

j=0

(−iν)j

j ! In,j , g(x) = ex −
s∑

j=0

xj

j !
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andan = √
C logn/n with C = 6ε−1(s + 2)/2. By the inversion formula,

fn,ν = 1

2π

∫
|t |≤π

e−itνφn(t) dt,

so

2πRn,ν =
∫
|t |≤π

g(−itν)φn(t) dt

=
∫
|t |≤an

g(−itν)φn(t) dt +
∫
an<|t |≤π

g(−itν)φn(t) dt.

Since|φn(t)| ≤ 1, |ν| ≤ κ and |g(x)| ≤ Cs |x|s+1 for |x| ≤ π , the first integral is
bounded by∫

|t |≤an

|g(−itν)|dt ≤ 2an sup
|t |≤an

|g(−itν)|

≤ 2Csa
s+2
n κs+1 = Oε,κ,s

((
log(n)

n

)(s+2)/2)
.

Since sup|t |≤π |g(−iνt)| ≤ Cs(πκ)s+1, Lemma 2.3 shows that the second integral
is Oκ,s(n

−(s+2)/2) ⊂ Oε,κ,s((logn/n)(s+2)/2). Consequently, for alls, we obtain

fn,ν =
s+2∑
j=0

(−iν)j

j ! In,j + Oε,κ,s

((
logn

n

)(s+4)/2)
.

Whens is even, we have by Lemma 2.4,

In,s+1 = Oε,s

(
n−(s+3)/2) and In,s+2 = �ε,s

(
n−(s+3)/2);

we now obtain the result by observing

Oε,κ,s

((
logn

n

)(s+4)/2)
⊂ Oε,κ,s

(
n−(s+3)/2). �

3. Finite population sampling and inclusion probabilities. To extend the
results of Section 2, let there be given for allA ∈ N = {0,1, . . . } a “weight”xA ≥ 0,
and forλ > 0, let Tλ be the measure under whichIA for A ∈ N are independent
indicator variables with success probability

pA,λ = λxA

1+ λxA

.(22)

The case considered in Section 2 corresponds toλ = 1 andxj = pj/qj .
We will assume that thexA weights are “asymptotically stable” in the following

sense.
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CONDITION 3.1. For allδ ∈ (0,1), there existε ∈ (0,1) andn ≥ 1 such that
for any finiteE ⊂ N with |E| ≥ n,

1

|E|
∑
A∈E

1(xA ∈ [ε, ε−1]) ≥ 1− δ.(23)

Now letpA,λ + qA,λ = 1,

XE = ∑
A∈E

IA, v2
E,λ = ∑

A∈E

pA,λqA,λ,(24)

and withTλ(XE) denoting the expectation ofXE with respect toTλ andTλ(XE)+ν

an integer, set

fE,λ,ν = Tλ

(
XE = Tλ(XE) + ν

)
.(25)

In this section we will provide a local central limit theorem expansion for
the probabilities in (25) which holds uniformly forλ in an interval bounded
away from zero and infinity. ConditioningTλ to have exactlyη successes overE
yields EE,η (Lemma 3.5), and by selecting theλ which yieldsTλ(XE) = η, we
obtain a high-order expansion for the probability thatA is included in a sample
with distributionPE,η.

With fE,ν a real valued function defined on finite subsetsE ⊂ N andν ∈ R, for
a possibly empty collection of parametersµ, we say

fE,ν = Oµ(gE)

if there existCµ andnµ such that

|fE,ν | ≤ Cµ|gE| for all |E| ≥ nµ.

We sayfE,ν = �µ(gE) whenfE,ν = Oµ(gE) andgE = Oµ(fE,ν). Note that if
H andG are any fixed finite subsets ofN, thenfE,ν = Oµ(|E|−a) if and only if
fE,ν = Oµ(|(E \ H) ∪ G|−a).

To see that Condition 3.1 implies Condition 2.1 in Section 2, uniformly forλ in
an interval bounded away from zero and infinity, we have:

LEMMA 3.1. Let Condition 3.1 hold and γ ∈ (0,1]. Then there exist εγ > 0
and nγ such that

v2
E,λ ≥ εγ |E| for all λ ∈ [γ,1/γ ] and |E| ≥ nγ .

PROOF. Letting δ ∈ (0,1), ε ∈ (0,1] andn be any values satisfying (23), and
set

εγ = (1− δ)γ ε

(1+ γ ε)(1+ γ −1ε−1)
and nγ = n.
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Then for any|E| ≥ nγ andλ ∈ [γ,1/γ ],

v2
E,λ = ∑

A∈E

λxA

1+ λxA

1

1+ λxA

≥ ∑
A∈E

γ xA

1+ γ xA

1

1+ γ −1xA

≥ εγ |E|.
�

Now let φE,λ be the characteristic function ofXE − Tλ(XE) under the
measureTλ, and in parallel to (18) and (21), write

IE,λ,j = 1

2π

∫
|t |≤π

tjφE,λ(t) dt and mE,λ,ν(s) =
s∑

j=0

(−iν)j

j ! IE,λ,j .

LEMMA 3.2. Let Condition 3.1 be satisfied and γ ∈ (0,1]. Then for all
λ ∈ [γ,1/γ ], for j even,

IE,λ,j = �γ,j

(|E|−(j+1)/2) and I0
E,λ,j = v

−j
E,λEN j + oγ,j (|E|−j/2),(26)

and for j odd,

IE,λ,j = �γ,j

(|E|−(j+2)/2);(27)

in particular, for all j,

I0
E,λ,j ≡ IE,λ,j

IE,λ,0
= Oγ,j

(|E|−(j+j mod 2)/2) for j ≥ 0.(28)

Further, for given κ and even s, for Tλ(XE) + ν ∈ N,

fE,λ,ν = mE,λ,ν(s) + �γ,κ,s

(|E|−(s+3)/2) for all |ν| ≤ κ.(29)

PROOF. Lemma 3.1 in conjunction with Lemma 2.4 gives (26)–(28), and in
conjunction with Theorem 2.1 gives (29).�

Now for t = {0,1, . . . } let

�tfE,ν = fE,ν−t ,
(30)

�0fE,ν = fE,ν, �fE,ν = fE,ν − fE,ν−1 and �t+1 = ��t.

For q a nonnegative integer, the following classesG
q
µ of functionsfE,ν play a

crucial role:

Gq
µ = {

fE,ν :∀ t ≥ 0,�tfE,ν = Oµ,t,ν

(|E|−(t+q+(t+q)mod2)/2)}.(31)

LEMMA 3.3. Let p ≤ q be nonnegative integers, and suppose that fE,ν ∈ G
p
µ

and gE,ν ∈ G
q
µ. Then

Gp
µ ⊃ Gq

µ,(32)

afE,ν, fE,ν + gE,ν ∈ Gp
µ,(33)
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∀ t ≥ 0 �tfE,ν ∈ Gt+p
µ ,(34)

∀ t ≥ 0 fE,ν − fE,ν−t ∈ Gp+1
µ ,(35)

∀ t ≥ 0 �tfE,ν ∈ Gp
µ,(36)

fE,ν gE,ν ∈ Gp+q
µ .(37)

PROOF. Without loss of generality takeµ = ∅. Equation (32) follows since
p + j + (p + j) mod 2 is increasing inp. Equation (33) follows by (32) and the
linearity of�. Equation (34) follows from the definition ofGq .

For (35), write

fE,ν − fE,ν−t =
t−1∑
j=0

fE,ν−j − fE,ν−j−1 =
t−1∑
j=0

�fE,ν−j ;

by (34), the summands are inGp+1, and hence by (33), so is the sum itself, proving
(35). Now�fE,ν = fE,ν−1 = fE,ν − �fE,ν ∈ Gp by (34) and (33); the case for
generalt in (36) follows by induction.

The verification of equation (37) can be accomplished using the fact that
�t�j = �j�t for all nonnegativej, t and the following product rule which can
be easily proved by induction:

�t(fE,νgE,ν) = ∑
0≤j≤t

(
t

j

)
(�t−j�jfE,ν)(�

t−j gE,ν).
�

For notational ease, we suppress the variables in the quantitym0
E,λ,ν defined

below. Lemmas 3.3 and 3.2 have the following consequence.

