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Abstract

Let Xi be non-negative, independent random variables with finite expectation, and
X∗

n = max{X1, . . . , Xn}. The value EX∗
n is what can be obtained by a “prophet”.

A “mortal” on the other hand, may use k ≥ 1 stopping rules t1, . . . , tk, yielding
a return of E[maxi=1,...,k Xti ]. For n ≥ k the optimal return is V n

k (X1, . . . , Xn) =
supE[maxi=1,...,k Xti ] where the supremum is over all stopping rules t1, . . . , tk such that
P (ti ≤ n) = 1. We show that for a sequence of constants gk which can be evaluated
recursively, the inequality EX∗

n < gkV
n
k (X1, . . . , Xn) holds for all such X1, . . . , Xn and

all n ≥ k; g1 = 2, g2 = 1+e−1 = 1.3678 . . . , g3 = 1+e1−e = 1.1793 . . . , g4 = 1.0979 . . .
and g5 = 1.0567 . . .. Similar results hold for infinite sequences X1, X2, . . .. Since with
five choices the mortal is thus guaranteed over 94% of the prophet’s value, more than
five choices may not be practical.

1 Introduction and Summary

The classical ratio “prophet inequality” states that for nonnegative independent random
variables with known distribution and finite expectation, X1, . . . , Xn, n ≥ 2, the inequality

E(X∗
n) < 2V (X1, . . . , Xn) (1)

holds, where X∗
n = max(X1, . . . , Xn) = X1 ∨ . . . ∨ Xn, V (X1, . . . , Xn) = max

t∈Tn

E(Xt), and

Tn is the collection of all stopping rules based on X1, . . . , Xn. (A stopping rule t is in Tn if
the event {t = k} depends only on X1, . . . , Xk and possibly some external randomization,
and P (t ≤ n) = 1). Inequality (1) extends non-strictly to infinite sequences of random
variables, with maximum replaced by supremum, provided E(sup Xi) < ∞, where the rules
are required to satisfy P (t < ∞) = 1. Inequality (1) cannot hold with a smaller constant
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replacing 2, and thus 2 is known as a “best bound”. See e.g. Hill and Kertz (1981), and
some earlier references mentioned there. The term “prophet inequality” stems from the fact
that EX∗

n may be considered the return to a “prophet” who has complete foresight and can
thus choose the best (largest) observation, while V (X1, . . . , Xn) is the value obtained by a
“mortal” (henceforth called “statistician”), who must decide whether to stop or not as the
sequence unfolds, with no possibility of recalling any passed up observations.

In the present paper we are considering a situation where the statistician is given k,
k ≤ n, opportunities to choose variables by means of k stopping rules. The return is defined
as the expected value of the largest of the k choices. As an example, the case k = 2 may
correspond to a situation in which you put your first selected item (perhaps a house or a
job offer) ”on hold” as a guaranteed fallback value. You then proceed sequentially to select
a second item (which should be of greater value than the first unless it is the last one) and
finish by taking the better of the two items selected.

Multiple stopping rules, in a general setting, are studied by Stadje (1985). In connection
with prophet inequalities they are studied by Kennedy (1987). Kennedy considers the case
where the statistician receives the expected value of the sum of his k choices. When the payoff
is the expected value of his maximal choice, as described above, the problem is studied
in Assaf and Samuel-Cahn (2000). They show that there exist simple k-choice rules for
the statistician, called “threshold rules”, with values W n

k (X1, . . . , Xn), such that for any
independent Xi ≥ 0 the inequality

E(X∗
n) <

(
k + 1

k

)
W n

k (X1, . . . , Xn) (2)

holds. Since threshold rules are usually not optimal,

W n
k (X1, . . . , Xn) ≤ V n

k (X1, . . . , Xn),

where V n
k (X1, . . . , Xn) is the optimal k-choice value. Hence, by (2),

E(X∗
n) <

(
k + 1

k

)
V n

k (X1, . . . , Xn). (3)

It turns out that, except when k = 1, the constant (k + 1)/k is not the best constant in
this inequality. In the present paper we prove Theorem 1.1, which provides a sequence of
improved constants.

We assume henceforth that all random variables in the stopping sequences we consider
have known distributions and are independent, non-negative with finite expectation, and not
identically zero.

