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ABSTRACT 

Profiles, which are summaries of multiple alignments of a sequence family, are used to find 
new instances of the family in databases. In this paper, we study the maximum score M ob- 
tained when the profile is aligned without indels at all possible positions of a random sequence. 
The main theorem gives an approximation to the distribution function of M with an explicit 
bound on the error. This theorem implies that M has a limiting extreme value distribution. 

INTRODUCTION 

ATABASE SEARCHES ARE NOW ROUTINE IN MOLECULAR BIOLOGY. A newly determined DNA sequence is D compared to nucleic acid databases to discover similar sequences that have already been studied. Often it 
is easier to find protein similarities by comparing the amino acid sequences encoded in the DNA sequences. 
Therefore, a putative gene sequence may be translated into an amino acid sequence and then compared to a pro- 
tein sequence database. Often, gene locations are unknown and translation into amino acid sequence is done in 
all six reading frames. The results of the protein sequence comparisons can be very important to an under- 
standing of the biology of the new sequence. The famous discovery of a striking similarity between human 
platelet-derived growth factor (PDG-F) and the cancer-related virus v-sis oncogene product was the result of a 
computer search (Doolittle et al, 1983). Similarly, many other discoveries have been made, and every new se- 
quence is analyzed in this manner. 

Often, biologically significant comparisons will be fairly weak due to the time since divergence from a com- 
mon ancestor because evolutionary changes may have accumulated and obscured the ancestral relationship. 
The ability to detect common evolutionary history is frequently improved by considering a set of related se- 
quences. Often this is done by making a multiple alignment of the sequences. To illustrate this we present a 
multiple alignment of N = 7 DNA sequences of length m = 8. 

Sequence position 
Sequence I 1 2 3 4 5 6 7 8 

T T A C T A T C  
A A C G T C T C  
A A G C A G C C  
C T C T T T G C  
A T G A A A A C  
G C G C ' I T T C  
A G G A T G C C  
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No pair of these sequences has a strong similarity. Sequences 4 and 5 match in only 2 of 8 positions, for exam- 
ple. However in every position except 6 there is a majority letter, so that the alignment might be summarized as 
the “consensus” sequence ATGCT{ A,T,G}TC, where the tie between A, T, and G in position 6 is represented 
as {A,T,G}. 

Multiple alignment is an area that began early (Sankoff, 1975; Waterman er al., 1976) and is still under ac- 
tive development (Carrillo and Lipman, 1988; Pevzner, 1992; Gusfield, 1993; Wang and Jiang, in prepara- 
tion). With the variety of available methods, it remains true that most multiple alignments are made by merg- 
ing pairwise alignments, often by a greedy algorithm where the most closely related sequences are merged 
first. This immediately brings up the problem of how to align a sequence to two or more sequences already in 
an alignment. 

In Waterman and Perlwitz (1984), some mathematical aspects of this problem of merging alignments are 
studied. The idea is to take the positions of the aligned sequences 

Sequence position 
Sequence I 1 2 m 

111 112 11, 
121 122 * * ’ 12m 

lN1 lN2 - 1N, 

is the fraction of 01‘s in column i. For sequences composed of letters from an alphabet d of size d, set fi = MI, . 
. . ,&). Above, forexample,f6 = (fan,fa,G,fa,nfa,c) = (2/7,2/7,2/7, In). This allows us to make use of more in- 
formation about the letters in a given position of an alignment and not be restricted to a consensus letter. All 
that is required to score an alignment of a sequence with a weighted average sequence is a measure of similar- 
ity P,(Z) between the letter 1 and the statistics of position i. Then the weighted average sequence F = f1f2. . . f,,, 
can be aligned to a sequence by any of the standard algorithms. 

The most popular and useful implementation of these ideas is known as profile analysis (Gribskov er al., 
1987). The position-dependent profile score, denoted by PA[), depends on the letter 1 and the distribution fi of 
letters in position i. The score Pdl) is high when letter 1 is often found in position i in the alignment. The score 
X for a particular alignment of letters can then be given by summing up the scores P,(l) over all the letters in the 
alignment. We may represent the profile P = {PI(l)}  as an array, with the Z~ column given by PI(l), as 1 ranges 
over the letters in the sequence alphabet 1. 