LEMMA 3.4. Let Condition 3.1hold and γ ∈ (0,1]. Then for all λ ∈ [γ,1/γ ],

m0
E,λ,ν ≡

s∑
j=0

(−iν)j

j ! I0
E,λ,j ∈ G0

γ,s .(38)

Further, defining

n0
E,λ,ν = m0

E,λ,ν − pA,λ�m0
E,λ,ν,(39)

we have

n0
E,λ,ν − 1= Oγ,s,ν(|E|−1)(40)

and

n0
E,λ,ν − 1∈ G0

γ,s .(41)
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PROOF. Note that�tνj = 0 for j < t , and hence for 0≤ t ≤ s,

�tm0
E,λ,ν =

s∑
j=t

(−i)j�tνj

j ! I0
E,λ,j

=
s∑

j=t

(−i)j�tνj

j ! Oγ,j

(|E|−(j+j mod 2)/2)
= Oγ,s,t,ν

(|E|−(t+t mod 2)/2).
For t > s, �tm0

E,λ,ν = 0. This proves (38).

Now (40) follows fromI0
E,λ,0 = 1,

m0
E,λ,ν = 1+ Oγ,s,ν(|E|−1) and �m0

E,λ,ν = Oγ,s,ν(|E|−1).

By (38), we havemE,λ,ν ∈ G0
γ,s and �mE,λ,ν ∈ G1

γ,s , and (32) and (33) of
Lemma 3.3 givenE,λ,ν ∈ G0

γ,s upon noting thatpA,λ is constant inν. Since
1∈ G0

γ,s , applying (33) again gives (41).�

Let E be a finite subset ofN, and recallxd = ∏
A∈d xA and the probability

distribution EE,η given in (4). For convenience, we will write, for instance,
PE,η(A) in place ofPE,η(A ∈ D), or PE,η(s) for PE,η(s ⊂ D). Also recall the
product measureTλ with marginals given by (22), such that for alld ⊂ E,

Tλ({A ∈ E : IA = 1} = d) = λ|d|
( ∏

A∈E

1

1+ λxA

)
xd.(42)

The following lemma provides a key relation betweenTλ andPE,η; the quantity
XE is as in (24).

LEMMA 3.5. For any (E,η) with 0≤ η ≤ |E|,d ⊂ E with |d| = η and λ > 0,

PE,η(d) = Tλ({A ∈ E : IA = 1} = d|XE = η),(43)

and for A ∈ E and F = E \ A,

PE,η(A) = pA,λTλ(XF = η − 1)

pA,λTλ(XF = η − 1) + qA,λTλ(XF = η)
.(44)

PROOF. Summing (42) over subsets ofE of sizeη gives

Tλ(XE = η) = λη

( ∏
A∈E

1

1+ λxA

) ∑
u⊂E,|u|=η

xu,(45)
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and now, since|d| = η, division of (42) by (45) yields (43). Next,

PE,η(A) = Tλ(IA = 1|XE = η) = Tλ(IA = 1,XE = η)

Tλ(XE = η)

= Tλ(IA = 1,XF = η − 1)

Tλ(IA = 1,XF = η − 1) + Tλ(IA = 0,XF = η)
,

and (44) now follows using the independence of the variablesIA andXF underTλ.
�

In the following, forτ ∈ (0,1/2], let

Eτ = {(E,η) : τ ≤ η/|E| ≤ 1− τ }.
LEMMA 3.6. Suppose that Condition 3.1is satisfied. Then for all τ ∈ (0,1/2],

there exist γτ ∈ (0,1] and nτ depending only on τ such that for all (E,η) ∈ Eτ

with |E| ≥ nτ , there exists a unique solution λ = λ(E,η) to the equation

hE(λ) = η

|E| , where hE(λ) = 1

|E|
∑
A∈E

pA,λ(46)

and

λ(E,η) ∈ [γτ ,1/γτ ].(47)

PROOF. Let δ = (1/2)min{τ,1 − 2τ } and takeε andnτ = n satisfying (23)
for this δ. Then for all|E| ≥ nτ andλ > 0,

(1− δ)
λε

1+ λε
≤ 1

|E|
∑
A∈E

λxA

1+ λxA

≤ (1− δ)
λε−1

1+ λε−1 + δ.(48)

Hence,hE(λ), continuous and strictly increasing on[0,∞) as a function ofλ,
satisfies

lim
λ→0

hE(λ) ≤ δ and lim
λ→∞hE(λ) ≥ 1− δ.

Sinceδ < τ ≤ η/|E| ≤ 1−τ < 1−δ, there exists a unique valueλ(E,η) in (0,∞)

for whichhE(λ) takes on the valueη/|E|.
Sinceη/|E| ∈ [τ,1− τ ] andλ(E,η) solves (46), by (48)

(1− δ)
λ(E,η)ε

1+ λ(E,η)ε
≤ 1− τ and τ ≤ (1− δ)

λ(E,η)ε−1

1+ λ(E,η)ε−1 + δ,

yielding, respectively,

λ(E,η) ≤ 1− τ

ε(τ − δ)
and λ(E,η) ≥ ε(τ − δ)

1− τ
.

Verifying that 0< (τ − δ)/(1− τ) ≤ 1 completes the proof of claim (47).�
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THEOREM 3.1. Suppose that Condition 3.1 is satisfied and let be given
τ ∈ (0,1/2], κ ∈ N and s even. Then there exists nτ such that for all (E,η) ∈ Eτ

with |E| ≥ nτ , λ = λ(E,η) exists, and for all |k| ≤ κ ,

PE,η+k(A) = pA,λm
0
F,λ,ν−1

s/2∑
l=0

(−1)l(n0
F,λ,ν − 1)l + �τ,κ,s

(|E|−(s+2)/2),(49)

for all A ∈ E, where F = E \ A, ν = k + pA,λ, and m0
F,λ,ν and n0

F,λ,ν are defined
in (38) and (39). In particular, for all |ν| ≤ κ ,

PE,η+k(A) = pA,λ + Oτ,κ(|E|−1) and(50)

�PE,η+k(A) = pA,λqA,λI
0
F,λ,2 + Oτ,κ(|E|−2).

PROOF. By Lemma 3.6, the solutionsλ = λ(E,η) exist for all (E,η) ∈ Eτ

with |E| ≥ nτ and lie in an interval[γτ ,1/γτ ] for someγτ ∈ (0,1] depending only
on τ .

Hence, first applying Lemma 3.5,

PE,η+k(A) = pA,λTλ(XF = η + k − 1)

pA,λTλ(XF = η + k − 1) + qA,λTλ(XF = η + k)

(for all λ > 0)

= pA,λTλ(XF = η + k − 1)

pA,λTλ(XF = η + k − 1) + qA,λTλ(XF = η + k)

(upon settingλ = λ).

Sinceη + k = Tλ(XE) + k = Tλ(TF ) + pA,λ + k = Tλ(TF ) + ν,

PE,η+k(A) = pA,λfF,λ,ν−1

pA,λfF,λ,ν−1 + qA,λfF,λ,ν

.

Letting �(s/2) = �τ,κ,s(|E|−s/2) for short and applying Lemma 3.2, this
probability equals

pA,λmF,λ,ν−1 + �((s + 3)/2)

pA,λmF,λ,ν−1 + qA,λmF,λ,ν + �((s + 3)/2)

= pA,λm
0
F,λ,ν−1 + �((s + 2)/2)

pA,λm
0
F,λ,ν−1 + qA,λm

0
F,λ,ν + �((s + 2)/2)

[sinceIF,λ,0 = �τ(|E|−1/2)]

= pA,λm
0
F,λ,ν−1 + �((s + 2)/2)

n0
F,λ,ν + �((s + 2)/2)
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= pA,λm
0
F,λ,ν−1

n0
F,λ,ν

+ �
(
(s + 2)/2

)

= pA,λm
0
F,λ,ν−1

1+ (n0
F,λ,ν − 1)

+ �
(
(s + 2)/2

)
.

Equation (40) of Lemma 3.4 givesn0
F,λ,ν − 1 = Oτ,ν,s(|E|−1), hence a Taylor

expansion inx of the quotient 1/(1+ x) to orders/2 yields an error term of order
(n0

F,λ,ν − 1)s/2+1 = Oτ,ν,s(|E|−(s+2)/2), and therefore (49).
Usings = 2 in (49) and collecting terms of orderOτ,ν(|E|−2), we obtain

PE,η+k(A) = pA,λ
(
1+ qA,λ

(
iI0

F,λ,1 + (ν − 1/2)I0
F,λ,2

) + Oτ,ν(|E|−2)
)
,

proving (50). �

Under the hypotheses of Theorem 3.1 we have the following:

COROLLARY 3.1.

PE,η+k(A) ∈ G0
τ .(51)

PROOF. For t = 0, �0
PE,η+k(A) = PE,η+k(A) = Oτ,k(1). Given arbitrary

t ≥ 1, take

s = t + t mod2− 2 and κ = t.