Theorem 1.1 For k = 1, 2, . . ., let gk = gk(0) where the functions gk(x) are defined recur-
sively by (8). Then for all n ≥ k and any X1, . . . , Xn,

E(X∗
n) < gkV

n
k (X1, . . . , Xn). (4)

The first six values of the gk sequence are g1 = 2, g2 = 1+ e−1 = 1.3678 . . . , g3 = 1+ e1−e =
1.1793 . . . , g4 = 1.0979 . . . , g5 = 1.0567 . . . , g6 = 1.0341 . . . .
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For X1, X2, . . ., an infinite sequence of such variables with value V ∞
k (X1, X2 . . .), the

inequality
E(sup i=1,2,...Xi) ≤ gkV

∞
k (X1, X2, . . .) (5)

holds provided the left hand side of (5) is finite.

That Theorem 1.1 gives considerable improvement over (3) is supported by numerical
results and Assertion 3.1, which proves that for k ≥ 2, gk(0) < (k + 1)/k. However, except
for k = 1, no claim about having a best bound is made here. We prove Theorem 1.1 by
induction on n for each fixed k, and by solving a differential equation, as explained in Section
3. In principle, once the result (4) for some k is known, it is a simple matter to obtain (at
least numerically) the result (4) for k + 1. For practical situations, it seems that no more
than five choices would be of much real interest, since with five choices in the worst case
scenario, the statistician is already guaranteed over 94% of the value of the prophet, for any
n.

In our proofs we need the following generalization of (1), which is also of interest in its
own right.

Theorem 1.2 For n ≥ 2 and x = P (X∗
n = 0) < 1,

EX∗
n < (2− x)V n

1 (X1, . . . , Xn). (6)

In the infinite case, with x = P (supi=1,2,... Xi = 0),

E(sup i=1,2,...Xi) ≤ (2− x)V ∞
1 (X1, X2, . . .). (7)

The expression 2− x is a best bound. (For x = 1, (6) holds with equality.)

Similar to the generalization of (1) to (6) we have a generalization of Theorem 1.1 to 1.3;
this requires the following definition. For 0 ≤ y < 1, let

u1(y) = 0, and define for k ≥ 1,

uk+1(y) = −
∫ 1

y

e−uk(u)du, hk(y) = euk(y), and gk(y) = hk(y) + 1− y. (8)

Theorem 1.3 The functions gk are strictly decreasing. If n ≥ k and x = P (X∗
n = 0) < 1,

then

EX∗
n < gk(x)V n

k (X1, . . . , Xn). (9)

In particular, for 0 ≤ y < 1 we have

g1(y) = 2− y, (10)

g2(y) = e−(1−y) + 1− y, (11)

g3(y) = exp{1− e1−y}+ 1− y, and (12)

g4(y) = exp{e−1[Ei(1)− Ei(e1−y)]}+ 1− y (13)
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where

Ei(y) =

y∮
−∞

ez

z
dz, y > 0. (14)

Similar statements to (9) hold non-strictly for the infinite case by taking limits.

Since the functions gk(y) are decreasing, Theorem 1.1 follows from Theorem 1.3. The
reason the functions gk(y) are given explicitly only for k = 1, 2, 3, 4 is that further functions
can be obtained only through numerical evaluation.

The paper is organized as follows. In Section 2 we introduce some preliminary notions,
and prove Lemmas which will simplify our later derivations. In Section 3 we prove Theorem
1.2, yielding the k = 1 case of Theorem 1.3, identifying g1(y) = 2 − y, as well as Theorem
1.3, using a basic inequality relating the values EX∗

n and V n
k through gk+1(y), obtained as

the solution of a differential equation based on gk(y).

2 Preliminaries

In the following, we make the non-triviality

Assumption 2.1 The value V n−1
k (X2, . . . , Xn) cannot be attained with less than k choices.

That is,
V n−1

k (X2, . . . , Xn) > V n−1
k−1 (X2, . . . , Xn).

