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Abstract 

In phylogenetic analysis it is useful to study the distribution of the parsimony 
length of a tree under the null model, by which the leaves are independently assigned 
letters according to prescribed probabilities. Except in one special case, this 
distribution is difficult to describe exactly. Here we analyze this distribution by 
providing a recursive and readily computable description, establishing large deviation 
bounds for the parsimony length of a fixed tree on a single site and for the minimum 
length (maximum parsimony) tree over several sites. We also show that, under very 
general conditions, the former distribution converges asymptotically to the normal, 
thereby settling a recent conjecture. Furthermore, we show how the mean and 
variance of this distribution can be efficiently calculated. The proof of normality 
requires a number of new and recent results, as the parsimony length is not directly 
expressible as a sum of independent random variables, and so normality does not 
follow immediately from a standard central limit theorem. 
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1. Introduction 

Parsimony is a commonly used method to provide a numerical measure of how 
well given data fit an evolutionary tree. Cavalli-Sforza and Edwards (1967) 
suggested the use of parsimony for evolutionary studies, and Fitch (1971) provided 
an algorithm to calculate parsimony scores for molecular sequences. Suppose that 
homologous sequences for n species have been aligned. For each position of the 
alignment, we consider a tree T with n leaves corresponding to the n species. Each 

* leaf is given the letter appearing at that position of the sequence of the 
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corresponding species. Letters are then assigned to all interior vertices of the tree, 
and the number of edges connecting vertices of different letters is the score of that 
assignment. The parsimony score L ( T )  is the minimum score over all possible 
assignments. The usual procedure is to compute the score L,(T)  associated with 
sequence position i, and to compute the total score Z L,(T)  by summing over all 
positions. We will study the one position problem in most of this paper. 

For a simple example we look at two assignments for a tree with n = 4 leaves. 

C A 

A A T C A A T C 

The assignment on the left has score L(T)  = 3 while the assignment on the right has 
score L( T) = 2. Optimal assignments are not always unique. To conform to standard 
terminology in graph theory, we will refer to the letters as colors and to an 
assignment as a coloration of the tree. We now reformulate the problem in more 
precise terms. 

Throughout this paper, by a binary tree we mean a tree T = (V( T), E( T)) that has 
labeled leaves of degree 1 and non-leaf vertices of degree 3. We will let n denote the 
number of leaves of T; hence JE( T)J = 2n - 3. A rooted binary tree is a binary tree 
with a subdivided edge, the resulting newly created vertex of degree two being the 
ruot of the tree. For technical reasons we also consider an isolated leaf as a rooted 
binary tree. Given a (possibly rooted) binary tree T, and a coloration E* of V ( T )  by 
a set of colors, the changing number of 2?* on T is the number of edges of T whose 
ends are assigned different colors by 2?*. Initially we are given a coloration of only 
the leaves of T. Given such a leaf coloration E, the length of E o n  T, denoted 
L(T, E), or more briefly, L(T),  is the minimum changing number of any coloration 
E* of V (  T) that extends 514 Such a coloration E* is said to be a minimal coloration 
of T for L Note that a leaf coloration can have a large number of minimal 
colorations; indeed the number can grow exponentially with n (Steel 1993a). 

A particularly efficient and useful way30 calculate L(T) is the forward version of 
Fitch's algorithm, which we now describe. If T is not already rooted, then define a 
root by choosing an arbitrary edge of T to subdivide. The value of L(T)  is not 

- 
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. - 

dependent on the choice of root. Direct all of the edges of T away from the root, so 
that each non-leaf vertex has two 'children'. Now, to each vertex of T assign a pair 
(S, j ) ,  where S is a non-empty set of colors, and j is a non-negative integer, according 
to the following recursive scheme: 

to leaf i, assign the pair ({%'(i)}, 0); 
to a vertex whose children have been assigned (S,, j , )  and (S2,j2) assign the pair 

(SI * S2, j) where: 