Since m0
F,λ,ν ∈ G0

τ and (41) of Lemma 3.4 givesn0
F,λ,ν − 1 ∈ G0

τ , repeated
application of Lemma 3.3 shows

pA,λmF,λ,ν

s/2∑
l=1

(n0
F,λ,ν − 1)l ∈ G0

τ .

For the error term, by the choices + 2 = t + t mod2,

�tOτ,t

(|E|−(s+2)/2) = �tOτ,t

(|E|−(t+t mod 2)/2) = Oτ,t

(|E|−(t+t mod 2)/2).
Therefore,

�t
PE,η+k(A) = Oτ,t,k

(|E|−(t+t mod)/2)
for all t ≥ 0, and (51) follows. �
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4. High-order weighted sampling correlations. For E ⊂ N and sets(u ∪
v) ⊂ E with u ∩ v = ∅ and η ≥ |u|, we define the (conditional) measureP

u,v
E,η

supported on setsd ⊂ E of sizeη with d ⊃ u andd ∩ v = ∅ by

P
u,v
E,η(D = d) = PE,η(D = d|D ⊃ u,D ∩ v = ∅);

that is,Pu,v
E,η is the measurePE,η conditioned to contain every element ofu but

none of the elements ofv. The measures considered in the previous sections were
the unconditioned special case

PE,η = P
∅,∅
E,η ;

the∅,∅ superscript may be omitted. We define (commutative) differences�B on
the measurePu,v

E,η for B ∈ E \ (u ∪ v) by

�B
P

u,v
E,η = P

u∪B,v
E,η − P

u,v∪B
E,η .

For k ∈ N the operators�k will continue to be used in accordance with (30).
The following lemma gives some key properties of the conditional mea-

sureP
u,v
E,η, including a useful relation to its unconditional versionPE,η.

LEMMA 4.1. Let u,v be disjoint subsets of E. For H ⊂ E \ (u ∪ v),

�H
P

u,v
E,η = ∑

α∪β=H,α∩β=∅

(−1)|β|
P

u∪α,v∪β
E,η .(52)

For d ⊂ E such that d ⊃ u and d ∩ v = ∅,

P
u,v
E,η(d) = PE\(u∪v),η−|u|(d \ u),(53)

and for A /∈ (u ∪ v) and H ⊂ E \ (u ∪ v ∪ A),

�H
P

u,v
E,η(A) = (−1)|H |�|H |

P
u,v
E\H,η(A).(54)

PROOF. Relation (52) can be shown by induction. By definition (4) and that
of conditional probability, usingu ⊂ d ⊂ E \ v, we have

P
u,v
E,η(d) = xd∑

w : u⊂w⊂E,w∩v=∅,|w|=η xw

= xd\u∑
w : u⊂w⊂E,w∩v=∅,|w|=η xw\u

,

since bothd and w contain u and the factorxu, which appears in bothxd =
xd\uxu andxw = xw\uxu, can be cancelled. Furthermore, becauseu,v are disjoint,
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w ∩ v = ∅ if and only if (w \ u) ∩ v = ∅, and whenu ⊂ w and |w| = η, then
|w \ u| = η − |u|. Hence,

{w \ u : u ⊂ w ⊂ E,w ∩ v = ∅, |w| = η}
= {w \ u : w \ u ⊂ E \ u, (w \ u) ∩ v = ∅, |w \ u| = η − |u|}
= {w : w ⊂ E \ u, w ∩ v = ∅, |w| = η − |u|}
= {w : w ⊂ E \ (u ∪ v), |w| = η − |u|}

andP
u,v
E,η(d) equals

xd\u∑
w : w⊂E\(u∪v),|w|=η−|u| xw

= PE\(u∪v),η−|u|(d \ u).

This proves (53).
It suffices to prove (54) for(u,v) = (∅,∅). First, note forA /∈ α ∪ β,

P
α,β
E,η(A) = ∑

d�A,α⊂d⊂E,d∩β=∅

P
α,β
E,η(d)

= ∑
d�A,α⊂d⊂E,d∩β=∅

PE\(α∪β),η−|α|(d)

= ∑
d�A,d⊂E\(α∪β)

PE\(α∪β),η−|α|(d)

= PE\(α∪β),η−|α|(A);(55)

hence, sinceA /∈ H ,

�H
PE,η(A) = ∑

α∪β=H,α∩β=∅

(−1)|β|
P

α,β
E,η(A) [by (52)]

= ∑
α∪β=H,α∩β=∅

(−1)|β|
PE\(α∪β),η−|α|(A) [by (55)]

=
|H |∑
j=0

∑
α∪β=H,α∩β=∅,|α|=j

(−1)|H |−j
PE\H,η−j (A)

=
|H |∑
j=0

( |H |
j

)
(−1)|H |−j

PE\H,η−j (A)

= (−1)|H |
|H |∑
j=0

( |H |
j

)
(−�)jPE\H,η(A)

= (−1)|H |(1− �)|H |
PE\H,η(A)

= (−1)|H |�|H |
PE\H,η(A). �
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In parallel to definition (31), for functionsfE for which versionsf α,β
E are

defined [such asfE = P
u,v
E,η(A)], for G ⊂ N let

�q
µ(G) = {

fE :�HfE = Oµ,|H |
(|E|−(|H |+q+(|H |+q)mod 2)/2) for all H ∩ G = ∅

}
.

In parallel to Lemma 3.3, we have the following:

LEMMA 4.2. Let p ≤ q be nonnegative integers, and suppose that fF ∈
�

p
µ(P ) and gF ∈ �

q
µ(Q). Then

P ⊂ Q �⇒ �p
µ(P ) ⊃ �q

µ(Q),

afF ∈ �p
µ(P ), fF + gF ∈ �p

µ(P ∪ Q),

P ∩ H = ∅ �⇒ �HfF ∈ �p+|H |
µ (P ∪ H),

f(F\H)∪G ∈ �p
µ(P ),

fF gF ∈ �p+q
µ (P ∪ Q).

The proof, being parallel to that of Lemma 3.3, is omitted.

LEMMA 4.3. Let Condition 3.1 hold and τ ∈ (0,1/2]. For (E,η) ∈ Eτ ,
G ⊃ (u ∪ v) and G ∩ {A} = ∅,

P
u,v
E,η(A) ∈ �0

τ (G ∪ A),(56)

P
u,v
E,η(A)P

u,v
E,η(Ā) ∈ �0

τ (G ∪ A),(57)

P
u,v
E,η(A) − PE,η(A) ∈ �1

τ (G ∪ A).(58)

PROOF. ForH ⊂ E \ (G ∪ A), by (54) and (53),

�H
P

u,v
E,η(A) = (−1)|H |�|H |

P
u,v
E\H,η(A)

= (−1)|H |�|H |
PE\(H∪u∪v),η−|u|(A).

The result (56) now follows by (51) of Corollary 3.1. Since 1∈ �0
τ (G ∪ A), we

haveP
u,v
E,η(Ā) = 1− P

u,v
E,η(A) ∈ �0

τ (G ∪ A), and, hence, (57) using Lemma 4.2.
Next, if B ∈ v �= ∅,

P
u,v
E,η(A) − P

u∪B,v\B
E,η (A) = −�B

P
u,v\B
E,η (A),

which is in�1
τ (G ∪ A) by (56). Iterating over all elements inv and using the fact

that�1
τ (G ∪ A) is closed under addition, we obtain

P
u,v
E,η(A) − P

u∪v,∅
E,η (A) ∈ �1

τ (G ∪ A).(59)
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Next, forB ∈ u ∪ v,

PE,η(A) = PE,η(B)P
B,∅
E,η (A) + PE,η(B̄)P

∅,B
E,η (A)

= (
1− PE,η(B̄)

)
P

B,∅
E,η (A) + PE,η(B̄)P

∅,B
E,η (A)

= P
B,∅
E,η (A) − PE,η(B̄)

(
P

B,∅
E,η (A) − P

∅,B
E,η (A)

)
.

Rearranging,

P
B,∅
E,η (A) − PE,η(A) = PE,η(B̄)�B

PE,η(A).

Since PE,η(B̄) ∈ �0
τ (G ∪ A) and �B

PE,η(A) ∈ �1
τ (G ∪ A), their product is

in �B
PE,η(A) ∈ �1

τ (G ∪ A) by (4.2) and, therefore,PB,∅
E,η (A) − PE,η(A) ∈

�1
τ (G∪A). Iterating over allB ∈ u∪ v and using the fact that�1

τ (G∪A) is closed
under addition, we have

P
u∪v,∅
E,η (A) − PE,η(A) ∈ �1

τ (G ∪ A),

and now by (59) and the closure property of�1
τ (G ∪ A) (58) follows. �

For short, write

p
u,v
A = P

u,v
E,η(A) and q

u,v
A = 1− p

u,v
A ;

as usual, for(u,v) = (∅,∅), we omit the superscripts.

