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Abstract

All classical “prophet inequalities” for independent random variables hold also
in the case where only a noise corrupted version of those variables is observable.
That is, if the pairs (X1, Z1), . . . , (Xn, Zn) are independent with arbitrary, known
joint distributions, and only the sequence Z1, . . . , Zn is observable, then all prophet
inequalities which would hold if the X’s were directly observable still hold, even
though the expected X-values (i.e. the payoffs) for both the prophet and statistician,
will be different. Our model includes, for example, the case when Zi = Xi + Yi,
where the Y ’s are any sequence of independent random variables.
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1 Introduction and Summary

Let Xn = (X1, . . . , Xn) be a random vector having a known joint distribution, with
E|Xi| < ∞ for all i = 1, . . . , n. The setting of classical prophet inequalities is where
the X sequence is observed sequentially, and the objective is to pick an X-value
which is as large as possible. There, the quantity

V 0
p (Xn) = E( max

1≤i≤n
Xi),

denotes the value for a prophet who has foreknowledge of the entire X-sequence,
and will thus select the largest value. A statistician, on the other hand, is limited to
stopping rules t ∈ Tn

X
, where t ∈ Tn

X
if and only if the event {t = i} belongs to the

σ-field generated by X1, . . . , Xi, and P{t ≤ n} = 1. Thus, there the statistician’s
value is

V 0
s (Xn) = sup

t∈T n
X

EXt.

The restriction of the statistician to rules in Tn
X

reflects the fact that the statistician’s
decision to stop at any given time i can depend only on the past and present
observations, and not on ones in the future. This corresponds to a situation where
no recall is allowed. Obviously V 0

p (Xn) ≥ V 0
s (Xn).

Ratio and difference prophet inequalities provide upper bounds on
V 0

p (Xn)/V 0
s (Xn) and V 0

p (Xn)− V 0
s (Xn) over large classes of random variables. An

excellent review of most of the earlier prophet inequalities is given in Hill and Kertz
(1992). The first and probably the best known prophet inequality is the one in
Krengel and Sucheston (1978) which states that for all n ≥ 2 and all nonnega-
tive independent X1, . . . , Xn one has V 0

p (Xn)/V 0
s (Xn) < 2, and this bound cannot

be improved. (See also Hill and Kertz, 1981a). For i.i.d. nonnegative X’s the
best bound an, on the above ratio, depends on n and it is generally believed that
limn→∞ an = 1.34 . . .. (See Hill and Kertz, 1982).

For independent bounded random variables taking values in [a, b] the difference
prophet inequality V 0

p (Xn)−V 0
s (Xn) ≤ (b−a)/4 holds. (See Hill and Kertz, 1981b).

Prophet inequalities with cost for observations (Jones, 1990) or with discounting
(Boshuizen, 1991) have also been considered.

In the present paper an often more realistic model is considered. Though still
both the statistician and the prophet are interested in as large an X-value as pos-
sible, the X’s are not directly observable. The observed random variables are Z’s,
which may be thought of as the X’s corrupted by “noise.” That is, we take the
general view that the pairs (Xi, Zi) i = 1, 2, . . . , n are independent and have an
arbitrary known joint distribution. An important special case of this model is the
“additive noise” model where Zi = Xi + Yi, with the Y ’s mutually independent,
identically distributed, and independent of the X’s.

As a practical example, consider the following situation. Your firm wants to hire
a typist. It receives n responses to an advertisement. The true score for typist i
is Xi, perhaps some combined score depending on speed, accuracy and aesthetics
of typed text. In this example it may be realistic to assume that the X’s are i.i.d.
The typists are interviewed sequentially, (e.g. one a day) and are given some sample
task. The score of the ith typist on this task is Zi, probably Xi with some positive
bias. Since the long-term performance for the ith typist will be Xi, the X’s are the
variables of interest which should be maximized. Here the statistician must decide
whether to hire the given candidate immediately after the interview, due possibly,
to the non-availability of the candidate at a later stage, whereas the prophet may
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base his decision on an interview of all n candidates at no extra cost, and with no
danger of non-availability.