(SI n S2, it + j d ,  
(SI U S2, jl + j 2  + l), 

if SI n S2 # 0, 
otherwise. (SI * ~ 2 ,  j )  = { 

Eventually, pairs will be assigned to all of the vertices, including the root u whose 

(1973) established the following result. 
b. 

associated pair we denote (S (T) ,J ) ;  we will call S ( T )  the root set of T. Hartigan 

Lemma 1. J = L ( T )  and S ( T )  = { P ( u ) :  
After a parsimony score has been determined it must be evaluated. A natural 

procedure is to estimate the p-value of the score L(T),  Le. estimate the probability 
of observing a value as large or larger than L(T)  when the colors at the leaves are 
randomly assigned. In Section 2 we prove large deviation bounds of the form 
P[L(T)  - E[L(T)] > AG] de-Azn, which hold for all trees with n leaves. We also 
establish a related bound for the tree that minimizes the total parsimony score over 
several positions. In Section 3 we prove a central limit theorem for L(T).  Some 
special cases have been considered previously (Moon and Steel 1993) but ours is the 
first general result. In particular, we allow the distribution of colors to vary from leaf 
to leaf, so that our results apply to sequences that exhibit variations in their base 
frequencies. In Section 4 we give recursions for computing the exact distribution of 
L(T)  in O(n'4') steps, and for computing the mean and variance, IE[L] and V [ L ] ,  in 
O(n4') steps, where the alphabet size (number of colors), fixed throughout, is 
denoted by c. In Section 5 we give an interesting example that shows that the normal 
limit may hold even when the vertex sets are asymptotically degenerate. 

is a minimal coloration of Tfor  a}. 

2. Large deviation bounds 
We will consider first the single site model where each of the n leaves of the fixed 

tree T corresponds to the letter found in a given position in each of n (aligned) 
sequences. In this model, the leaves of a binary tree, T, are colored independently 
according to (possibly different) probability distributions. We will let z; denote the 
probability that leaf i is assigned color a, z, the probability distribution for leaf i, 
and II = {xi}  be the collection of the leaf distributions. 

In the special case where the leaves are bicolored according to the identical and 
uniform distribution, z: = 0.5 for all i and both a, the distribution of L ( T )  depends 
only on n but not on T and has been determined exactly by Steel (1993b): 

I 

P [ L ( T ) = k ] = [ (  n - k  ) + ( n - k - 1 ) ] 2 ( * - " ) .  
. k  
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However, in general the exact distribution of L( T )  is complex, and the most one can 
hope for is either a recursive description (Section 3), an asymptotic expression as 
n + CQ (Theorem 3), or large deviation bounds for finite n (Theorem 1). Regarding 
large deviation bounds we have the following results, in which E[L] = E[L(T)] and 
V [ L ]  = Var [L(T) ] .  

Theorem 1. For any T and n, for all A > 0, 

(1) 

(2) 

and for each p > 0 

P [ L ( T )  - E[L] C AG] 5 e-"2n, 

P [ L ( T )  - E[L] C -AG] S 

(3) 

For p = 2, this can be improved to 

(4) V [ L ] / n  s 4 .  
Proof First we verify that the parsimony length L satisfies the Lipschitz condition 

IL(X1 Xi-1, X ,  X+I, * * * 9 Xn) - L(X1, * * Xi-1, K, X,+1, * * * 9 Xn)I 5 1 

for all Y;, where L ( X I ,  
color X, ,  i = 1, 

, X,)  is the parsimony length of T when leaf i is assigned 
e ,  n. By symmetry it suffices to establish 

L(XI, * * ,  Xt-1, K,  X,+1, . * Xn) sL(X1, * *  2 Xi-1, Xi, Xi+1, * * * Xn) + 1. 

But altering the color of leaf i from X, to K increases the length 
L ( X I ,  - e ,  Xi-1, X, ,  X,+l, , X,,) by at most 1, and yields a coloration that 
extends (XI, e ,  Xi-l, Y;, Xi+1, * , Xn), which, by minimality, has changing 
number no smaller than L ( X I ,  - - , Xi-l, Y;, X,+l, * * * , Xn). 