One simple measure can be derived from individual pairwise substitution weights, where aligning letter n 
with letter y receives score s(x,y). The Pdl) can be defined as the average score of 1 under fi by Pdl) = &(l,k& 
In many applications of profde analysis, the Smith-Waterman (Smith and Waterman, 1981) dynamic pro- 
gramming algorithm for local alignments is used to find significant matches to all or part of the profile. The sta- 
tistical distribution of Smith-Waterman scores is well studied. See Arratia et ul. (1988) and Karlin and 
Altschul(1990) for statistical results when indels are not allowed. Waterman and Vingron (1994) numerically 
extend the Poisson approximation to allow indels. However, most profiles are developed for specific motifs, 
and it is frequently desirable to determine where in a sequence the entire profile best fits. Then the score for 
aligning a profile P with a sequence 1 = 1112 . . . ln+m-l is the maximum profile score over all sets of m consecu- 
tive letters Z#j+, . . . li+m-l, that is, 

Nn= m X j ,  

where 

m 

i=l 
5 = P ~ < z ~ + ~ ~ )  j = 1.2,. . . , n 
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Although the usual dynamic programming algorithms allow indels to be included if desired, for the statistical 
results presented in this paper, indels are not considered. 

To evaluate the statistical significance of M, the score N properly normalized, it is first necessary to under- 
stand the distribution of the n individual profile scores Xi. Here is an easy heuristic. IfL& . . . are inde- 
pendent letters, then each X ,  is the sum of independent random variables. Hence, if the profile P is well be- 
haved, each Xj will be approximately normally distributed by the central limit theorem. Furthermore, if - y 2 
m, 3 and X, are determined by sets of disjoint letters and are therefore independent. In other words, Xl, 
X2, . . .X,, is an m-dependent sequence of random variables, each with a distribution close to normal. Because 
the maximum of an m-dependent normal sequence, suitably standar-, has an asymptotic extreme value 
distribution with distribution function 

a x )  = exp(-exp(-x)) 

it is reasonable to conjecture that the score M has this limiting extreme value distribution as well. 
There are a number of technical difficulties in proving this conjecture. First, to invoke the central limit theo- 

rem, each Xj must be the sum of a growing number of terms m 3 00. Further, to obtain the asymptotic extreme 
value distribution, it is necessary to take the maximum of a growing number n + of profile scores 3. 
Therefore, we need to consider scores X1, X2, . . . , X,, constructed from a profile table with m columns as m, 
n + 00; we will achieve this behavior by taking m as a function of n. Hence, for each n, XI, X2, . . . , X,, is an 
mdependent sequence where m = m,, depends on n. 

With the number of columns m now large, one must insure that the columns are not too correlated. In bio- 
logical profiles, typical columns will usually be only slightly correlated; however, it may be the case that some 
columns will be highly correlated for functional or structural reasons. Although the technical condition 
Equation (10) in the next section that the maximum absolute column correlation q is strictly less than 1 is al- 
ways satisfied in practice for any finite table with no two columns identical, it is still of interest to compute q 
for a given table. For the immunoglobin table of Gribskov et ul., (1987), the maximum column correlation q 
equals 0.94, below the upper bound of 1. In the next section, we present our model for the profile problem, in- 
cluding a simple set of conditions that we require our sequence of tables to satisfy, thus making precise our no- 
tion of ‘well behaved‘ mentioned above. 