LEMMA 4.4. For any random variable V and A /∈ u ∪ v,

E
u,v
E,η

(
(IA − pA)V

) = (
(p

u,v
A − pA) + p

u,v
A q

u,v
A �A)

E
u,v
E,η(V ).

PROOF. Adding and subtractingpu,v
A , we have

E
u,v
E,η

(
(IA − pA)V

) = E
u,v
E,η

(
(IA − p

u,v
A )V

) + (p
u,v
A − pA)E

u,v
E,η (V )

and

E
u,v
E,η

(
(IA − p

u,v
A )V

)
= p

u,v
A E

u∪A,v
E,η

(
(1− p

u,v
A )V

) + (1− p
u,v
A )E

u,v∪A
E,η (−p

u,v
A V )

= p
u,v
A q

u,v
A

(
E

u∪A,v
E,η (V ) − E

u,v∪A
E,η (V )

)
= p

u,v
A q

u,v
A �A

E
u,v
E,η(V ). �

THEOREM 4.1. Let Condition 3.1 hold and (E,η) ∈ Eτ for τ ∈ (0,1/2]. If
u,v are subsets of E with G ⊃ (u ∪ v) and V is a random variable such that

E
u,v
E,η(V ) ∈ �q

τ (G),
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then for G ∩ H = ∅,

E
u,v
E,η

( ∏
A∈H

(IA − pA)V

)
∈ �q+|H |

τ (G ∪ H).

In particular, when V = 1 and G = u = v = ∅, since 1∈ �0
τ (∅), we have

Corr(H) ≡ EE,η

( ∏
A∈H

(IA − pA)

)
∈ �|H |

τ (H),

and, therefore, in particular,

Corr(H) = Oτ,|H |
(|E|−(|H |+|H |mod 2)/2).

PROOF. ForH = {A}, by Lemma 4.2,

�A
E

u,v
E,η(V ) ∈ �q+1

τ (G ∪ A);
sincep

u,v
A q

u,v
A ∈ �0

τ (G), using Lemma 4.2 again yields

p
u,v
A q

u,v
A �A

E
u,v
E,η(V ) ∈ �q+1

τ (G ∪ A).

Since

p
u,v
A − pA ∈ �1

τ (G ∪ A),

we also have that

(p
u,v
A − pA)E

u,v
E,η(V ) ∈ �q+1

τ (G ∪ A).

The result forH = {A} now follows from Lemma 4.4, and then, in general, by
induction. �

We close this section with some results which will be useful in Section 5.

COROLLARY 4.1. Under the hypotheses for Theorem 4.1, for A,B,C

distinct,

pA = pA,λ + Oτ(|E|−1),

EE,η(IA − pA)(IB − pB) = −pA,λqA,λpB,λqB,λv
−2
E,λ + oτ (|E|−1),

EE,η(IA − pA)2(IB − pB) = Oτ(|E|−1),

EE,η(IA − pA)(IB − pB)(IC − pC) = Oτ(|E|−2).
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PROOF. The first claim is a consequence of (50). WithF = E \ (A ∪ B),

EE,η(IA − pA)(IB − pB)

= pAqA�A
EE,η(IB − pB) (by Lemma 4.4)

= pAqA�A
PE,η(B) [sinceE

u,v
E,η(pB) = pB for all u,v]

= −pAqA�PE\A,η(B) [by (54) of Lemma 4.1]

= −pAqApB,λqB,λI
0
F,λ,2 + Oτ(|E|−2) [by (50) of Theorem 3.1]

= −pA,λqA,λpB,λqB,λI
0
F,λ,2 + Oτ(|E|−2) [by (19) and (50)]

= −pA,λqA,λpB,λqB,λv
−2
F,λ + oτ (|E|−1) [by (19)]

= −pA,λqA,λpB,λqB,λv
−2
E,λ + oτ (|E|−1) (by Lemma 3.1).

Further,

EE,η(IA − pA)2(IB − pB)

= pA(1− pA)2
E

A,∅
E,η (IB − pB) + (1− pA)p2

AE
∅,A
E,η (IB − pB)

= pA(1− pA)
(
(1− pA)(p

A,∅
B − pB) + pA(p

∅,A
B − pB)

)
= Oτ(|E|−1) (by Lemma 4.3),

and the final claim is immediate from Theorem 4.1.�

5. Application: asymptotics for conditional and unconditional logistic odds
ratio estimators. In this section the theory developed in the previous sections
is used to provide an asymptotic theory for the maximum likelihood conditional
and unconditional logistic regression odds ratio estimators,β̂N and β̃N , under
the nested case-control model. Conditions 5.1 and 5.2 ensure the asymptotic
stability and nondegeneracy of data in the study base, which is sampled using
schemes satisfying Condition 5.3. Lemma 5.1 shows how stability in the study
base leads to stability in probability for case-control samplesE. Theorems
5.1 and 5.2 give the consistency and asymptotic normality ofβ̂N and β̃N . We
first consider asymptotically stable covariates inR and then specialize to the i.i.d.
case. Previously, the weightsxA,A ∈ E were considered fixed, but here even if
xj , j ∈ R are fixed, the valuesxA,A ∈ E arrive inE through random failure and
control sampling. Suppressing explicit dependence onβ0 and (as usual) onR and
its sizeN , we indicate the study base modelPλ0,β0 given in (1) byP, and continue
to denote the conditional distributions givenE,η by PE,η.

The first two conditions are on the stability of the study base data.
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CONDITION 5.1. For allδ ∈ (0,1) there existsC such that for allN ≥ 1,

1

N

∑
j∈R

1(|zj | ≤ C) ≥ 1− δ(60)

and withpj given by (1) withx = xj ,

1

N

∑
j∈R

pj → p asN → ∞.

Clearly, we then haveη/N
p→p as N → ∞ by independence of the failure

indicators. Furthermore,p ∈ (0,1), since withC corresponding to anyδ ∈ (0,1)

in (60),

1

N

∑
j∈R

pj ≥
(

inf|z|≤C
p(z)

)
1

N

∑
j∈R

1(|zj | ≤ C) ≥
(

inf|z|≤C
p(z)

)
(1− δ),

which by Condition 1.1 is strictly positive for allN ≥ 1; likewise forqj , where
pj + qj = 1. Foruj , j ∈ R, let

uN = 1

N

∑
j∈R

uj and u = sup
N≥1

uN.(61)

We sayuj is asymptotically stable in mean ifuN → u for someu asN → ∞, as-
ymptotically dominated in mean if|u| < ∞, anduj (β) uniformly asymptotically
dominated in mean if there exists a neighborhoodB0 ⊂ B containingβ0, andvj

asymptotically dominated in mean, such that|uj (β)| ≤ vj for all β ∈ B0. For a
continuous functionw : [0,∞) → R with limx→∞ w(x) = L ∈ (−∞,∞), we say
uj is w-stable if|uj |2 is asymptotically dominated in mean and for allλ ∈ [0,∞],
ujw(λxj )pj andujw(λxj )qj are asymptotically stable in mean. In what follows,
we omit the specification “in mean.”

CONDITION 5.2. 1 isx/(1 + x) stable,z ⊗k
j is x/(1 + x)2 stable fork =

0,1,2, |zj |3, |z′
j |2 and|z′′

j |2 are uniformly asymptotically dominated, and

lim inf
N→∞ inf|a|=1

aT

(
1

N

∑
j∈R

(yj − ȳN)⊗2

)
a> 0,(62)

for yT
j = (1,zT

j ).

The next condition is on the sampling design.

CONDITION 5.3. For somef ∈ (0,1),
η

|E|
p→ f asN → ∞,(63)
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for Bj = 1(j ∈ E), uniformly overj ∈ R,

E(Bj |j /∈ D) → ρf = (1− f )p

(1− p)f
(64)

and uniformly over allj �= k in R,

Cov
(
(Bj ,Bk)|j /∈ D, k /∈ D

) → 0 asN → ∞.

For f as in Condition 5.3, setτ = (1/2)min(f,1 − f ) for application
of Corollary 4.1. The connection between properties ofuj on R and their
corresponding in probability versions onE is made explicit by Lemma 5.1. We say

gE(λ) converges uniformly in probability tog(λ) if supλ∈[0,∞) |gE(λ)−g(λ)| p→ 0
asN → ∞.

LEMMA 5.1. Assume Conditions 1.1, 5.1and 5.3hold.