In general, as only the sequence Zn is observable, both the prophet and the
statistician’s choices must depend on this sequence only. In particular, the statis-
tician is confined to the set of stopping rules Tn

Z
defined similarly to Tn

X
, but with

rules based on the sequence Zn. Therefore, in this situation, the value for the statis-
tician is defined as Vs(Xn,Zn) = sup

t∈T n
Z

EXt. The value Vp(Xn,Zn) for the prophet

in this framework will be defined in a similar manner in the next section. It should
be noted that the classical prophet model is the one where Xn = Zn, and is in
particular a special case of the additive model with the noise Y identically zero.
Thus the present model contains the previously described classical model.From this
observation it follows that any bound for the noise corrupted case cannot be more
stringent than those described earlier.

Our main result is that under very mild conditions all previously mentioned
prophet inequalities remain valid in the most general “statistical setup”. In par-
ticular, if Xi ≥ 0, and the pairs (X1, Z1), . . . , (Xn, Zn) are independent, with each
(Xi, Zi) having arbitrary joint distribution, the ratio Vp(Xn,Zn)/Vs(Xn,Zn) is again
bounded by 2, and if in addition these pairs are identically distributed the bound
is the same an as above. Similarly if the pairs are independent and Xi takes values
in [a, b], the corresponding difference prophet inequality is again (b − a)/4. These
results are obtained by showing that the noise corrupted case can be reduced to a
“noise free” case for the independent random variables Wi, where Wi is the condi-
tional expectation of Xi given Zi.

In the noise corrupted case, one may consider other types of prophets. For exam-
ple, a “perfect prophet” could be defined as one who observes the entire uncorrupted
X-sequence and bases his decision on it, as in the classical setting. In Remark 2.8,
we show that a perfect prophet may have an unbounded relative advantage over the
statistician.

2 Main Results

Let (X1, Z1), . . . , (Xn, Zn) be any sequence of pairs of random variables with known
distribution and E|Xi| < ∞ for i = 1, . . . , n. We begin with a precise definition
of the value for the prophet in the “statistical setup” with only Zn = (Z1, . . . , Zn)
observable, and the selection rule therefore based only on the Z’s. The set of
(nonrandomized) selection rules for the prophet is the set Gn of functions

Gn = {g; g : Rn → {1, . . . , n}},

with the interpretation that upon observing Z1, . . . , Zn, the prophet selects the
index g(Z1, . . . , Zn). The value for such a g is EXg(Zn). The value for the prophet
is thus defined as

Vp(Xn,Zn) = sup
g∈Gn

EXg(Zn).

Let W ∗
i = E(Xi|Zn) and Wi = E(Xi|Zi). The following proposition gives the

full solution for the prophet.
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Proposition 2.1 Any rule g∗(Zn) = argmax{W ∗
i : 1 ≤ i ≤ n} is optimal in Gn,

and
Vp(Xn,Zn) = EXg∗(Zn) = E( max

1≤i≤n
W ∗

i ). (1)

Proof. For any g ∈ Gn

E(Xg(Zn)|Zn) ≤ max
1≤i≤n

E(Xi|Zn) = max
1≤i≤n

W ∗
i = E(Xg∗(Zn)|Zn).

Hence,

EXg(Zn) ≤ E( max
1≤i≤n

W ∗
i ) = EXg∗(Zn),

and (1) follows upon taking sup over all g ∈ Gn.2.

In the remainder of the present section we shall assume that the pairs
(X1, Z1), . . . , (Xn, Zn) are independent. In this case Wi = W ∗

i , and hence Proposi-
tion 2.1 yields

Proposition 2.2 Under independence,

Vp(Xn,Zn) = E( max
1≤i≤n

Wi) = V 0
p (Wn).

We next consider the value for the statistician, who is limited to rules in Tn
Z
.

Proposition 2.3 For any t ∈ Tn
Z

EWt = EXt.

Proof. Note that the random variable Wi is a function of Zi, i.e., it is Zi measurable.
Also, by definition, the event {t = i} is measurable with respect to (Z1, . . . , Zi).
Therefore,

EXt = E{E(Xt|Zn)}
= E{E(

n∑
i=1

Xi1(t = i)|Zn)}

= E{
n∑

i=1
E(Xi1(t = i)|Zn)}

= E{
n∑

i=1
1(t = i)E(Xi|Zn)}

= E{
n∑

i=1
1(t = i)E(Xi|Zi)}

= E{
n∑

i=1
1(t = i)Wi)} = EWt.

Independence is used in the fifth equality. 2

(Clearly the above equality does not hold for t ∈ Tn
X

.)