We shall also need the following

Definition 2.1 Let X2, . . . , Xn be given, and k < n. The value bk = bk(X2, . . . , Xn) is called
the indifference value for the k-choice problem if one is indifferent between (i) picking bk as
a first choice and being left with k − 1 choices among X2, . . . , Xn, and (ii) not choosing bk

and having k choices among X2, . . . , Xn. Thus,

V n
k (bk, X2, . . . , Xn) = V n−1

k (X2, . . . , Xn) = V n−1
k−1 (X2, . . . , Xn ∨ bk). (15)

The requirement that k < n in the definition of an indifference value is needed, since for
k ≥ n the trivial relation V n

k (X1, . . . , Xn) = EX∗
n holds.

Assumption 2.1 has the following important consequence.

Proposition 2.1 The function

φ(z) = V n−1
k−1 (X2, . . . , Xn ∨ z) (16)

is strictly increasing in z for z ∈ [c,∞) for any c ≥ 0 such that

P (max{X2, . . . , Xn} ≤ c) > 0. (17)

In particular, under Assumption 2.1, φ(z) is strictly increasing in z for z ∈ [bk,∞), and the
indifference value bk is unique and positive.
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Proof: Let z ≥ c. By (17), P (max{X2, . . . , Xn} ≤ z) > 0, and there is positive proba-
bility that the best k − 1 choice rule for (X2, . . . , Xn ∨ z) will choose z. With z < y, let
Ṽ n−1

k−1 (X2, . . . , Xn∨y) be the value of applying the optimal k−1 choice rule for (X2, . . . , Xn∨z)
applied to (X2, . . . , Xn ∨ y). Hence,

φ(y) = V n−1
k−1 (X2, . . . , Xn ∨ y) ≥ Ṽ n−1

k−1 (X2, . . . , Xn ∨ y) > V n−1
k−1 (X2, . . . , Xn ∨ z) = φ(z).

Furthermore, P (max{X2, . . . , Xn} ≤ bk) > 0. If not, then for some j ≥ 2 we must have
P (Xj > bk) = 1. But in that case one would use one of the k choices to pick Xj rather
than to pick X1 = bk, contradicting the definition of bk as an indifference value. Hence, bk

is unique, as if b and b∗ are both indifference values, with say b∗ < b, from (15) and (16) it
would follow that φ(b) = φ(b∗), contradicting the strict monotonicity of φ in [b∗,∞).

To see that bk is positive, note that bk = 0 would, by use of (15), contradict Assumption
2.1. �

The interpretation of bk(X2, . . . , Xn) in relation to the optimal k-choice rule for X1, . . . , Xn

is as follows. When an X1 > bk(X2, . . . , Xn) is observed, the optimal action is to pick X1 as
a first choice. When X1 = bk(X2, . . . , Xn) one is indifferent between picking X1 or not, and
if X1 < bk(X2, . . . , Xn) then X1 should not be picked.

We introduce the following notation. Let

Dn
k (X1, . . . , Xn) = EX∗

n − V n
k (X1, . . . , Xn) and (18)

Rn
k(X1, . . . , Xn) =

EX∗
n

V n
k (X1, . . . , Xn)

. (19)

In the following series of lemmas our aim is to replace the given sequence of random variables
X1, . . . , Xn by another sequence X̂1, . . . , X̂n, say, so that

Rn
k(X1, . . . , Xn) ≤ Rn

k(X̂1, . . . , X̂n). (20)

Since

Rn
k(X1, . . . , Xn) =

Dn
k (X1, . . . , Xn)

V n
k (X1, . . . , Xn)

+ 1, (21)

to prove (20) it suffices that

Dn
k (X1, . . . , Xn) ≤ Dn

k (X̂1, . . . , X̂n) and V n
k (X1, . . . Xn) ≥ V n

k (X̂1, . . . , X̂n).

Thus our lemmas will be stated in terms of the differences Dn
k and values V n

k , rather than
directly in terms of Rn

k .

Lemma 2.1 For k < n and any X1, X2, . . . , Xn with bk = bk(X2, . . . , Xn),

Dn
k (X1, . . . , Xn) ≤ Dn

k (bk, X2, . . . , Xn) (22)

and
V n

k (X1, . . . , Xn) ≥ V n
k (bk, X2, . . . , Xn). (23)
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Proof: Let F be the distribution function of X1. Clearly

E[X1 ∨ . . . ∨Xn] =

∫
E[x ∨X2 ∨ . . . ∨Xn]dF (x),

and since the value x of X1 will be known before a decision whether to pick it or not must
be made,

V n
k (X1, . . . , Xn) =

∫
V n

k (x, X2, . . . , Xn)dF (x).