Theorem 1 in the section “Convergence to Extreme Value Distribution” establishing the convergence in dis- 
tribution of the maximum profile score to the extreme value is proved using a version of ChenStein Poisson 
approximation. Here is a sketch of the argument. First, with constants a,,, c,, given in Lemma 4, we show that 
for the test level u = u,, = dun + c,,, the probability that a standardized profile score will exceed u is well ap- 
proximated by ~ ( u ) ,  the probability that a standard normal variate exceeds u. Hence, the average number of ex- 
ceedences will be close to p,, = n ~ ( u ) .  As the number of times X ,  exceeds u will be approximately Poisson, the 
probability there are no exceedences, which happens if and only if the maximum does not exceed u, is approx- 
imately the same as e*, the probability that a Poisson variable with mean p,, takes the value zero. As p,, + 
e-”, the probability that the maximum is bounded by u tends to limn+ e* = e”-’. In addition, Theorem 1 pro- 
vides a bound on the rate of convergence to this limit by the ChenStein Poisson approximation methd, this 
bound gives information on the quality of the approximation. 

Necessary lemmas are presented in the section “Lemmas.” In the section “Results of Simulation and 
Database Search,” we study the behavior of a specific profile on real biological data and consider several fac- 
tors that affect the fit to the extreme value distribution by simulation experiments. Some needed technical re- 
sults appear in the Appendix, as well as a result indicating the necessity of a feature of our profile model. 

PROFILE MODEL 

So that the distribution of profde scores can be approximated by the normal using the central limit theorem, 
each profile score needs to be represented as a sum with a growing number of terms m. Therefore, we consider 
a sequence of problems indexed by n, the number of profile scores, with n + 00, and the number of columns m 
depending on n, with m = m,, also tending to 00. 

Let L1, &, . . . , L,,+,,+, be independent identically distributed letters over an alphabet d. For given n, we con- 
sider a profile table with m = m,, columns represented as the array p) = (@)} lk.*l, where each @) is a real 
valued function on d. As each profile score is a sum of m terms, to apply the central limit theorem we are re- 
quired to have lim,,+ m,, = =. 
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We form the profile score at positionj by calculating the ‘moving average’ 
m 

xj.) = @) (Li+j-l), j = 1,2, . . . , n. 
i= 1 

For each n, the distribution of (Xy), Xj$) does not depend on j for 1 Ij,j + 6 I n. It follows that Xy) are iden- 
tically distributed and that the covariance dS, = Cov(X@“1, Xf)) depends only on n and 6 = (k -jl. Note that 
Xp), Xf) are independent for 6 2 m, and so Cov(Xf’), Xf j) = 0 for these 6. 

As the Xy) are identically distributed, we can find their common mean Pn by EX?); hence 
m m 

Pn = EpI”’(Li) = EpI”)(L), 
i= 1 i= 1 

where L is a letter with the common letter distribution on d. For 0 I 6 < m, we may calculate the covariance of 
two scores from sequence segments 6 apart by 

I m 

t& = COV(@), Xz6) = E [@’(Li) - E@’(L)] [p j” ) (L j~)  - Epj”)(L)] . (“ i= 1 j=1 

Using that the letters are independent, and that terms of the form pI”)(Li) - EpI”)(L) have mean zero, we see that 
m-6 

i=l 
c&, = E{ [Pi$ (Li+s) - E@’(L)][pI”’(Li,s) - EP[$ (L)] ) 

in particular, the common variance of the scores is given by 

m 
0,’ =Go; = Var(pI”)(L)). 

i= 1 

If the alphabet d is the set of d letters al, a;?, . . . , a d  with frequenciesfi,f2, . . . ,fdr then 
m d  

i=l k=l 

and 

(3) 

(4) 

We standardize Xy) in order to have variables with mean zero and variance 1: 

Yp = ( x y  - fln)/on; (5) 

as Xy) - Pn = Czl[pI”)(Li+j-l) - EPt{L)], we may in what follows assume without loss of generality that the pro- 
file table columns Pi have mean zero with respect to the common letter distribution on d. 

Define the correlation 

pg) = C O V ( ~ ) ,  fl)) = for 6 = ~k -jl. 