Remark 2.1 Similarly, using Xg(Zn) =
∑

Xi1(g(Zn) = i) and therefore
E[Xg(Zn)|Zn] =

∑
W ∗

i 1(g(Zn) = i) = W ∗
g(Zn), it follows that for any g ∈ Gn

EXg(Zn) = EW ∗
g(Zn). In the case of independence, W ∗

g(Zn) can be replaced by Wg(Zn).
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Note that since Wi is a function of Zi we have Tn
W
⊂ Tn

Z
, hence

sup
t∈T n

W

EWt ≤ sup
t∈T n

Z

EWt. (2)

Proposition 2.5 shows that equality holds in (2). In order to prove this assertion
we need to consider, as an intermediate step, randomized stopping rules for the W -
sequence. (See Chow, Robbins and Siegmund, 1971, p. 111 for an exact definition).

Let Wi = (W1, . . . ,Wi). Essentially a randomized stopping rule t̃ specifies
the conditional probability qi(Wi) of stopping at the ith observation when Wi is
observed, conditional on not having stopped earlier. Thus qi : Wi → [0, 1] with
qn(Wn) ≡ 1. Denote the unconditional probability of stopping at time i, when Wi

is observed, by pi(Wi). Then clearly

pi(Wi) = qi(Wi)
i−1∏
j=1

(1− qj(Wj)), i = 1, . . . , n.

Though it may be more natural to define a randomized stopping rule through the
sequence of q-functions, there is clearly a one to one correspondence between the q

and p sequences. The value EWt̃ may be evaluated by EWt̃ = E{
n∑

i=1
Wipi(Wi)} (in

the particular case where qi (and pi) are indicator functions, t̃ is nonrandomized).
Let T̃n

W
denote the set of all randomized stopping rules for the W -sequence.

Proposition 2.4 For every t ∈ Tn
Z

there exists a t̃ ∈ T̃n
W

such that EWt = EWt̃.

Proof. Let t = tZ ∈ Tn
Z

be given. Define pi(Wi) = P (tZ = i|Wi). The sequence
pi(Wi) generates a randomized stopping rule t̃ ∈ T̃n

W
. (Note that P (t̃ ≤ n) = 1 ,

since tZ is a stopping rule). Now

EWt
Z

= E{E(Wt
Z
|Wn)}

= E{E(
n∑

i=1
Wi1(tZ = i)|Wn)}

= E{
n∑

i=1
E(Wi1(tZ = i)|Wn)}

= E{
n∑

i=1
WiP (tZ = i|Wn)}

= E{
n∑

i=1
WiP (tZ = i|Wi)}

= E{
n∑

i=1
Wipi(Wi)} = EWt̃.

where the fifth equality uses the fact that {tZ = i} is measurable with respect to
Z1, . . . , Zi. 2

Proposition 2.5
Vs(Xn,Zn) = V 0

s (Wn)

Proof

V 0
s (Wn) := sup

t∈T n
W

EWt = sup
t̃∈T̃ n

W

EWt̃ = sup
t∈T n

Z

EWt

= sup
t∈T n

Z

EXt := Vs(Xn,Zn).
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The first and last equalities are definitions, the second follows since the optimal
rule can always be taken to be non-randomized (see Chow, Robbins and Siegmund,
1971), the third uses Propositions 2.4 and inequality (2), and the fourth equality
follows from Proposition 2.3. 2.

Propositions 2.5 and 2.2 yield the following theorem

Theorem 2.1 Let (X1, Z1), . . . , (Xn, Zn) be independent pairs of random variables,
with only Z1, . . . , Zn observable. Suppose E|Xi| < ∞, and set Wi = E(Xi|Zi).
Then any prophet inequality (ratio or difference) which holds for the independent
W ’s is valid also for Vp(Xn,Zn) and Vs(Xn,Zn). That is, if A ⊂ R2 is such
that (V 0

p (Wn), V 0
s (Wn)) ∈ A, then (Vp(Xn,Zn), Vs(Xn,Zn)) ∈ A. In the case of

an infinite sequence (X1, Z1), (X2, Z2), . . . corresponding statements hold, provided
E(sup

1≤i
Xi) < ∞.

Corollary 2.1 1. If Wi ≥ 0 then Vp(Xn,Zn)/Vs(Xn,Zn) < 2.

2. If Wi ≥ 0 are i.i.d. then Vp(Xn,Zn)/Vs(Xn,Zn) ≤ an, where an is the bound
of Hill and Kertz (1981b) for the i.i.d. case.

3. If a ≤ Wi ≤ b for i = 1, . . . , n then Vp(Xn,Zn)− Vs(Xn,Zn) ≤ (b− a)/4.
All three bounds are the best possible, and corresponding results are valid for the
infinite case.