It follows that Dn
k (X1, . . . , Xn) =

∫
Dn

k (x, X2, . . . , Xn)dF (x), and hence it suffices to show
(22) and (23) for X1 = x, where x is any constant.

Case 1: x ≤ bk. Then

V n
k (x, X2, . . . , Xn) = V n−1

k (X2, . . . , Xn) = V n
k (bk, X2, . . . , Xn).

Thus (23) holds, and since E[x ∨X2 ∨ . . . ∨Xn] ≤ E[bk ∨ . . . ∨Xn], (22) holds.

Case 2: x > bk. Here (23) is trivial. Also, for any t2, . . . , tk ∈ Tn strictly greater than one,

E[x ∨Xt2 ∨ . . . ∨Xtk ] = E[bk ∨Xt2 ∨ . . . ∨Xtk ] + E[x− (bk ∨Xt2 ∨ . . . ∨Xtk)]
+

≥ E[bk ∨Xt2 ∨ . . . ∨Xtk ] + E[x− (bk ∨X2 ∨ . . . ∨Xn)]+.
(24)

Taking supremum over t2, . . . , tk first on the left and then on the right side of (24) yields

V n
k (x, X2, . . . , Xn) ≥ V n

k (bk, X2, . . . , Xn) + E[x− (bk ∨X2 ∨ . . . ∨Xn)]+. (25)

On the other hand

E[x ∨X2 ∨ . . . ∨Xn] = E[bk ∨X2 ∨ . . . ∨Xn] + E[x− (bk ∨X2 ∨ . . . ∨Xn)]+. (26)

Clearly (26) and (25) yield (22) for this case. �

Lemma 2.2 Let X1, . . . , Xn be given, bk = bk(X2, . . . , Xn) and P (X1 = 0) = 1− α. Let

X̃1 =

{
0 1− α
bk α.

Then
Dn

k (X1, . . . , Xn) ≤ Dn
k (X̃1, X2, . . . , Xn) (27)

and
V n

k (X1, . . . , Xn) ≥ V n
k (X̃1, X2, . . . , Xn). (28)

Proof: Let X̂1 have the conditional distribution of X1, given X1 6= 0. Since

V n
k (X1, . . . , Xn) = (1− α)V n−1

k (X2, . . . , Xn) + αV n
k (X̂1, X2, . . . , Xn),

and
Dn

k (X1, . . . , Xn) = (1− α)Dn−1
k (X2, . . . , Xn) + αDn

k (X̂1, X2, . . . , Xn)

the result follows immediately from Lemma 2.1. �
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Lemma 2.3 Let X2, . . . , Xn be given, n > k, and let bk = bk(X2, . . . , Xn). Let X̂i =
XiI(Xi > bk), i = 2, . . . , n, and let b̂k = bk(X̂2, . . . , X̂n). Then

bk ≥ b̂k. (29)

Proof: We have that

V n−1
k−1 (X̂2, . . . , X̂n ∨ bk) = V n−1

k−1 (X2, . . . , Xn ∨ bk) = V n−1
k (X2, . . . , Xn)

≥ V n−1
k (X̂2, . . . , X̂n) = V n−1

k−1 (X̂2, . . . , X̂n ∨ b̂k),

where the inequality is a consequence of Xi ≥ X̂i a.s. Inequality (29) now follows by
Proposition 2.1 for c = 0. �

Remark 2.1. In spite of Lemma 2.3 it is possible that one set of variables is stochastically
smaller than the other, but its indifference number is larger, as the following simple example
shows. Let n = 3, k = 2 and Y3, X3 be identically distributed, with P (X3 = 1) = 2/3 =
1− P (X3 = 0), and let

X2 =


1 1/3

1/2 1/3
0 1/3

, Y2 =


1 1/2
1/2 1/6
0 1/3.

Clearly X2

st
< Y2, but it is easily checked that b2(X2, X3) = 1/4 > b2(Y2, Y3) = 1/6.