Now, using the independence of X1, X z ,  - * - , X,, Equations (1) and (2) follow by 
applying the Azuma-Hoeffding inequality as it appears in Theorem 4.2, p. 90, of 
Alon and Spencer (1992). Equations (1) and (2) imply P[lL - E[L]I > AG] S 2e-h2'2, 
and (3) now follows from 

E[Wp] = p  AP-'P(W > A )  dA 
0 

for any W I O .  

Lipschitz condition described above. 
The bound for V [ L ( T ) ]  follows immediately from Steele (1986), using the 

Again consider the case of n aligned sequences, each of length k 2 1, where all 
k, be the color sites are generated independently. Let X,, i = 1, - * e ,  n, j = 1, 
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assigned to sequence i at position (site) j ,  and let L* = L*([X,])  be the length of a 
minimum length (maximum parsimony) tree for this data, i.e. 

k 

L* = min L(T, q) 

where q(i) = X,. We then have the following result. 

T j = 1  

Theorem 2. Under the model described above, for A > 0, 

P[L*  - E[L*] > Am] 5 e-A2n, 

P[L*  - E[L*] < -Am] 5 e-? 

Proof Suppose X g =  Xij except for one value (io,jo) of ( i , j ) ,  and let L‘ be the 
length of the minimum length tree for [Xb]. As in the proof of Theorem 1 ,  because 
the nk Xii are independent, we need only verify IL* - L’I S 1, which by symmetry 
follows from 

(7) L ’ S L *  + 1. 

Suppose T is a minimum length (maximum parsimony) tree for [X,]. Then, for %io 
(where 2?io(i) = 2?P:,jo) which differs from 3 in exactly one coordinate, we have that 
the length of T on [X,;] is 

2 L ( T , q ) + L ( T , 2 ? ; o ) S  2 L ( T , q ) + L ( T , q o ) + l = L * + l .  
j = l ; . . , k  3 .  

j #io i fh  
j = ]  ... k 

Now (7) follows by minimality of L’. 

3. Central limit theorem 

We turn now to the asymptotic behavior of L(T) .  In the special 2-color case 
described earlier (np=O.5 for all i and both a), L ( T )  was shown to be 
asymptotically normal (Moon and Steel 1993). In general, however, if no restrictions 
are placed on the distributions n={n;}, then L ( T )  need not be asymptotically 
normal; in fact, some condition is necessary to guarantee that the limiting 
distribution of L is not degenerate. In the case where for two colors, a and p, we 
have KP = 1 - nf = E,, all leaves will be colored with probability (1 - E,,)”, and L 
will converge in probability to 0 if nE, + 0. Thus, in order to explore the asymptotic 
distribution of L(T) ,  we bound the ~r; uniformly away from 0, i.e. we assume 

(8) np > E, for all i, a, 

for some E > 0 (independent of n). 
A conjecture, which generalizes conjectures reported by Archie and Felsenstein 

(1993) and Moon and Steel (1993), is that L ( T )  is asymptotically normal under 
condition (8). The following theorem shows that this is indeed so, and provides 
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order estimates for the growth in the mean and variance of the distribution. Note 
that, under condition (8), a quantity closely related to L(T) ,  namely the root set 
S(T) ,  can still be degenerate asymptotically, as the example in Section 5 shows. In 
the following theorem recall that n denotes the number of leaves of T. 

Theorem 3. Under condition (8), the distribution of (L(T)  - E [ L ] ) / m  
converges to the standard normal distribution N ( 0 ,  1)  as n + t ~ .  Furthermore, both 
E[L] and V [ L ]  grow (approximately) linearly with n. 

For completeness, and due to its central role, we now make precise as a separate 
proposition the last part of the claim in Theorem 3. 