(a) For all δ ∈ (0,1), there exists ε ∈ (0,1) such that for all N ≥ 1,

P

(
1

|E|
∑
A∈E

1(xA ∈ [ε, ε−1]) ≥ 1− δ

)
≥ 1− δ.(65)

If uj is asymptotically dominated, then for all δ ∈ (0,1), there exists K such that

P

(
1

|E|
∑
A∈E

|UA| ≤ K

)
≥ 1− δ for all N ≥ 1.(66)

(b) If |uj |2 is asymptotically dominated, then Var(N−1 ∑
A∈E UA) → 0. If, in

addition, ujpj and ujqj are asymptotically stable, then

1

|E|
∑
A∈E

UA
p→f

up

p
+ (1− f )

uq

q

(67)

= 1− f

1− p

[
u

1+ ρ−1
f λ0x

1+ λ0x

]
as N → ∞,

with ρf given in (64).
(c) If uj is w-stable, then

gU
E (λ) = 1

|E|
∑
A∈E

UAw(λxA)(68)

converges in probability uniformly to a continuous limit gU(λ) as N → ∞, having
form (67) with u replaced by uw(λx). Hence, additionally, under Condition 5.2,

hE(λ) = 1

|E|
∑
A∈E

pA,λ and ek,E(λ) = p

f

1

|E|
∑
A∈E

Z⊗k
A pA,λqA,λ

converge uniformly in probability to continuous functions h(λ) and ek(λ) for
k = 0,1,2 with form (67).
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(d) The limit function h(λ) in part (c) strictly increases from 0 to 1 as
λ increases from 0 to ∞. For f ∈ (0,1),

λf = ρ−1
f λ0

is the unique solution to h(λf ) = f , and

ek ≡ ek(λf ) = [
z⊗kqλf

pλ0

]
.(69)

With hE(λ) = η/|E|, we have

λ
p→λf .

(e) if |uj |2 and |vj |2 are (uniformly) asymptotically dominated, then

1

|E| CovE,η

( ∑
A∈D

UA,
∑
A∈D

VA

)

= 1

|E|
( ∑

A∈E

UAVApAqA + ∑
A �=B

UAVB(pAB − pApB)

)

is (uniformly) bounded in probability. If 1, uj , vj and ujvj are w(x) = x/(1+x)2-
stable, then with gU the limit of gU

E given in (68),

|E|−1 CovE,η

( ∑
A∈D

UA,
∑
A∈D

VA

)
p→gU⊗V (λf ) − pf −1gU(λf ) ⊗ gV (λf )/e0(λf ).

(f ) If |uj |2 is (uniformly) asymptotically dominated, then (uniformly)

1

N

∑
A∈E

UA(IA − pA)
p→0.

(g) If nonnegative weights wj are asymptotically dominated, for all δ ∈ (0,1),
there exists ε > 0 such that

inf
N≥1

1

N

∑
j∈R

1(wj ≥ ε) ≥ 1− δ,

|uj |3 is asymptotically dominated and

lim inf
N→∞ inf|a|=1

aT�Na > 0 where �N = 1

N

∑
j∈R

(uj − uN)⊗2,(70)

then this same lower bound holds for

�N,w = ∑
j∈R

(uj − uN,w)⊗2 wj∑
k∈R wk

, where uN,w = ∑
j∈R

uj

wj∑
k∈R wk

.
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In particular, under Condition 5.2with ek, k = 0,1,2 given in (69),

� = e2 − e−1
0 e⊗2

1 is positive definite.(71)

PROOF. By considering coordinates, we will assume when convenient that
uj ∈ R. To show (65), note that

1

|E|
∑
A∈E

1(xA /∈ [ε, ε−1]) ≤ N

|E|
1

N

∑
j∈R

1(xA /∈ [ε, ε−1]).

By Conditions 1.1 and 5.1,N−1 ∑
j∈R 1(xj /∈ [ε, ε−1]) can be made arbitrarily

small for all N ≥ 1 by choosingε ∈ (0,1) sufficiently small. Now by (63) of

Condition 5.3 andη/N
p→p, we have|E|/N p→p/f , and (65) follows. Claim (66)

follows from
1

N

∑
A∈E

|UA| ≤ 1

N

∑
j∈R

|uj | ≤ u,

Chebyshev’s inequality, and|E|/N p→p/f .
For (b) note thatE is comprised of the set of failuresD from R and a sample

from the complementR \ D. Hence,

1

N

∑
A∈E

UA = 1

N

∑
j∈R

uj1(j ∈ D) + 1

N

∑
j∈R

uj1(j ∈ E \ D).(72)

Apply Var(X + Y) ≤ 2(Var(X) + Var(Y )) on the right-hand side of (72). For the

first term, by independence,N−1 Var(
∑

j∈R uj1(j ∈ D)) ≤ u2.
The indicators in the second term of (72) may not be independent. Write its

variance as the sum of the diagonal term

1

N2

∑
j∈R

u2
j qjE(Bj |j /∈ D)

(
1− qjE(Bj |j /∈ D)

) ≤ N−1u2 → 0,

and the covariance term, withcN = maxj,k |Cov(Bj ,Bk|j /∈ D, k /∈ D)|,
1

N2

∣∣∣∣∣∑
j �=k

ujukqjqk Cov(Bj ,Bk|j /∈ D, k /∈ D)

∣∣∣∣∣ ≤ cN(u)2 → 0;

hence, Var(N−1 ∑
A∈E UA) → 0.

From (72),

E

(
1

N

∑
A∈E

UA

)
= 1

N

∑
j∈R

ujpj + 1

N

∑
j∈R

ujqjE(Bj |j /∈ D).(73)

Using (64) of Condition 5.3 and the fact thatuj is dominated, the limit of the
difference between the expectation (73) andupN + uqNρf is zero. The first
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equality in (67) now follows from the first part, the stability conditions onuj , that

N/|E| p→f/p and the definition ofρf . The second equality now follows from (1),
which gives the identity

f
upN

p
+ (1− f )

uqN

q
= 1− f

1− p

1

N

∑
j∈R

uj (ρ
−1
f pj + qj ).

Turning to (c), sincew is continuous with finite limit at infinity, and since
the stability conditions hold in[0,∞], without loss of generality, through the
mappingλ → λ/(1+λ) say, it suffices to considerλ ∈ [0,1]. Let u(j, λ) stand for
eitherujw(λxj )pj or ujw(λxj )qj . Since‖w‖ = supλ∈[0,1] |w(λ)| < ∞, we have
|u(j, λ)|2 ≤ ‖w‖2|uj |2 and part (b) now shows that for allλ, gE(λ) converges
in probability tog(λ) having form claimed. It remains to show that the limit is
continuous and that the convergence is uniform.

Let δ ∈ (0,1) be given. Since

U2
E ≡ 1

|E|
∑
A∈E

U2
A ≤ N

|E|u
2 p→ f

p
u2,

there isM ≥ 1 such that for allE,

P(|U2
E| ≤ K) ≥ 1− δ/6, whereK = Mf u2/p.(74)

Assume for nontriviality that‖w‖ andu2 are positive. Setting for short

1A(ε) = 1(xA /∈ [ε, ε−1]),
and using notation as in (61), by part (a), there existsε ∈ (0,1) such that for allE,

P
(
1E(ε) ≤ δ2/(16‖w‖2K)

) ≥ 1− δ/6.

Writing gE(λ) for gU
E (λ), let

gE(λ) = g��
E (λ) + g��

E (λ),(75)

where

g��
E (λ) = 1

|E|
∑

A : xA∈[ε,ε−1]
UAw(λxA)

and

g��
E (λ) = 1

|E|
∑

A : xA /∈[ε,ε−1]
UAw(λxA).
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Now applying the Cauchy–Schwarz inequality, with probability at least 1− δ/3,

sup
0≤λ2,λ1≤1

|g��
E (λ2) − g��

E (λ1)|

≤ 2 sup
0≤λ≤1

|g��
E (λ)|

≤ 2‖w‖ 1

|E|
∑
A∈E

|UA|1A(ε) ≤ 2‖w‖(
U2

E 1E(ε)
)1/2 ≤ δ

2
.

Sincew is uniformly continuous on[0,1], there existsτ > 0 such that

if |y − x| < τ/ε then|w(y) − w(x)| < δ/(2K1/2).

In particular,

whenxj ≤ ε−1, if |λ2 − λ1| < τ then|w(λ2xj ) − w(λ1xj )| < δ/(2K1/2).

Hence, by (74), with probability at least 1− δ/6,

|g��
E (λ2) − g��

E (λ1)| ≤ 1

|E|
∑

A : xA∈[ε,ε−1]
|UA||w(λ2xA) − w(λ1xA)|

≤ δ

√
|U2

E|
2K1/2 ≤ δ

2
.