That the above Lemmas can be used together is the content of Lemma 2.4.

Lemma 2.4 For any X1, . . . , Xn, n > k such that P (X∗
n = 0) = x, 0 ≤ x < 1, there exist

X̃1, . . . , X̃n and b̃k = bk(X̃2, . . . , X̃n) such that

1. P (X̃∗
n = 0) = x,

2. X̃i = X̃iI(X̃i > b̃k) for i = 2, . . . , n,

3. X̃1 takes the values b̃k and 0 only, and

4.
Dn

k (X1, . . . , Xn) ≤ Dn
k (X̃1, . . . , X̃n) (30)

and
V n

k (X1, . . . , Xn) ≥ V n
k (X̃1, . . . , X̃n). (31)

Proof: Let bk = bk(X2, . . . , Xn). By Lemma 2.2 we may without loss of generality assume
that X1 = 0 and bk with probabilities 1 − α and α respectively. Let X̂i = XiI(Xi > bk),
i = 2, . . . , n and X̂1 = 0 and bk with probability 1− α̂ and α̂ respectively, where α̂ as given
in (37) is determined so that P (X̂∗

n = 0) = x. We shall show that

Dn
k (X1, . . . , Xn) ≤ Dn

k (X̂1, . . . , X̂n) (32)
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and
V n

k (X1, . . . , Xn) ≥ V n
k (X̂1, . . . , X̂n). (33)

Let b̂k = bk(X̂2, . . . , X̂n). Then by Lemma 2.3, bk ≥ b̂k and thus it follows that X̂i =
X̂iI(X̂i > b̂k), i = 2, . . . , n. Thus if we set X̃i = X̂i for i = 2, . . . , n then b̃k = b̂k, and 2.
holds. Now let X̃1 = 0 and b̃k with probability 1− α̂ and α̂ respectively. Thus 1. and 3. are
satisfied. Now (30) and (31) will follow from (32) and (33) together with Lemma 2.2.

Inequality (33) follows since by the definition of bk and (15)

V n−1
k−1 (X̂2, . . . , X̂n ∨ bk) = V n−1

k−1 (X2, . . . , Xn ∨ bk)

= V n−1
k (X2, . . . , Xn) = V n

k (X1, . . . , Xn),
(34)

whereas clearly V n−1
k (X̂2, . . . , X̂n) ≤ V n−1

k (X2, . . . , Xn) and thus

V n
k (X̂1, . . . , X̂n) = α̂V n−1

k−1 (X̂2, . . . , X̂n ∨ bk) + (1− α̂)V n−1
k (X̂2, . . . , X̂n)

≤ V n
k (X1, . . . , Xn),

(35)

which is (33). For any X1, . . . , Xn let

X∗
[2,n] = X2 ∨ · · · ∨Xn and X̂∗

[2,n] = X̂2 ∨ · · · ∨ X̂n. (36)

Let r = P (X∗
[2,n] = 0) and s = P (0 < X∗

[2,n] ≤ bk). Then x = P (X∗
n = 0) = (1− α)r, and

also x = P (X̂∗
n = 0) = (1− α̂)(r + s), and thus,

(1− α̂) = (1− α)r/(r + s) and so

α̂ = 1− (1− α)r/(r + s). (37)

Thus, using (37)

EX̂∗
n = EX̂∗

[2,n] + bk(r + s)α̂ = EX̂∗
[2,n] + bk(s + αr), (38)

whereas
EX∗

n = (1− α)EX∗
[2,n] + αE[X∗

[2,n] ∨ bk]

= (1− α)EX∗
[2,n] + α{bk + E[X̂∗

[2,n] − bk]
+}

= (1− α)EX∗
[2,n] + α{bk + EX̂∗

[2,n] − (1− r − s)bk}
= (1− α)EX∗

[2,n] + αEX̂∗
[2,n] + bkα(r + s)

≤ (1− α)(EX̂∗
[2,n] + sbk) + αEX̂∗

[2,n] + bkα(r + s)

= EX̂∗
[2,n] + bk(s + αr)

= EX̂∗
n,

(39)

by (38). Hence, together with (33), we have (32). �
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3 The Differential Equation Approach

We begin this section with the

Proof of Theorem 1.2 We prove Theorem 1.2 by induction on n. For n = 1, we have

EX∗

V 1
1 (X)

= 1 < 2− x = g1(x), for all 0 ≤ x < 1.