Proposition 1. For all ‘II satisfying condition (8), there exists a 6 > 0, depending on 
E, such that [6, 1)  contains E[L]/n and V [ L ] / n  for all binary trees T. 

In order to prove this proposition and the theorem, we need to establish a number 
of preliminary results. The next three lemmas reflect purely combinatorial properties 
of binary trees. 

Lemma 2. (‘Lonely leaves lemma’.) The leaves of any binary tree T can be ordered 
11, 12, * , 1, in such a way that, for at least 1 + nI3 values of i, li and li-l are 
separated by no more than 3 edges. 

Proof For leaves i and j let d(i , j)  denote the number of edges of T separating i 
and j .  For n > 3, delete from T all its leaves, and their incident edges, to obtain a 
tree , which is the subdivision of a unique binary tree T2, as in Figure 1. Note that 
an edge e of T2 corresponds to a path in T,, and we denote by X ( e )  the (possibly 
empty) set of leaves of T that are adjacent to any vertex in this path. We partition 
the edges of T2 into four classes as follows: 

C1: edges incident with a leaf of G. 
C2: edges not incident with a leaf of T2 and with IX(e)l= 0. 
C3: edges not incident with a leaf of T2 and with IX(e)l= 1. 
C4: edges not incident with a leaf of T2 and with IX(e)lZ 2. 

For example, the tree in Figure 1 has C2 = {e2}, C3 = {e3}, C4 = {e4}. Note the sets 
X ( e )  from cases (l), (3), and (4) partition the leaves of T, and case (3) covers 
precisely the ‘lonely’ leaves i for which d(i, j )  > 3 for all leaves j. It is clear that we 
can relabel the leaves of T as 11,  - - * , 1, in such a way that, for any edge e in class (1 )  
or (4), d(li, l i - l )  S3 for at least IX(e)l- 1 values of i. Under this ordering, the 
number of leaves i for which d(li, l i - l )  5 3 satisfies 

(Ix(e)l-  1) z I X ( ~ ) I / ~  z (n - ICW 
c=C1uCI rECluc,  

Now, IC31 is bounded above by the number of edges of & that are not incident with 
a leaf. Thus, if T2 has k leaves, then IC31 S k - 3, and furthermore, the number n of 



A central limit theorem for the parsimony length of trees 1057 

A 

Figure 1. A derived tree T2 with examples ei of edges in class C, 

leaves of T is at least 2k + IC3], thereby providing the inequality n 2 2(IC31 + 3) + 
IC31. Thus, IC3J S n / 3  - 2, and so (n - IC31)/2 L n / 3  + 1. Combining this observation 
with the string of inequalities above establishes the Lemma, and shows that this 
bound is the best possible. 

The following definition is illustrated in Figure 2. 

Definition. Suppose T is a binary tree leaf-labeled by L. A leaf-covering forest 

Figure 2. A leaf-covering forest (circled) for k = 4 
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for T is a collection of vertex disjoint subtrees of T whose leaf sets form a partition 
of the leaf set of T. 

Lemma 3. (‘Tree-chopping lemma’.) Let T be an arbitrary binary tree and k an 
integer, k 2 2. Then T has a leaf covering forest F with the following two properties. 
( i )  The number of leaves in each tree in F is at most 2k - 2. 

(ii) The number of leaves in each tree in F is at least k ,  except possibly for one tree. 

Proof: Select a leaf i of T, and let T’ denote a subtree of T containing i. Direct all 
edges of T’ away from i, thereby creating a partial order 5 on the vertices of T’ with 
minimal element i. Thus, each vertex u E V [ T ’ ]  has a set of ‘descendents’= 
{u’ E V [ T ’ ] : u  S u ’ } ,  and we let d(T’,  u)  denote the number of leaves of T’ which 
are descendents of u. The following algorithm constructs the required leaf covering 
forest F. 

