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A Statistical Characterization
of Regular Simplices

Ian Abramson and Larry Goldstein

1. INTRODUCTION. Picture three points at the vertices of an equilateral triangle
in two dimensions, or four points at the vertices of a regular tetrahedron in three di-
mensions. Thought of as scatterings of data they wouldn’t seem to reveal strong linear
associations between the coordinates. There are no clear axes of elongation in the scat-
terplots, which would suggest that change in some variable is predictable as a function
of the others. In general, such associations are usually indicated by the covariance
matrix Su of the set of points u = {x1, . . . , xn} in R

p, which is given by

Su = 1

|u|
∑
x∈u

(x − xu)(x − xu)
′,

where

xu = 1

|u|
∑
x∈u

x.

The off-diagonal entries of Su, the pairwise covariances, tell us something about de-
pendencies. If the coordinate variables are independent these entries are zero. Though
the converse is false, a diagonal covariance matrix roughly says that the coordinates are
not mutually linearly predictable from each other. Indeed, for our equilateral triangle in
R

2, tetrahedron in R
3, and the generalized configurations in higher dimensions having

equal interpoint distances, the covariance matrix turns out to be diagonal. In fact, it’s
a scalar multiple of the identity. Furthermore, the converse is also true: any n = p + 1
points in p dimensions whose covariance matrix is a positive multiple of the identity
are equidistant from each other. We formalize this result in the following theorem:

Theorem. Let u = {x1, . . . , xn} be a set of n points in R
p, with n = p + 1 ≥ 2,

and let σ 2 be an arbitrary positive number. Then the interpoint distances of u satisfy
||xi − x j ||2 = 2σ 2δi j if and only if nSu = σ 2Ip.

In other words, p + 1 points in p dimensions lie at the vertices of a regular sim-
plex if and only if their covariance matrix is a multiple of the identity. A proof of
this statistical characterization of regular simplices is given in section 2, after some
preliminaries.
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2. STATISTICAL CHARACTERIZATION OF REGULAR SIMPLICES. The
reader is assumed to be familiar with the basic elements of linear algebra in R

p (lin-
ear subspaces, span, linear dependence and independence, basis and dimension), as
treated, for example, in the text of Seber [1]. For a finite subset u of R

p let Vu =
span{x − x̄u : x ∈ u}.

Lemma. With n > 1 let u be any collection of n points in R
p with common squared

interpoint distance 2σ 2 > 0. Then dim (Vu) = n − 1, and with r 2
σ,n = σ 2(n − 1)/n

and s2
σ,n = σ 2/(n(n − 1)), the following are true for each x in u:

||x − x̄u|| = rσ,n, ||x̄u − x̄u−{x}|| = sσ,n, x − x̄u−{x} ⊥ Vu−{x}.

Proof. We argue by induction. The three claims are easily verified if n = 2. When
n > 2, for every x in u the points of u − {x} are equidistant from x, and by the induc-
tion hypotheses also equidistant from their average x̄u−{x}, albeit at a smaller distance.
Hence, the points of u − {x} lie on the intersection of two spheres with distinct centers,
x and x̄u−{x}, which implies that Vu−{x} is perpendicular to the direction vector of the
line

Lu,x(α) = x̄u−{x} + α
(
x − x̄u−{x}

)
(α ∈ R)

passing through these centers and that the points of u − {x} are equidistant from each
point of Lu,x. In particular, all points of u − {x} are equidistant from Lu,x(1/n) = x̄u,
hence so are all points of u. Because x − x̄u−{x} ⊥ Vu−{x} but x − x̄u−{x} ∈ Vu,
dim (Vu) = dim

(
Vu−{x}

) + 1. By orthogonality ||x̄u − x̄u−{x}||2 = r 2
σ,n − r 2

σ,n−1 and
does not depend on x. Using the fact that x̄u−{x}, x̄u, and x all lie on Lu,x in tandem
with orthogonality gives 2σ 2 = r 2

σ,n−1 + (sσ,n + rσ,n)
2; solving these two equations for

rσ,n and sσ,n finishes the induction.