Now by (75), for everyδ there is aτ such that for allE,

P

(
sup

|λ2−λ1|≤τ

|gE(λ2) − gE(λ1)| ≤ δ

)
≥ 1− δ/2,

and taking limits, sup|λ2−λ1|≤τ |g(λ2) − g(λ1)| ≤ δ; hence,g(λ) is continuous.
Letting F1, . . . ,FM be a finite subcover of[0,1] taken from the open cover of all
open sub-intervals of length 2τ and settingλj to be the center of the intervalFj ,
there existsN0 such that for|E| ≥ N0,

P
(|gE(λj ) − g(λj )| ≤ δ

) ≥ 1− δ/2, j = 1, . . . ,M.

Now (c) is finished, since for anyλ, there existsλj with |λ − λj | < τ , and

|gE(λ) − g(λ)| ≤ |gE(λ) − gE(λj )| + |gE(λj ) − g(λj )| + |g(λj ) − g(λ)|,
and so for allδ there existsN0 such that

for all |E| ≥ N0 P

(
sup

λ∈[0,1]
|gE(λ) − g(λ)| ≤ 3δ

)
≥ 1− δ.

To show (d), as in part (a), for givenδ ∈ (0,1), there existsε ∈ (0,1) such that
for all N ≥ 1,

1

N

∑
j∈R

1(xj ∈ [ε, ε−1]) ≥ 1− δ.
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Let 0≤ λ1 < λ2 < ∞ and set

γ = inf
xj∈[ε,ε−1]

(
pj,λ2 − pj,λ1

)
pj ,

which is strictly positive. Sincepj,λ is nondecreasing inλ, for all N ≥ 1,

pλ2pN − pλ1pN ≥ 1

N

∑
j : xj∈[ε,ε−1]

(
pj,λ2 − pj,λ1

)
pj ≥ γ (1− δ),

and, hence,pλ2p > pλ1p; similarly, pλ2q > pλ1q. As the form of the limit
function h is given by (67) withuj = pj,λ, h strictly increases from 0 to 1 as
λ increases from 0 to∞. By continuity, for everyf ∈ (0,1) there exists a unique
λf such thath(λf ) = f .

Next, note that settingλf = ρ−1
f λ0, we have

pj,λf

(1+ ρ−1
f λ0xj

1+ λ0xj

)
= ρ−1

f pj,λ0,

which by (67) gives

hE(λf )
p→ 1− f

1− p
ρ−1

f p = f

and the claimed representation ofek(λf ).
Last, sincehE(λ(E,η)) = η/|E|,

h(λ) − h(λf ) = h
(
λ(E,η)

) − hE

(
λ(E,η)

) −
(
f − η

|E|
)

p→0,

we have

λ
p→ λf as|E| → ∞,

sinceh(λ) is continuous and strictly increasing.
For (e), by Corollary 4.1, the correspondence

v−2
E,λ = 1

|E|
p

f
e−1

0,E(λ),

and the (uniform) domination assumed onuj , vj , we have that

1

|E|
∑
A∈E

UAVApAqA + 1

|E|
∑
A �=B

UAVB(pAB − pApB)

is in probability (uniformly) withinoτ (1) of

1

|E|
∑
A∈E

UAVApA,λqA,λ − 1

|E|2
p

f

∑
A,B∈E,A �=B

UAVBpA,λqA,λpB,λqB,λe
−1
0,E(λ),
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which by the Cauchy–Schwarz inequality and (66) is (uniformly) bounded in
probability. Adding in the diagonal term in the double sum, we see that the quantity
above is (uniformly) withinoτ (1) of

gUV
E (λ) − pf −1gU

E (λ)gV
E (λ)e−1

0,E(λ).

Part (e) now follows from (c) and (d).
For part (f ), note the given expression has conditional mean zero given(E,η),

and apply part (e) withvj = uj .

For (g), let forε ∈ (0,1), �N = �
ε↑
N + �

ε↓
N , where

�
ε↑
N = 1

N

∑
wj≥ε

(uj − uN)⊗2 and �
ε↓
N = 1

N

∑
wj<ε

(uj − uN)⊗2

and similarly define

u
ε↑
N = 1

N

∑
wj≥ε

uj and u
ε↓
N = 1

N

∑
wj<ε

uj .

Applying Hölder’s inequality,

|�ε↓
N | ≤

(
1

N

∑
j∈R

|uj − uN |3
)2/3(

1

N

∑
j∈R

1(wj<ε)

)1/3

,

since |uj |3 is asymptotically dominated,�ε↓
N can be made arbitrarily small by

choice ofε. Hence, lettingγ be the value of the lim inf in (70), there existsε > 0
such that

lim inf
N→∞ inf|a|=1

aT�
ε↑
N a > 2γ /3 and |uε↓

N |2 < γ/3 for all N .(76)

With ≥ the standard partial ordering on positive definite matrices, for anyS,∑
j∈S

(uj − v)⊗2 ≥ ∑
j∈S

(uj − uS)⊗2 for uS = 1

|S|
∑
j∈S

uj and allv ∈ Rd ,

so for thisε,

�N,w ≥ ∑
wj≥ε

(uj − uN,w)⊗2 wj∑
j wj

≥ ε

w

1

N

∑
wj≥ε

(uj − uN,w)⊗2

≥ ε

w

1

N

∑
wj≥ε

(uj − u
ε↑
N )⊗2 ≥ ε

w

(
�

ε↑
N − (u

ε↓
N )⊗2) > 0

by (76). Since the weightswj = qj,λf
pj,λ0 satisfy the given conditions,� > 0 by

(62) of Condition 5.2. �
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THEOREM 5.1. Consider a study base R of N individuals with disease
probability given by the proportional odds model (1) and a case control sampling
design giving rise to the likelihood (4). If Conditions 1.1and 5.1–5.3are satisfied,
there exists a consistent and asymptotically normal sequence β̂N of roots of the
likelihood equation LN(β) = 0; with � as in (71),

β̂N

p→β0 and
√

N(β̂N − β0)
d→N (0,�−1).

PROOF. We follow Theorem VI.I.I in Andersen, Borgan, Gill and Keiding
(1993) from Billingsley (1961). For consistency it suffices to show that asN → ∞,

N−1U(β0)
p→0, N−1I(β0)

p→�,(77)

and, withR(β) = ∂I(β)/∂β, that there is a finite constantK such that for some
neighborhoodB0 ⊂ B of β0,

lim
N→∞ P

(|N−1R(β)| ≤ K for all β ∈ B0
) = 1.(78)

The first claim in (77) and thatN−1 times (7) tends to zero in probability follow

from Lemma 5.1, part (f ), Condition 5.2 and the fact thatN/|E| p→f/p. The
second claim in (77) now follows from (6) and Lemma 5.1, part (e).

Turning to (78), write, for example,Zd for
∑

A∈d ZA, so by (5),

R(β) = (−Z′′
D + EE,η(Z′′

D)
) + 2CovE,η(ZD,Z′

D)
(79)

+ CovE,η(Z′
D,ZD) + EE,ηU(β)⊗3.

Divided by N , the term inside the first parentheses tends to zero uniformly in
probability overB0 by Lemma 5.1, part (f ) and Condition 5.2. The covariances
are uniformly bounded in probability upon division byN by Lemma 5.1, part (e).

Last, the final term (79) over|E| expands to terms of three types. For the
diagonal, ∣∣∣∣∣ 1

|E|
∑
A∈E

Z⊗3
A EE,η(IA − pA)3

∣∣∣∣∣ ≤ 1

|E|
∑
A∈E

|ZA|3 ,

for the double sums of the following form apply Corollary 4.1 to see that∣∣∣∣∣ 1

|E|
∑

|{A,B}|=2

Z⊗2
A ⊗ZBEE,η(IA − pA)2(IB − pB)

∣∣∣∣∣
≤ Oτ(1)

|E|2
∑

|{A,B}|=2

|ZA|2|ZB |

≤ Oτ(1)

(
1

|E|
∑
A∈E

|ZA|2
)(

1

|E|
∑
B∈E

|ZB |
)
,
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and for the triple sums, by Corollary 4.1,∣∣∣∣∣ 1

|E|
∑

|{A,B,C}|=3

ZA ⊗ZB ⊗ZC EE,η(IA − pA)(IB − pB)(IC − pC)

∣∣∣∣∣
≤ Oτ(1)

|E|3
∑

|{A,B,C}|=3

|ZA||ZB ||ZC | ≤ Oτ(1)

(
1

|E|
∑
A∈E

|ZA|
)3

.