If T has fewer than k leaves, the lemma holds. Otherwise, there is a maximal 
(under 5) vertex u of T, with d(T, u ) Z  k. If d(T, u )  >2k - 2 and, if u,u’ are the 
descendents of u, then d(T, u )  = d(T, u )  +d(T,  u’), and max{d(T, u),  d(T, u ’ ) } Z  k, 
contradicting the maximality of u. Therefore d (  T, u )  5 2k - 2. Next we remove the 
tree consisting of u along with its descendent vertices and incident edges and place it 
in F. Then we inductively repeat the above procedure on the remaining tree until it 
has fewer than k leaves. Note that the subtrees removed can have vertices of degree 
2. 

Figure 2 shows a leaf-covering forest of T in case k = 4. 

Lemma 4. Suppose F = {T,, , T }  is a leaf-covering forest for T. Given a leaf 
denote the restriction of %to the leaves of T that lie in T ,  and coloration %of T, let 

let A = L ( T )  - L($, 7;). Then 0 5 A S r - 1. 
J 

Remark. The bound A S 2r - 3 is sufficient for proving Theorem 3, and follows 
immediately from the observation that the forest can have no more edges joining the 
r trees T, than the number of edges of a binary tree with r leaves. The better bound 
established in the lemma might be useful in other contexts. 

Proof of Lemma 4. Suppose T is any tree (possibly with degree 2 vertices) and F 
is a subforest of T, whose components collectively cover all T’s leaves. Then F 
determines a collection Q of subtrees of T, as follows. Let E’ denote the set of edges 
of T that do not lie entirely in F, and let V‘ denote the vertices of T that are incident 
with an edge of E’. Let Q = Q(T, F )  denote the set of (leaf-overlapping) subtrees of 
(V’, E‘) that have all their leaves, but no other vertices consisting of vertices from 
trees in F. An example of this construction is given in Figure 3, where the five trees 
in F are circled. Let n, denote the number of leaves of t E Q. We claim that 

(n, - 1) = IFI - 1. 
~ E Q  
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Y - d e 

Figure 3. Subtrees obtained from a leaf covering forest of five trees (circled) 

To establish this claim, we first note that we may, without 'loss of generality, assume 
that F consists entirely of isolated vertices. 

Then, take any vertex u in F and direct all edges of T away from v. Then each 
vertex u' in F - { u }  has an incident edge e,. directed towards it, and e,. lies in 
precisely one of the trees tu, in Q, and u' is a leaf of tu.. All but one of the leaves of 
cut is identified in this way; thus we have a one-to-one mapping from F - {u} to the 
one-vertex-deleted leaf sets of the trees in Q, and this establishes the claim. 

Now let a"* be a minimal coloration of T for Z Let a"? denote the restriction of 
a"* to V(7;). Then a": extends a: and so L ( 8 ,  7;) is at most the changing number of 
a": on 7;, hence 

r 

L(g, 7;) S changing number of a" on T = L(%, T ) ,  
i = l  

which shows that 0 5 A. 
To obtain an upper bound for A, let P' denote a minimal coloration of Ti for a:. 

Define a coloration P of the vertices of T that lie in trees from F, by setting 
%(u)  = P'(u) if u E V(7;). Extend P to a coloration a"" of V ( T )  by coloring any 
vertices in T not covered by trees in F (and therefore lying in Q(T,  F ) )  in such a way 
that all the non-leaf vertices in any component of Q(T,  F )  are assigned the same 
color as one of the leaves of that component. The changing number of P on T is 
the sum (over i) of the changing number of P' on 7;, plus the sum of the changing 
numbers of the restriction of P to the components of Q(T,  F ) .  This latter sum is no 
more than (n, - 1). But this sum was shown above to equal r - 1, so that a"" 
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has changing number at most E;=, L ( x ,  T,) + r - 1, and this gives the required 
upper bound on L(%, T) because g" extends E 

Proof of Proposition 1. The upper bounds are easily derived. However, the 
justification for the lower bounds, particularly for V [ L ]  is much more involved and 
occupies most of the proof. For any leaf coloration ft', consider the coloration E* of 
V ( T )  that assigns the most frequently occurring leaf color to all the vertices of T. 
Then %* extends %, and has changing number n - a ,  where a is the number of 
leaves colored with the most frequently occurring color. Because the most frequent 
color must occur at least nlc times, L S (1 - l/c)n and 

where c is the number of colors. 
To obtain a lower bound, consider any leaf i of T, and the edge e incident with i. 