Note that Yf”, f l )  are independent for 6 2 m, and so p&“) = 0 for these 6. 
We study the distribution of 

M n =   ma^ Yf”. 
I* 

Define the norm of a profile table column by llPll= supxJP(x)l, and assume that the arrays P’”) satisfy 
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(7) 

Assume further that there exists A > 0 such that 

Var@)(L) 2 A  for all n and 1 I i I m, (8) 
and that the maximum column correlation is bounded strictly by 1: 

As condition (9) may be difficult to verify, we present a condition easier to check that insures condition (9); in 
particular, condition (9) is satisfied whenever the maximum correlation 

To see that (10) implies (9), begin with t&, as given by (2), to see that, with a: = Var P)'" (L) and 6 # 0, 

m 4  m 4  

i= 1 i= 1 

but as C$a,ui+gI Xy=l a: = 4," by the Cauchy-Schwartz inequality, we have that IC& I &,, and hence 
pg) I 1 as desired. 

The generality of considering an array of functions indexed by n may at first appear unnecessary. Indeed, in 
the Appendix we give an example, in the case where d = [0, 11, of a table P'"' = { constructed fromthe 
first m of a collection of fixed functions P1,  P2, . . . that satisfies condition (10) and therefore (9). However, 
Proposition (1) in the Appendix shows that it is not possible to construct a profile table P'") that satisfies condi- 
tion (10) using the first n of a collection of functions, even in the simple case of a uniform distribution over the 
finite alphabet { 1,2, . . . , d) with d fixed. This difficulty can be avoided if we are allowed to consider an array 
constructed from functions pI") which depends on n, defined on { 1,2, . . . , d) where d may also depend on n, 
for then it is not difficult to construct examples where (10) and therefore (9) are satisfied. 

In what follows, we write a k  = bk when 0 < lim infk-ladbkl I lim supk-ladbd < a, ak = O(bk) if lim 
Supk-ladbkI < and ak = o(b& if lim supk+laJbkl = 0. Constants will be denoted C1, C2, . . . , each not nec- 
essarily the same at each occurrence. We drop the superscript n when there is no danger of confusion. 

LEMMAS 
Let Z be a standard normal random variable; denote the density of Z by Q(u) and P(Z > u) by Y(u) .  Recall 

that X1, X2, . . . , X,, and therefore Yl ,  Y2, . . . , Y,, are identically distributed, that both the X and Y variates are 
defined as the sum of m terms, and that we may assume without loss of generality that the functions Pi have 
mean zero with respect to the common letter distribution on d. The first lemma shows that the tail probabilities 
of Yi are asymptotic to the tail probabilities of a standard normal even for moderate test levels. 

Lemma 1 For Yl as in (5 )  and v, = o(rn1l6), 

Proo$ For each n, we apply Theorem (2) with q = m to the mean zero random variables Ri = @' (Li). The vari- 
ables are bounded by assumption (7), so we may set M = K, and condition (8) implies that condition (16) is sat- 
isfied with B = A. As v, = o(rn1l6), the error term f of Theorem (2) tends to zero as m + =. 0 

The next lemma gives a bound on the tail probabilities of the joint distribution of (q,Y&. 

Lemma 2 Let Y1, Yz, . . . , Y,, be defined as in (5), and0 5 p < 1 as in condition (9). Then there exists a con- 
stunt C such that ifv, = o(m116), then for all 1 I k - 4 < m, 1 I j ,  k I n, 

2 %  

pj& = P(y,. > v,, Yk > v,) I C[Y(V,)]"p v z v .  
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Pro08 Note that 

P(yi > v,, Y& > V J  I P(yi +Y& > 2v,). 

With 6 = lk -11, note that Var(yi + Y&) = 2( 1 + pg)). Using the bound Ipg'l I p < 1 on the correlations given by 
condition (9), we obtain the bound 

We will apply Theorem (2) with q = m + 6. Assuming without loss of generality that j < k, let 

PI")(Li+Fl) for 1 Si<& 

 pi")(^^+^^) + f i & ( ~ ~ + ~ - ~ )  @) = for 6 + 1 I i I m, 

form+ 1 I i I m + 6 ,  [ e& (Li+j-l) 

so that Y, + Yk = XzT e). We note that E@) = 0, as the profile table rows have mean zero with respect to the 
letter distribution on d; furthermore, these variates are bounded by assumption (7), and we may set M = 2Kin 
Theorem (2). Using (8) we have 