With x = P (X∗
[2,n] = 0), assume as our induction hypothesis that

EX∗
[2,n]

V n−1
1 (X2, . . . , Xn)

< 2− x. (40)

Without loss of generality, we may assume the variables are as in Lemma 2.4; letting

X1 =

{
0 1− α
b1 α

where b1 is the indifference value, i.e. satisfies b1 = V n−1
1 (X2, . . . , Xn), we have

EX∗
n = b1αx + EX∗

[2,n].

Since
V n

1 (X1, . . . , Xn) = V n−1
1 (X2, . . . , Xn) = b1,

we have by (40),

EX∗
n

V n
1 (X1, . . . , Xn)

=
b1αx + EX∗

[2,n]

b1

< αx + 2− x

= 2− (1− α)x

= g1((1− α)x).

But now the induction in complete, since (1− α)x = P (X∗
n = 0). �

To see that 2− x is the best bound, let n = 2, 0 < µ ≤ 1, and

X1 =

{
µ 1− x
0 x

(41)

and let

X2 =

{
1 µ
0 1− µ.

(42)

Then V 2
1 (X1, X2) = µ and E(X∗

2 ) = µ + (1− µ)µ(1− x) and thus we have

E(X∗
2 )/V 2

1 (X1, X2) = 2− x− µ(1− x) and

P (X∗
2 = 0) = (1− µ)x.
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Letting µ → 0 we have E(X∗
2 )/V 2

1 (X1, X2) → 2− x while P (X∗
2 = 0) → x. Since 0 ≤ x < 1

is arbitrary it follows that 2− x cannot be improved upon. �

Note that Theorem 1.2 shows that inequality (43) of the following Lemma 3.1 is satisfied
for k = 1 by g1(y) = 2− y.

Lemma 3.1 Suppose that for a fixed k there exists a function gk(y) such that for any n ≥ k
and any Y1, . . . , Yn the inequality

EY ∗
n < gk(x)V n

k (Y1, . . . , Yn) (43)

holds for x = P (Y ∗
n = 0) < 1. Then for any X2, . . . , Xn, n ≥ k + 1, with Xi = XiI(Xi >

a), i = 2, . . . , n for some constant a > 0, we have that

{(gk(x)− 1 + x)a + EX∗
[2,n]}/gk(x) < V n

k+1(a, X2, . . . , Xn), (44)

where x = P (X∗
[2,n] = 0).

Proof: Let Yi = [Xi − a]+, i = 2, . . . , n and Y ∗
[2,n] = Y2 ∨ . . . ∨ Yn. Note that EY ∗

[2,n] =

EX∗
[2,n] − (1− x)a. Thus, by (43), since P (Y ∗

[2,n] = 0) = P (X∗
[2,n] = 0) = x,

V n
k+1(a, X2, . . . , Xn) ≥ a + V n−1

k (Y2, . . . , Yn) > a + EY ∗
[2,n]/gk(x)

= a + (EX∗
[2,n] − (1− x)a)/gk(x) = {(gk(x)− 1 + x)a + EX∗

[2,n]}/gk(x). �
(45)

We now derive an inequality for k + 1 choices. By Lemma 2.4 for n > k + 1 we need
only consider random variables such that X1 = bk+1 and 0 with probabilities α and 1 − α
respectively, and Xi = XiI(Xi > bk+1) where bk+1 = bk+1(X2, . . . , Xn). For short write
V n

k+1 = V n
k+1(X1, . . . , Xn). Then

V n
k+1 = V n

k+1(X1, . . . , Xn) = V n−1
k+1 (X2, . . . , Xn). (46)

From (44) with a = bk+1 we have

bk+1 <
gk(x)V n

k+1 − EX∗
[2,n]

gk(x)− 1 + x
, (47)

where x = P (X∗
[2,n] = 0).

The following Lemma is the key step in establishing Theorem 1.3.