Deleting e and i from T produces a rooted binary tree T', rooted at a vertex u of 
degree 2, that was formerly incident with e. Let %' denote the restriction of % to T'. 
We see (Figure 4) that L ( T )  = L(T')  + Di, where Di is a 0,l  random variable, which 
equals 1 precisely if %(i) S(T' ) .  Thus, E[L(T)] = E[L(T')] + P[D, = 11. Now a 
modification of the Example in Section 5 shows that, in general, P[Di = 13 can be 
arbitrarily close to 0. However, we can always find, in any binary tree, a leaf i that is 
separated from another leaf j by just two edges, and in this case we will show that 
P[Di = 11 is bounded away from 0. Thus, represent T and T' as in Figure 4, and let 
T be the rooted tree obtained from T' by deleting leaf j ,  the root and its two 
incident edges (see Figure 4.) We have, for any a # p, 

P[Di = 11 = P[%(i) e S ( T ' ) ]  >= P[%(i) = a, S ( T ' )  = {p} ] ,  

Figure 4. Tree decomposition 
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and by the independence of leaf colorations and condition (8), 

P[%(i) = a, S ( T ’ )  = { p } ]  = P[%(i) = a ]  x P[S(T’)  = { P ) ]  

L EP[S(T’) = @ } I .  

Combining these two inequalities we have, for any p, 

(9) 

Now, 

P[Di = 11 h EP[S(T’) = { P } ] .  

P[S(T’)  = { p } ]  B P[%(j)  = p,p E S(T”)] 

= P[%(j) = p ]  x P[p E S(T”)] 2 EP[P E S(T”)].  
(10) 

But S ( T ” ) # 0 ,  so there is a color /3 for which P[/3 E S ( T ” ) ] I  l / c  where c is the 
number of colors. Thus, from (9) and (lo), we have P [ D j =  1 ] 8 ~ ~ / c  and so 
E[L(T)] 2 E[L(T’)] + e2/c. Continuing in this way using the remaining tree with the 
root u removed, we will eventually, by induction, obtain a tree T(2)  with just 2 
leaves, providing the inequality 

+ W ( 7 - ( 2 ) ) 1  
E2 E2 E2(n - 2)  

I E [ L ( T ) ] B - + E [ L ( T ’ ) ] 8 2 - +  E[L(T”) ]Z*  - 2  
C C C 

and hence, E[L( T ) ] / n  is uniformly bounded from below. 
The upper bound V [ L ] / n  5 1 is given in Theorem 1. The remainder of the proof is 

devoted to obtaining a lower bound. First, apply Lemma 2 to order the leaves of T, 
11, - , l,, so that for at least 1 + n / 3  values of i, l j  and l i - ]  are separated by either 2 
or 3 edges. Write L ( T )  as a function L(XI, ,X,J where X i =  %(li), and let 
dk = E[L I %] - E[L I &-J, for k = 1,2,  - - , n, where 4 is the sigma algebra 
generated by (XI, - * * , Xk). As dk is a martingale difference sequence, the variates 
dk are uncorrelated; now using that L - E[L] = Zk dk, 

, V [ L ]  = E[ d:]  . 
k = l  

Now, let T’ denote the tree obtained from T by deleting leaf lk and its incident 
edge. Applying Lemma 1 to T, taking as the root the vertex arising by subdividing 
this edge we have L = L‘ + Dk, where L’ = L( T’) and Dk = 1 when %(Ik) e S( T’), 
and is zero otherwise. 