These terms are uniformly bounded overB0 by Condition 5.2, giving the existence
of the requiredK in (78) and completing the proof of consistency.

By the Cramér–Wold device, to prove the asymptotic normality claim, it suffices
to show

1√
N

b′U(β0)
d→N (0,b′�b) for all nonzerob ∈ R

p.(80)

For ε > 0, define

σ 2
E = f |E|

Np
b′

(
e2,E(λ) − e⊗2

1,E(λ)

e0,E(λ)

)
b,

Gε,E =
{
A ∈ E :

∣∣∣∣b′ZA − b′e1,E(λ)

e0,E(λ)

∣∣∣∣ > εσE

√
N

}
,

Lε,E = 1

Nσ 2
E

∑
A∈Gε,E

(
b′ZA − b′e1,E(λ)

e0,E(λ)

)2

pA,λqA,λ

and

ε∗
E = inf{ε :Lε,E ≤ ε}.

Hájek’s (1964) CLT, with the variablesyA replaced byb′ZApA,λ, gives (80) if

ε∗
E

P→0 asN → ∞. By Hölder’s inequality,

1

|E|
∑
A∈E

|ZA|21(|ZA| > ε|E|1/2)

≤
(

1

|E|
∑
A∈E

|ZA|3
)2/3(

1

|E|
∑
A∈E

1(|ZA| > ε|E|1/2)

)1/3

,

which tends to zero in probability for allε > 0 by Conditions 5.2 and 5.1 and

Lemma 5.1, part (a). Sinceσ 2
E is of orderO(1) in probability,Lε,E

p→0. �

Turning now to the unconditional logisitic likelihood, for simplicity we
parameterizeλ = exp(α), let αE,η = log(λ) and recall that̃βN maximizes (8).
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THEOREM 5.2. Under the conditions of Theorem 5.1,

√
N

(
α̃N − αE,η

β̃N − β0

)
d→N

(
0,ϒ−1 −

[
e−1

0 0T

0 0

])
,(81)

where

ϒ =
[
e0 eT

1
e1 e2

]
.

PROOF. We proceed as in the proof of Theorem 5.1. Since

∂ log(1+ λxA)

∂α
= pλ,A and

∂pλ,A

∂α
= pλ,Aqλ,A,

taking first and second partial derivatives of the logarithm of (8) with respect
to (α,β), the unconditional logistic score and information are given, respectively,
by

Ũ(λ,β) = ∑
A∈E

(IA − pA,λ)

[
1

ZA

]
(82)

and

Ĩ(λ,β) = ∑
A∈E

[
1 ZT

A

ZA Z⊗2
A

]
pA,λqA,λ −

0 0T

0
∑
A∈E

(IA − pA,λ)Z′
A

 .(83)

By (82) and (46),

Ũ(λ,β0) =
[

0
U(β0)

]
+

 0∑
A∈E

ZA(pA − pA,λ)

 .(84)

By Corollary 4.1,pA − pA,λ = Op(N−1), so by (a) of Lemma 5.1,∑
A∈E

ZA(pA − pA,λ) = Op(1).(85)

In view of (77),N−1Ũ(λ,β0)
p→0. Handling the second term iñI(λ,β0) in this

same manner and applying (c) of Lemma 5.1 to the first,

N−1Ĩ(λ,β0)
p→ϒ.

By boundingpj,λqj,λ below and following a similar but simpler argument as in (g)
of Lemma 5.1, we have thatϒ > 0 by (62) of Condition 5.2.

Next we consider the remainder term. WritingyT = (1,zT) andγ T = (α,βT),
taking the derivative of̃I with respect toγ yields

R̃(γ ) = ∑
A∈E

Y⊗3
A (pA,λq

2
A,λ − p2

A,λqA,λ) + ∑
A∈E

(Y ′
A ⊗ YA + YA ⊗ Y ′

A)pA,λqA,λ

+ ∑
A∈E

(IA − pA,λ)Y
′′
A − pA,λqA,λYA ⊗ Y ′

A,
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of which all terms, once divided byN−1, are uniformly asymptotically dominated
by Condition 5.2.

By (84), (85), (80) and Slutsky’s lemma,

N−1/2Ũ(λ,β0)
d→N (0,V ) whereV =

[
0 0T

0 �

]
.(86)

The proof is completed by applying the well-known partitioned matrix inverse
formula,

ϒ−1 =
[

e−1
0 + e−1

0 eT
1�

−1e1e
−1
0 −e−1

0 eT
1�

−1

−�−1e1e
−1
0 �−1

]
,

and observing

ϒ−1V ϒ−1 =
[

e−1
0 eT

1�
−1e1e

−1
0 −e−1

0 eT
1�

−1

−�−1e1e
−1
0 �−1

]
= ϒ−1 −

[
e−1

0 0T

0 0

]
. �

We note from Theorems 5.1 and 5.2 the conditional and unconditional logistic
maximum likelihood estimators of the odds ratio parameterβ have the same
asymptotic distribution since (ϒ−1)β,β = �−1.

The following specialization of Theorems 5.1 and 5.2 is a direct consequence
of the law of large numbers.

THEOREM 5.3. Let Zj , j ∈ R, be i.i.d. replicates of Z. Then the conclusions
of Theorems 5.1 and 5.2 hold when Conditions 1.1, 5.1and 5.3 are satisfied,
E|Zj |4 < ∞, there exists an integrable random variable which bounds |Zj |3, |Z′

j |2
and |Z′′

j |2 in a neighborhood B0 ⊂ B of β0, and Var(Z) is positive definite.

WhenZj in the study base are independent with common distributionZj
d=Z,

whereZ has distribution functionG, the case-control set(E,η) consists ofη and
|E| − η covariates with distribution functionsG1,G0, respectively, where

dGi(z) = pi(z)(1− p(z))1−i

Epi(Z)(1− p(Z))1−i
dG(z), i = 0,1,

with p(z) as in (1). Thenp = Ep(Z), and the asymptotic distribution ofZA in the
case-control study is therefore given byGf , where

dGf (z) = f dG1(z) + (1− f )dG0(z) = 1− f

1− p

(
1+ λf x(z)
1+ λ0 x(z)

)
dG(z),

and the functionshE(λ) and ek,E(λ) converge uniformly in probability, respec-
tively, to h(λ) = Ef [pj,λ] andek(λ) = Ef [Z⊗k

j pj,λqj,λ].
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6. Discussion.

Local central limit theorem expansion for the Poisson–Binomial distribu-
tion. The distribution of the sum of independent Bernoulli random variables with
differing probabilities of success has no simple form. Theorem 2.1 gives an expan-
sion, with rates, to any desired accuracy.

Rejective sampling: inclusion and correlations. The probability that an
individual is included in a simple random sample has a simple form. Theorem 3.1,
which gives an expansion for the probability of inclusion in a rejective sample,
shows how special the equally weighted simple random sampling special case is.

Additionally, the decay rate of the high-order correlations for inclusion in a
rejective sample (9) has not been previously studied, even for simple random
sampling. Theorem 4.1 shows that (with|H | = k) thekth order correlations decay
at the rate|E|−(k+k mod 2)/2, that is, the odd correlations decay at the same rate as
the next even one. In the case of simple random sampling, we have conjectured in
Section 1.2 the values of the limiting constants.

Sampling designs. Table 1 is a list of control sampling methods most
commonly used in unmatched case-control studies. The designs are classified as
“case-control” type when sampling is done directly from the controls in the study
base, and as “case-base” type when the sampling is from the study base without
regard to case-control status. Each can be sub-classified according to whether the

TABLE 1
Examples of sampling methods that satisfy Condition 5.3with the parameters to yield

case-proportion f in the case-control set

Designa Samplingb Observedc/ Sampling method
type method expected to yieldf

C/C SRS Obs Exactly|D|(1− f )/f controls
C/C SRS Exp ExactlyNp(1− f )/f controls

C/C BT Obs Sample controls with prob1−f
f

|D|
n−|D|

C/C BT Exp Sample controls with prob1−f
f

p
1−p

CB SRS Obs ExactlyN 1−f
f

|D|/(N − |D|) from study base

CB SRS Exp ExactlyN 1−f
f

p/(1− p) from study base

CB BT Obs Sample with prob1−f
f

|D|/(N − |D|) from study base

CB BT Exp Sample with prob1−f
f

p/(1− p) from study base

aC/C—case-control, CB—case-base
bSRS—simple random sampling, BT—Bernoulli trials
cObserved or expected number of cases
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sampling is by simple random sampling without replacement or by independent
Bernoulli trials, and whether the number of subjects to be sampled is determined
by the “observed”|D| or “expected”Np number of cases. Each design satisfies
Condition 5.3. The fourth column in the Table 1 provides the parameters for the
chosen sampling design that yield asymptotic case-proportionf . Thus, under the
stated conditions on the covariates in the study base, Theorems 5.1 and 5.2 apply
for each design.