Var(5 + Y k )  2 u[6 + (m - 6)(1 - p)], 

and hence condition (16) is satisfied with B = 2A( 1 - p). As v, = o(#", Theorem 2 yields that rjk is asymp- 
totically uniformly bounded by a constant times (and is asymptotic to) Y ( G  Vm). Using the bound 

[u-' - u-3]$(u) < Y ( u )  < u-1 Q(u), 

holding for all u > 0 (Feller, Chapter VII, Lemma 2) we see that Y( I+P v,) is bounded by 

asrequired. 0 

The following lemma is a consequence of Theorem 1 of Arratia et al. (1989), 

Lemma 3 Let Z = ( 1,2, . . . , n }  and for each j E Z, let Bj be a Bernoulli random variable with 
pj P(Bj= 1 )  = 1 - P(Bj = 0) E (0, 1). Let 

W , , P ~  Bjlandh,rEW,,= c p p  
je  I je I 

For each j E Z, suppose there is a set of dependence for Bj, 4 c Z, with j E Nj, such that 

Bj is independent of { Bk : k e Nj} .  

Define 

b l i  c c P i p k d  
j d  k N j  

b2 pjb wherepjk = E(B,B& 
j d  

Then 

Ip(W,, = 0) - e-h"l I bl + b2. 
/ 

Cordlary 1 VA,, + 5 d b l  + + 0 as n + 00, then P(W,, = 0) +e-'. 
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CONVERGENCE TO EXTREME VALUE DISTRIBUTION 
Let 

M,= max YI"), 

a, = (2 log n)ln, 

c, = (2 log n)ln - 1/2(2 log n)-ln (log log n + log 4 ~ ) .  

I s %  

(13) 

(14) 

The calculation demonstrating the next lemma is standard and can be found in Galambos (1987). 

Lemma 4 For given x, let 

u, = -+ e,; 
an 

then 

lim nY(u,) = e-". 
n+ 

Our main result proving convergence to the extreme value distribution, with bounds on the rate of conver- 
gence, appears next. 

Theorem 1 Let L be a sequence L1, &, . . . , L,,+,+ml composed of independent and identically distributed 
letters over an alphabet 99. Suppose that theprofile tables €"')satisfy conditions (7), (8), and (9) above. Let M, 
be the maximum profile score, as given in equation (6), and for given x, let 

k,, = nP( Yi > u,) with un = x/a, +Cn, 

with a,, c, as in (1 3)  and ( 14). With 0 I p < 1 by (9), suppose that m x n' where K E (0,s ,). Then, 

IP(a,(M, - c,) I x )  - e+l= 4n"r)for every y E (0, - K). 
Proof: Forj E Z = { 1.2, . . . , n), let 

n 
Bj=Z{ yi > u,) and Wn = c Bja 

j =  1 

Note 

{a,(M,-c ,JIx}  = {W,=O}. 

With 

= nWun), 
we have 

lim Vp,, = 1 
m-w 

using Lemma 1 and that u, = o(m'"). As p,, + e-"by Lemma 4, 
k,, +e-"= has n + 00. 

Taking Nj = [ k : Ik -jl m},  the independence condition of Lemma 3 is satisfied. Now 

Now, using Lemma 2, 
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Note fmt that converges to a constant, and so does not affect the order of b2. Noting that bl = 0(b2) com- 
pletes the proof. 0 

We have the immediate 

(0- 

b -  

-8 
N C U -  B c 

0 -  

9J- 

Corollary 2 

P(a,(M, - c,) I x )  + ex&-e-?. 

Proof: We have that h, + hand b, + b2 + 0 as n + 00; hence the corollary follows from Corollary (1). 