Remark 2.2 Note that a sufficient condition for (1) in Corollary 2.1, i.e. for
Wi ≥ 0, is that Xi ≥ 0, though this is clearly not necessary. Thus Zi may take
on negative values, as in the additive noise case where, say, Yi ∼ N (0, σ2). A
sufficient condition for (2) is that Xi ≥ 0 and that (Xi, Zi) be i.i.d. pairs. A
sufficient condition for (3) is a ≤ Xi ≤ b.

Remark 2.3 Consider the case where there is a cost for sampling, i.e. Xi = X̂i−ci

where the X̂i are independent and ci denotes the cost of sampling i units; usually
ci = ci for some c > 0. Here Wi = Ŵi − ci where Ŵi = E(X̂i|Zi). Thus the
“cost of sampling” structure carries over to the Wi and the corresponding prophet
inequalities carry over as well. Similar results hold for the discounting structure
where Xi = βi−1X̂i, X̂i ≥ 0 and 0 < β < 1. Then Wi = βi−1Ŵi. i.e. the
discounting structure carries over, as do the corresponding inequalities.

Remark 2.4 In Samuel-Cahn (1984) it is shown that the bound 2 for independent
Xi ≥ 0 corresponding to (1) in Corollary 2.1 holds even if the statistician is limited
to “simple threshold rules” of the form inf{i : Xi ≥ b} ∧ n for some constant b,
instead of using an optimal rule. Thus in the present setting the above statement
carries over for “simple threshold rules” applied to the W ’s.

Remark 2.5 Nowhere have we used the one-dimensional structure of the Zi’s.
They could be multidimensional, or even just independent σ-fields, for all i =
1, . . . , n.

Remark 2.6 All results carry over had we let the statistician resort to the random-
ized stopping rules T̃n

Z
instead of Tn

Z
. (A similar remark holds for the prophet).
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Remark 2.7 It is not difficult to construct examples in which the noise does not
vanish asymptotically but the corresponding bound is still sharp. A simple example
of this type is an extension of the classical example for the independent case. For
0 ≤ µ ≤ 1 let X1 = . . . = Xn−2 = 0, Xn−1 = µ and Xn equal 1 with probability µ and
0 with probability 1−µ. Let Yi be independent uniform on (−1

2 , 1
2), and consider the

additive noise model. Then Vs(Xn,Zn) = V 0
s (Xn) = µ and Vp(Xn,Zn) = V 0

p (Xn) =
µ(2 − µ), hence the ratio is 2 − µ, and the bound of 2 is again sharp in the noise
corrupted case as well.

Remark 2.8 Lastly, we consider the ratio prophet inequality in the case of a “per-
fect prophet” who is able to base his decision on the entire X sequence. In this case,
the ratio of interest is V 0

p (Xn)/Vs(Xn,Zn). The following example shows that the
ratio may tend to infinity with n.

Let the X’s be independent Bernoulli p random variables. If any of these vari-
ables is equal to 1, the prophet will choose it; hence, his value equals 1 − (1 − p)n.
For our example, we assume the statistician can only see the Z sequence where each
of the ones of the original sequence have been flipped to zeros, and each of the zeros
to ones, with probability θ. That is, let B1, . . . , Bn be independent Bernoulli 1 − θ
variables, and Zi = BiXi + (1 − Bi)(1 − Xi). Then, for θ = 0, the Z sequence
equals the X sequence, and the ratio V 0

p (Xn)/Vs(Xn,Zn) is easily seen to be one.
However, when θ = 1/2, the Z’s and X’s are independent and so the statistician
can only get the value p; thus the ratio tends to n as p → 0. Intermediate cases may
be obtained when 0 < θ < 1/2.

Note that n is the “best bound” on V 0
p (Xn)/Vs(Xn,Zn) for all sequences of non-

negative X’s and any Z’s, with any type of dependence, in the present “perfect
prophet” setup. This follows since Vs(Xn,Zn) ≥ maxi=1,...,n EXi, because the statis-
tician can always obtain the value maxi=1,...,n EXi by choosing the (nonrandom)
index which maximizes EXi, whereas for the prophet

V 0
p (X) = E( max

i=1,...,n
Xi) ≤ E(

n∑
i=1

Xi) ≤ n( max
i=1,...,n

EXi).

(Compare Hill and Kertz, 1981a, proposition 1).
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