Lemma 3.2 Suppose that for a fixed k there exists a function gk(x) such that for all n ≥ k
and all X1, . . . , Xn, EX∗

n < gk(x)V n
k (X1, . . . , Xn) for x = P (X∗ = 0), 0 ≤ x < 1, and let

hk(x) = gk(x)− 1 + x. (48)

Suppose that a solution hk+1 in [0, 1) exists to

h′k+1(x) =
hk+1(x)

hk(x)
, (49)
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such that h′k+1(x) is nondecreasing, and such that

gk+1(x) = hk+1(x) + 1− x > 1 for all 0 ≤ x < 1. (50)

Then

EX∗
n < gk+1(x)V n

k+1(X1, . . . , Xn),

for all n ≥ k + 1 and all X1, . . . , Xn, where x = P (X∗ = 0). (51)

Proof: Again, by Lemma 2.4, we need only consider random variables such that X1 =
bk+1 and 0 with probabilities α and 1 − α respectively, and Xi = XiI(Xi > bk+1) where
bk+1 = bk+1(X2, . . . , Xn). We proceed by induction on n for fixed k + 1. For our base case
n = k + 1 the only requirement for (51) to hold is that gk+1(x) > 1, for 0 ≤ x < 1, which is
assumed. Now assume that (51) holds for some n− 1 ≥ k + 1, and consider X1, . . . , Xn; let
x = P (X∗

[2,n] = 0). For n ≥ k + 2 we have by use of (47),

EX∗
n = αxbk+1 + EX∗

[2,n]

<
αx(gk(x)V n

k+1 − EX∗
[2,n])

gk(x)− 1 + x
+ EX∗

[2,n]

=
αxgk(x)V n

k+1 + EX∗
[2,n](gk(x)− 1 + (1− α)x)

gk(x)− 1 + x
.

The induction assumption and (46) yield that

EX∗
[2,n] < gk+1(x)V n−1

k+1 = gk+1(x)V n
k+1, (52)

hence,

EX∗
n <

αxgk(x)V n
k+1 + gk+1(x)V n

k+1(gk(x)− 1 + (1− α)x)

gk(x)− 1 + x

=

{
αx[gk(x)− gk+1(x)]

gk(x)− 1 + x
+ gk+1(x)

}
V n

k+1. (53)

Our induction will be complete if we can show that for any 0 ≤ x < 1 and any 0 <
α ≤ 1 the value in the curly bracket on the right hand side of (53) is less than or equal to
gk+1(x− αx), since P (X∗

n = 0) = (1− α)x = x− αx. Rearranging terms, it suffices to show

gk+1(x)− gk+1(x− αx)

αx
≤ gk+1(x)− gk(x)

gk(x)− 1 + x
. (54)

We can simplify the approach somewhat by rewriting (54) in terms of the functions hk and
hk+1 using (48),

hk+1(x)− hk+1(x− αx)

αx
≤ hk+1(x)

hk(x)
. (55)

But by the mean value theorem, the value of the left hand side of (55) is h′k+1(x − θx) for
some 0 < θ < α, and hence, since by our assumption h′k+1(x) is nondecreasing,

hk+1(x)− hk+1(x− αx)

αx
= h′k+1(x− θx) ≤ h′k+1(x) =

hk+1(x)

hk(x)
. �
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Proof of Theorem 1.3: We show that the functions defined in (8) satisfy the conditions
of Lemma 3.2. First, since hk+1 in (8) is positive, it satisfies (49) of Lemma 3.2 if and only if

u′k+1(x) = e−uk(x). (56)

for
uj(x) = log hj(x), j = k, k + 1. (57)

Since we want the smallest solution gk+1(x), we take hk+1(1) = 1 and therefore have chosen
in (8) the solution for which uk+1(1) = 0.

To verify the properties of these functions claimed in Theorem 1.3 we begin by proving
that u′ke

uk < 1 for all k ≥ 1, for the functions uk defined in (8). The case k = 1 for u1(x) = 0
is trivial, and we proceed by induction, assuming the inequality is true for k. Then

u′k(x) < e−uk(x),

and integrating from x to 1 and using that uk(1) = 0 we derive that

−uk(x) <

∫ 1

x

e−uk(y)dy

or that

exp

{
−

(
uk(x) +

∫ 1

x

e−uk(y)dy

)}
< 1,

which is equivalent to u′k+1e
uk+1 < 1.