RESULTS OF SIMULATION AND DATABASE SEARCH 

Theorem 1 shows that the score M for a random sequence of length n + m - 1 has a distribution close to that 
of the maximum of n normal variates, and therefore close to the extreme value distribution. The theorem is an 
asymptotic result, and so the quality of the extreme value approximation should be explored for finite samples. 
The practical fit to this theoretical distribution is studied in the q - q plot (Fig. 1). In Fig. 1, the immunoglobu- 
lin (Ig) profile of length m = 49 of Gribskov et al. (1987) was applied to Newat, a database of unique sequences 
assembled by Doolittle (198 1). 

To test this approximation for finite sequence lengths and finite profile table size, the Ig profile was applied 

max of normals and globin on Newat 

. 
b 

t -  
I I I 1 I 

-2 0 2 4 6 

*(-roa(v(N+1 )I) 
FIG. 1. q - q Plots. The closed circles (0) are obtained by applying the Ig profile table to the Newat database. For each database se- 
quence, there is an open circle (0) obtained by taking the maximum of a corresponding number of independent normals. 
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to the N = 714 sequences in the Newat database of length 150 or more; we refer to this subset of the database as 
the Newat database in what follows. The mean and variance of the Ig profile table was calculated using formu- 
las (3) and (4), respectively, using letter frequenciesfk that of the Newat database. The scores Xi, 5, and M were 
calculated according to equations (l), (3, and (6), respectively. Each score M was then scaled by the constants 
a,, c, given in ( 13) and (14) to yield the standardized score a,(M - c,). For example, a sequence of length 682 
yields n = 682 - 49 + 1 = 634 profile scores Xi, and so is scaled with this value of n. The collection of stan- 
dardized scores for the Newat database was computed and ordered; from the theorem, thef’ largest of the N 
Newat scores should be approximately equal to thej/(N + 1) quantile of the extreme value distribution. Each 
closed circle e) in Fig. 1 corresponds in this way to a sequence in the Newat database; if the closed circle rep- 
resents, say, thef’ largest standardized score, the vertical axis gives the value of this score, and the horizontal 
axis the j / (N  + 1) quantile of the extreme value distribution. For comparison, we note that points in the figure 
generated from scores drawn from the extreme value distribution would lie on the line y = n in the figure. 

For the Ig profile applied to the Newat database, there are two factors that affect the fit to the theoretical dis- 
tribution. First, there is an error incurred in approximating the profile scores X by the normal distribution, and 
next, an error incurred by approximating the distribution of the maximum of normals by its asymptotic limit, 
the extreme value distribution. 

To study these two factors, the following simulation experiment was performed. For each sequence in the 
Newat database, a corresponding ‘ideal’ standardized score was generated by taking the maximum of a num- 
ber of normal variates appropriate for that sequence. In particular, a sequence of length n + m - 1, has maxi- 
mum score M, which is the maximum of the scores Xi,j = 1, . . . , n each of which is approximated theoretically 
by independent normal variates with mean fl and variance d. Correspondingly, one can generate n indepen- 
dent normals with mean fl and variance d, and consider the ‘ideal’ score M obtained by taking the maximum 
of these normal variates. Such an ideal standardized score can be generated for each sequence in the database, 
and the resulting collection of standardized scores then ordered. Each open circle (0) in Fig. 1 corresponds in 
this way to the ideal score of a sequence in the Newat database. If the open circle represents, say, the$ largest 
standardized ideal score, the vertical axis gives the value of this score, and the horizontal axis the j / (N  + 1) 
quantile of the extreme value distribution. 

Hence, the discrepancy between the graph of open circles and they = n line demonstrates the error incurred 
by approximating the maximum of a finite number of normals by the extreme value distribution. This conver- 
gence is known to be slow (see Hall, 1980), and we cannot expect the distribution of profile scores to be any 
better approximated by the extreme value distribution than is the distribution of the maximum of a corre- 
sponding number of independent normal variates. 

However, one can observe in Fig. 1 that the graphs of closed circles and open circles are somewhat close; in 
other words, there is only some little discrepancy between the maximum value of the profile scores and the 
maximum value of independent normals with the same mean and variance. 

We note that even when the profile scores are well approximated by the maximum of independent normals, 
such as in Fig. 1, the extreme value distribution, represented by the line y = n, is not yet attained. This lack of fit 
is due to the slow rate of convergence of the distribution of the maximum of independent normals to the ex- 
treme value, and so is improved only when scoring longer sequences. 