Proof of the theorem. Let X = (x1, . . . , xn), an element of R
p×n . Since ST(u) = Su for

any translation T, we can assume without loss of generality that the members of u have
already been centered by subtraction of their mean, so x̄u = 0 and in general, letting
Bv := |v|Sv for any finite set v of vectors, we have

Bu =
∑
x∈u

xx′ = XX′. (1)

Assuming that the points are equidistant, we infer from (1) and the lemma that

Bux =
∑

y∈u−{x}
yy′x + xx′x = (r 2

σ,n − σ 2)
∑

y∈u−{x}
y + r 2

σ,nx

= (σ 2 − r 2
σ,n)x + r 2

σ,nx = σ 2x

for each x in u. Hence Bux = σ 2Ipx on Vu. Since dim(Vu) = p by the lemma,
Bu = σ 2Ip.

For the converse, assume that Bu = σ 2Ip and that n > 2, the base case being trivial.
As any p − 1 points in R

p lie in a hyperplane of dimension p − 1, for x in u let H
denote such a hyperplane that contains u − {x}, and note by orthogonality that x̄u−{x}
is the point on H closest to x. Now let T be the translation Ty = y − x̄u−{x}, and, with
{ei }1≤i≤p the standard basis for R

p, let O be the rotation that maps Tx to βep, where
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β = ||x − x̄u−{x}||. That is, V(x) = βep for V = OT, and

BV(u−{x}) + β2epe′
p = O

(
BT(u−{x)} + Tx(Tx)′) O′ (2)

= O
(
Bu−{x} + Tx(Tx)′) O′ = OBT(u)O′

= OBuO′ = σ 2OIpO′ = σ 2Ip.

Since Vu−{x} ⊥ x − x̄u−{x}, V(H) ⊂ Rp−1 × {0}, and we can consider the points V(u −
{x}) as lying in R

p−1. By (2), the (p − 1) × (p − 1) submatrix [BV(u−{x})]1≤i, j≤p−1

equals σ 2Ip−1, so applying the induction hypotheses to V(u − {x}) we conclude that
the interpoint distances of u − {x}, unchanged by V, are all 2σ 2. The induction is
completed by noting that this is true for each x in u.

REFERENCES

1. G. A. F. Seber and A. J. Lee, Linear Regression Analysis, John Wiley, New York, 2003.

Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112
iabramson@ucsd.edu

Department of Mathematics, University of Southern California, Los Angeles, CA 90089-2532
larry@math.usc.edu

How Terminal Is Terminal Velocity?

Lyle N. Long and Howard Weiss

Several years ago the authors of the present piece wrote a MONTHLY article [1] de-
scribing the velocity dependence of aerodynamic drag. Recently, a science reporter for
the Guardian newspaper, who found this reference, solicited our help in writing an
article about how a 102-year-old woman from Turin could fall out of a fourth floor
window and survive [2]. In particular, the reporter wanted to know about the role of
terminal velocity in her survival.

An internet search found many webpages dealing with terminal velocity, but none
relevant to understanding whether terminal velocity is reached during falls from rel-
atively low heights. We also found an interesting posting from a Coast Guard officer
in New York Harbor inquiring about the chance of survival when a person falls from
a 230-foot bridge into water and wanting to know how fast the person would hit the
water. We also learned about a popular book, New York Dead by Stuart Woods [3], in
which a character, a popular TV newscaster, plummets twelve stories onto a heap of
dirt twenty yards away and survives. The book contains a discussion and speculation
about how the character survived the fall. One idea is that the character was “saved by
terminal velocity.” An important part of the plotline of another popular novel, Angels
and Demons by Dan Brown [4], is devoted to a character falling from a helicopter. It
raises the question of how a two foot-by-two foot piece of cloth could slow one’s speed
by 25%. Clearly there are many practical and interesting aspects to studying people’s
falling through the air.

In this self-contained short addendum to [1], we explain why terminal velocity
played no role in the falls from the fourth through twelfth story windows. We explicitly
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