Conditional and unconditional logistic regression. Theorems 5.1 and 5.2
provide the asymptotics of the conditional and unconditional logistic likelihood
estimators of the odds ratio parameter under very broad conditions. The asymp-
totics for the conditional estimator for this wide variety of sampling schemes are
new; see Table 1. Those for the unconditional estimator extend its validity to a
much wider range of applications.

Under Conditions 1.1 and 5.1–5.3, these two estimators have the same
asymptotic distribution. Thus, from a statistical efficiency standpoint, either may
be used. Generally, permutation likelihoods are computationally quite intensive,
with complexity increasing exponentially with sample size [Liang and Qin (2000)].
However, exploiting the simplifications possible with a dichotomous outcome,
a recursive algorithm for the conditional logistic likelihood reduces the order of
computation to linear inη [Cox (1972) and Gail, Lubin and Rubinstein (1981)],
the same order as for the unconditional logistic likelihood. This algorithm has been
implemented in a number of computer software packages. Since the unconditional
estimator is biased when the number of cases is small [Breslow and Day (1980)],
the conditional estimator may be preferred in situations where the case-control
study consists of multiple case-control sets, some with small numbers of cases.

Comparison to the analysis of individually matched case-control studies.
In earlier work, we studied the asymptotic behavior of conditional logistic (partial
likelihood) estimators of the rate ratio from individually matched (nested) case-
control data [Goldstein and Langholz (1992) and Borgan, Goldstein and Langholz
(1995)].

In the individually matched case-control setting, the within case-control set
variability is constant with sample size and the asymptotics are driven by the
increasing number of case-control sets. The situation for the unmatched case-
control setting that we studied here is very different. There is a single (or a
fixed number, see Extensions below) case-control set, and the number of cases
in the set increases with sample size. Consequently, a very different set of analytic
techniques is required for individually matched and unmatched case-control study
designs.
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Comparison to the retrospective model. It is of interest to compare our
development of the asymptotic theory of the unconditional logistic estimator to
that developed under the retrospective model by Prentice and Pyke (1979). In
contrast to our results, which only require asymptotic stability of the covariates,
the asymptotic theory developed under the retrospective model assumes that
the ZA are random variables with realizations that are i.i.d. conditional on the
failure indicatorIA. As the antihypertensive drug-MI study example in Section 1
illustrates, the identical distribution assumption may not hold in practice.

Furthermore, we note that the retrospective model is actually semiparametric,
the unknown parameters being(G0,β), the control covariate distribution and
the odds ratio parameter. Hence, efficiency questions regarding this model must
be addressed by consideringG0 as an infinite-dimensional nuisance parameter.
On the other hand, the nested case-control model considered here is parametric,
leaving such questions amenable to simpler analysis.

Interestingly, the derivation of the asymptotic theory in Prentice and Pyke
(1979) is quite different from the one given here. In particular, up to the scaling
factor of f/p which appears here, the asymptotic informationϒ is the same
for both models but the asymptotic variance of the score under the retrospective
model isϒ − (f −1 + (1 − f )−1)[e0 eT

1]T[e0 eT
1], compared toV in (86). In spite

of this difference, the asymptotic distribution of the estimatorβ̃ obtained using
the unconditional logistic likelihood is the same under both models. The same
is almost true forα̃, except thate−1

0 in the nested case-control model variance
(81) is replaced byf −1 + (1− f )−1 in the retrospective model variance [Prentice
and Pyke (1979), page 408], the difference being explained by the choice of
centering values, which here isαE,η, and in Prentice and Pyke (1979) isδ.
Noting that(f −1 + (1 − f )−1)−1 = f (1 − f ) = Ef (pA,λf

)Ef (qA,λf
) and that

e0f/p = Ef (pA,λf
qA,λf

), it can be shown that the nested case-control variance
associated with̃α is smaller than its retrospective model counterpart due to the
extra conditioning here on theZA.

Efficiency. The maximum unconditional logistic likelihood estimator has
been shown to be efficient under the retrospective model [Breslow, Robins and
Wellner (2000)]. These authors assume that(IA,ZA) are i.i.d., a somewhat more
restricted setting than that considered by Prentice and Pyke (1979). An open
question is under what conditions areβ̂ andβ̃ efficient for all designs that satisfy
Condition 5.3 under the nested case-control model. It would seem that the number
of casesη has no information aboutβ0 so that the likelihoodPλ,β(D|E,η)

conditioning additionally onη should not result in loss of information relative
to the likelihood Pλ,β(D|E). The asymptotic theory for estimators based on
Pλ,β(D|E) has not yet been developed (indeed, the results in this paper are a
relevant step to develop such theory) so that it is not possible to compare. However,
we show that the asymptotic variances of the odds ratio estimators based on
Pλ,β(D|E,η) and Pλ,β(D|E) are equal in the following three important special
cases.
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Simple random sampling of controls. This class of designs, where a fixed
number of controls is sampled from the study base, includes frequency matching
and sampling a fixed number of controls proportional to the “expected” number
of cases (i.e., the C/C-SRS entries in Table 1). For these designs, the number
of cases is a function of the number in the case-control set so thatPλ,β(D|E) =
Pλ,β(D|E,η).

Full study base. Condition 5.3 clearly holds withf = p, so noting that the full,
efficient likelihoodPλ,β(D|R) has the form of an unconditional logistic likelihood,
by Theorem 5.2 and 5.1 both the conditional and unconditional likelihood are
efficient forβ, and in particular have the same asymptotic variance.

Independent Bernoulli trials sampling of controls with probability ρ. Under
this independent control sampling design, Condition 5.3 holds withf = p/(p +
(1−p)ρ) andPλ,β(D|E) has the form of an unconditional logistic likelihood, and
the desired conclusion follows as for the full study base.

Extensions. The extension to sampling controls from each of a fixed number
of large strata is straightforward. Consider a failure probability model given by (1),
with baseline odds parametersλs for individuals in stratums, and control selection
independent between strata. For eachs, let λs be the solution to

hEs (λ) = 1

|Es |
∑

A∈Es

pA,λ = ηs

|Es | and ek,Es (λ) = 1

|Es |
∑

A∈Es

Z ⊗k
A pA,λqA,λ,

whereEs andηs are the case-control set and the number of cases from stratums,
respectively. Suppose the limiting fractionsγs of subjects in stratums exist and
are positive, and that Conditions 5.1–5.3 are satisfied by all strata. Then the
conclusions of Theorems 5.1 and 5.2 hold with� = ∑

s γs�s , where�s is the
stratums contribution to the score of form (71).

Usually disease is rare and efforts are made to enroll all cases into a case-control
study. The reasons that cases are not enrolled may depend on a variety of factors,
including the death of the patient or physician refusal. If nonenrollment can be
modeled as i.i.d. Bernoulli(ρcase) events, then the theory can easily be extended
to accommodate such case selection. Specifically, the probability of sampling the
case is absorbed into the baseline by replacingλ0 in (1) by λ0ρcase; the theory
proceeds without further change.

We have used the “observed information,”−∂U(β)/∂β, in our analysis. In
data analysis, it is more common to use the “expected information,” which is
the conditional expectation over case-occurrence of the informationIE,η andĨE

for the conditional and unconditional likelihoods, given in (6), (7) and (83),
respectively [Thomas (1981)]. Because taking this expectation eliminates the term
(7) in IE,η and a corresponding term iñIE that was asymptotically negligible,
it is immediate that the “expected information” is a consistent estimator of the
asymptotic information.
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Further work. Thatλf = λ0/ρf suggests thatλ0 can be estimated using the
unconditional logistic likelihood when the number of subjects in the study base
(and thus the proportion of cases) is known. This has been done under (essentially)
Bernoulli trials by Weinberg and Wacholder (1993), and under independent simple
random sampling of (cases and) controls by Scott and Wild (1986) and Breslow
and Cain (1988), but further work is needed to accommodate general Condition 5.3
sampling. In particular, there is nonnegligible variability in the differenceλ − λf

that depends on the sampling design, and which needs to be accounted for in the
estimation ofλ0.

It is of interest to know when the techniques used here can be generalized to
accommodate other forms of conditioning on informationS, as in likelihood (3).
The particular case of no conditioning,S = ∅, represents a “full likelihood”
under the nested case-control model. The difficulty is finding an analog to the
independent product measureTλ in Lemma 3.5.
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