However, one may avoid the difficulty due to the slow rate of convergence to the extreme value distribution, 
even when the sequences are not long, by approximating the distribution of profile scores by the maximum of 
independent normals directly. The extreme value distribution is attained in the limit when n + =,as P(a,(M, - 
c,) I x )  is approximately exp(-&), where & = nP(Yl > u,) and & is asymptotic to p,, = nY(u,), and p,, + 
e-’. From Fig. 1, it is clear that a better approximation to P(a,(M, - c,) I n) would be obtained by exp (-A), 
since this quantity more directly approximates the event that the maximum of independent normals lie below 
the test level u,. These issues are explored in more detail in Arratia et al. (1990). 

Each comparison of a profile with a sequence produces a score. Without a result like that of Theorem 1 to a p  
proximate p values, comparisons must be ranked by score. Because long sequences have more opportunity to 
achieve good matches to the profile, and therefore high scores, by chance alone, ranking by scores not adjusted 
for length can be misleading. In Table 1 we show the 25 sequences from Newat with Ig profile scores with the 
smallest p-values. Notice that the sixth smallest p-value of 0.010 is obtained by OWE with a score of 171, 
which is smaller than the next 5 scores, each with a largerp-value. In fact, the score of 171 is also obtained from 
an E. coli potassium transport protein with ap-value of 0.049; this sequence has length 682, while OWE has 
length 120. We see therefore that the approximatep-values given account for the fact that a short sequence is 
less likely to match the profile well than a longer one by chance alone. 
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TAB= 1. Ig PROFILE COMPARISON IN NEWAT 

OFg 
TCHR 
TUAP 
LOAV 
IGDH 
RHll 
O W E  
APEC 
OMPA 
G6PD 
ATPC3 
CC4H 
KDPC 
EKEM 
PGAP 
PRSN 
ATYE 
INMG 
TCRH 
TCRA 
EFGE 
CYZR 
FALH 
ACRB 
APRM 
MPDD 

- 
E 

196 
193 
193 
189 
183 
171 
180 
177 
179 
175 
171 
171 
178 
171 
172 
174 
166 
171 
170 
164 
161 
174 
172 
164 
172 - 

length I pvalue I sequence description 
312 I 0.001180 I HUMAN T-CELL-SPECIFIC PROTEIN 
451 
863 
512 
460 
120 
449 
345 
482 
293 
188 
190 
569 
225 
278 
423 
155 
306 
273 
144 
116 
610 
493 
180 
508 - 

0.002 149 
0.003338 
0.003886 
0.007665 
0.010093 
0.010956 
0.012805 
0.013155 
0.014217 
0.015351 
0.015500 
0.017123 
0.018074 
0.019423 
0.022003 
0.022292 
0.023838 
0.024217 
0.025702 
0.027828 
0.030259 
0.032275 
0.032381 
0.033147 

PIG BRAIN TUBULIN, ALPHA 

HUMAN IMMUNOGLOBULIN DELTA CHAIN 
RHINOVIRUS 14 (COMMON COLD) 
TORPEDO CALIFORNICA ACETYLCH. RECEPTOR 
E. COLI ALKALINE PHOSPHATASE 
E. COLI OMPA MAJOR SURFACE PROTEIN 
HUMAN GLUCOSEG-PHOSPHATE DEHYDROGENASE 
RABBIT MUSCLE ATPASECALCIUM 
HUMAN COMPLEMENT C4 

MOUSE EPIDERMAL KERATIN 

SERRATIA ZINC PROTEASE 
E.COLI AMINO ACYL-tRNA SYNTHETASE, TYROS. 
MOUSE IMMUNE TYPE INTERFERON 

CRUCIFER FAMILY CRAMBIN, PLANT SEED PROTEIN 
E. COLI ELONGATION FACTOR G 
RHODOPSEWDOMONAS CAPSULATA CYTOCHROME C2 
HUMAN FIGRINOGEN ALPHA CHAIN 
TORPEDO CALIFORNICA ACETYLCH. RECEPTOR 
MOUSE ADENINE PHOSHORIBOSYL TRANSFERASE 
DROSOPHILA MYSTERY PROTEIN, "DUEY", C31 