We can now verify the claim made in Theorem 1.3 that the functions gk defined in (8)
are strictly decreasing; we have g′k < 0 if and only if h′k < 1, if and only if u′ke

uk < 1.
Next we show that the functions h′k+1 are non-decreasing. The inequality u′ke

uk < 1, or
u′k < e−uk is equivalent to u′k < u′k+1. Hence

h′k
hk

<
h′k+1

hk+1

,

which with (49) yields

h′′k+1(x) =
h′k+1hk − hk+1h

′
k

h2
k

> 0,

and that h′k+1 is increasing.
Next, we need to show that gk+1(x) > 1 for 0 ≤ x < 1. Since gk+1 is strictly decreasing,

for 0 ≤ x < 1 we have

gk+1(x) > gk+1(1) = hk+1(1) = euk+1(1) = 1.

Lastly, Theorem 1.2 gives the base step for the induction with g1(x) = 2− x, and therefore
h1(x) = 1, and u1(x) = 0. For k = 2 we have

u2(x) = −
∫ 1

x

1dy = −(1− x), h2(x) = e−(1−x),

and so
g2(x) = e−(1−x) + 1− x.
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Then

u3(x) = −
∫ 1

x

e1−ydy = 1− e1−x, h3(x) = exp(1− e1−x)

and
g3(x) = exp(1− e1−x) + 1− x.

Thus

u4(x) = e−1

1∫
x

ee(1−y)

dy. (58)

For (58) we can make a change of variables so as to use existing tables. Set e(1−y) = z. Then
(58) can also be written as

u4(x) = −e−1

e(1−x)∮
ez

z
dz + c. (59)

The function

Ei(x) =

x∮
−∞

ex

z
dz, x > 0 (60)

is tabulated, see e.g. Abramowitz and Stegun (1964) Table 5.1. (58) with the requirement
u4(1) = 0 can be written as

u4(x) = e−1[Ei(1)− Ei(e1−x)]. � (61)

In particular for x = 0 we get u4(0) = e−1[Ei(1) − Ei(e)] ≈ −2.32337 and thus g4 =
g4(0) = 1.0979 as in Theorem 1.1.

Further numerical integration yields the values

g5 = 1.0567 . . . , g6 = 1.0341 . . .

We conclude the paper with the proof of Assertion 3.1, showing that the bounds derived
here are strictly better than the bounds of Assaf and Samuel-Cahn (2000), for all k ≥ 2.

Assertion 3.1 For k ≥ 2, gk(0) < (k + 1)/k.

Proof: The assertion is equivalent to

hk(0) <
1

k
, k = 2, 3, . . . . (62)

By Theorem 1.3, h2(0) = e−1 < 1/2, thus (62) holds for k = 2. We proceed by induction.
Showing (62) for k + 1 is equivalent to

log(k + 1) < −uk+1(0). (63)
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Now

−uk+1(0) =

∫ 1

0

e−uk(x)dx =

∫ 1

0

1

hk(x)
dx.

We shall show
hk(x) ≤ wk(x) = (1 + (k − 1)x)/k, for 0 ≤ x ≤ 1. (64)

Then it follows that

−uk+1(0) =

∫ 1

0

1

hk(x)
dx ≥

∫ 1

0

k

1 + (k − 1)x
dx =

k log k

k − 1
> log(k + 1). (65)

To see the last inequality in (65), note that it is equivalent to

log k

k − 1
> log(1 +

1

k
), (66)

and since 1/k > log(1 + 1/k), (66) clearly holds for all k ≥ 2.
It remains to show (64). Consider the difference

mk(x) = wk(x)− hk(x).

We must show that
mk(x) ≥ 0 for 0 ≤ x ≤ 1. (67)

By the induction hypotheses, mk(0) > 1/k − 1/k = 0, and clearly mk(1) = 1− 1 = 0.
We have shown in the proof of Theorem 1.3 that h′k(x) is increasing in x for 0 ≤ x ≤ 1.

Thus hk(x) is convex, and since wk(x) is linear, mk(x) is concave. Since a concave function
taking non-negative values at the endpoints of an interval must be non-negative on that
interval, (67) follows. �
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