HTLV-111 ENV-LOR 

E. COLI POTASSIUM TRANSPORT PROTEIN, KDP-C 

PSEUDOMONAS PUTIDA 2-KTO-3-DXY-6-PHSPH ALD 

HUMAN THYMOCYTE T-CELL RECEPTOR 

The following Theorem is an adaptation of Feller's Theorem XV1.7,3 on large deviations with a uniform 
bound under the assumption of bounded variates. Because the proof of Theorem (2) is obtained by a minor 
madification of Fellers proof, it is omitted below. 

'Tbeartm 2 Let R1, R2, . . . be real valued, independent mean zero randm variables bounded by a con- 
stant M, and set 

Suppose that there exists B > 0 such t h t  

4 2 4 .  (16) 
??ten there exists a constant C depending only on M and B such that 

P(Sq/sq > x)  = Y(xX1 +fl whm I Cl?ldq, 

for all sequences x = xq + QO such that xJsq + 0 as q + 00, where Y denotes the upper tail of the standard nor- 
maldistribution. 

As discussed in the Introduction, the generality of considering @)as an array of functions indexed by n may 
at first appear\mneoessary. Indeed, this generality is not required if we were to consider the case where Lis dis- 
tributed tiniformly on the 'alphabet, [0,1] and F) = Pi is the z& noncmtant element of a bounded, orthonor- 
IYMI system on L ~ ~ o ,  11. H we take, say, the. ~ m a c h e r  ~ c t i m  then EP(L) = O, v~~P(L)  = 1 (so we may 
take Cl= C, = 11, and, m partiCuIar, p = 0 as Icor(Pi, pi>l= 0 for i r j by orthogonality. The necessity arises 
when we d d a  functions &fined on an alphabet ( 1.2, . . . , d )  offixed size, if we insist that the distribution 
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of L is, say, uniform over this finite set and that again EP(L) = 0 and VarP(L) = 1 then that condition (10) can- 
not be likewise satisfied is demonstrated in the following proposition. 

Proposition 1 Let L E [ 1,2,. . . , d},andZetP1, P2,. . . , besuchthutEP,(L) = Odndo < C1 5 Var(P@)) 
I C 2  f o r i =  1.2,. . . .Thenforanym=m,,+w, 

lim max ICor(PdL), P,(L))( = 1. 

Proof: Let& = P(L = k), k = 1,2, . . . , d. We may assume without loss of generality that all& are positive!. For 
x,y E Rd define the inner product and norm 

n+ ISi#jSm 

d 
a , Y >  = x k h k  llx112 = -9 

k=l 

andlet 1 =(l, 1,. . . , 1) E Rd.Defme 

% = ( X  E Rd : < X, 1 > = O,l l~11~ E [C,,  C21}. 

The condition that P,(L) have mean zero and variance in the interval [C,, C2] is equivalent to the condition that 
the corresponding vector x with components xk = P(k) lie in %. Furthermore, if x and y are the vectors that cor- 
respond to the functions Pi, Pi, then Cor(P,(L), P,(L)) = cx,p/(llxll I}yll). 

Take 0 < E < arbitrary and define for x E % 

For all x E %, A(x) is open and x E A@); hence the union of the sets A(x) over x E ’& is an open cover of %. 
Since % is compact, there exists vl, v2, . . . , vN such thatA(vj), i = 1,2, . . . , Ncover %. Let vl, v2, . . . , vN+, be 
the vectors in % corresponding to P1, P2, . . . , Two of these vectors, say vl, v2 must lie in the same set, 

since E is arbitrary, the result follows. 
Say,& But Cor(Pl(L), PAL)) > 1 - E and Cor(P2(L), PAL)) > 1 - E implies that cor(Pl(L), P2(L)) > 1 - 2 s .  
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