Since E[L’ I %] = E[L’ I &-l] we have 
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Now, for any two colors a and a’, 

E[di] Z E[di  I XkW1 = a, X k  = a‘] X P[Xk-]  = a, X ,  = a’] 

(12) 1 &[di I Xk- l  = a, X k  = a’] 
Z dE[dk  I Xk- l  = a, Xk-l  = a’]’, 

and using ( l l ) ,  

(13) E [ d k  I Xk-1= a, Xk = a’] = E [ D k  I Xk-1= a, X ,  = a’] - E [ D k  I X,-l= a] .  

Letting = P[p z S(T’ )  I Xk-]  = a ] ,  (13) can now be written 

=fur,, - C fB ,unk*  P 

B 
(15) 

Thus, from (12), (13) and (14), for all a, a’, 

From Lemma 5, shown below, there is a b > O  such that, when 1, and are 
separated by either 2 or 3 edges, there exist a, a’ such that I - fa,al > b. By the 
triangle inequality, it follows that either I fa , , ,  - ZP fp,aa&l or I f a , ,  - & fp,aabl is at 
least b/2. Hence, by (16), and an appropriate choice of a, a’, E[di] Z b2&’/4, and so, 
by Lemma 2, Var [L]  Z b2c2(1 + n/3)/4,  which provides the required lower bound. 
Therefore, the proof of the proposition is complete once we establish the following 
lemma. 

Lemma 5. If leaves 1, and lk - l  are separated by either 2 or 3 edges, then a and a’ 
can be chosen so that I 

Proof of Lemma 5. Let S, be the root set of the tree in Figure 5, S,= 
( { x }  * P )  * Q, where P, Q are random variables taking values in 2’ - 0 (the non- 

- fap,,l > b for some constant b > 0 independent of n. 

Figure 5.  S, = ({x} * P) * Q 
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and by the independence of leaf colorations and condition (8), 

P[%(i) = a, S(T’ )  = {p}] = P[Z( i )  = a] x P[S(T’) = {p}] 

B &P[S(T’) = @}I. 
Combining these two inequalities we have, for any p, 

(9) 

Now, 

P[D, = 13 h &P[S(T’)  = {p}]. 

But S(T”) # 0, so there is a color p for which P[/3 E S(T“)] B l / c  where c is the 
number of colors. Thus, from (9) and (lo), we have P[Di= ~ ] Z E ~ / C  and so 
E[L(T)] B IE[L(T’)] + cZ/c. Continuing in this way using the remaining tree with the 
root u removed, we will eventually, by induction, obtain a tree T(2) with just 2 
leaves, providing the inequality 

E2(n - 2, + E[K( T(2))] 
E2 E2 E [ L ( T ) ] 2 - + E [ L ( T ’ ) ] B 2 - - + E [ L ( T ” ) ] 2 . * * Z  
C C C 

and hence, E[L(T)]/n is uniformly bounded from below. 
The upper bound V[L]/n 5 4 is given in Theorem 1. The remainder of the proof is 

devoted to obtaining a lower bound. First, apply Lemma 2 to order the leaves of T, 
11, * - * , l,,, so that for at least 1 + n / 3  values of i, li and l i - ,  are separated by either 2 
or 3 edges. Write L ( T )  as a function L(Xl ,  - a ,  X,,) where Xi = E(&), and let 
dk = E[L I &] - E[L I * ,  n, where $k is the sigma algebra 
generated by (Xlr - - , xk). As dk is a martingale difference sequence, the variates 
dk are uncorrelated; now using that L - E[L] = X k  d k ,  

for k = I, 2, 

, 
V[L] = E[ d:] . 

k-1 

. Now, let T’ denote the tree obtained from T by deleting leaf l k  and its incident 
edge. Applying Lemma 1 to T, taking as the root the vertex arising by subdividing 
this edge we have L = L’ + Dk, where L’ = L(T‘)  and Dk = 1 when % ( l k )  z S(T’) ,  
and is zero otherwise. 

Since E[L’ 1 951 = E[L’ I &-,I we have 

(11) dk = E[Dk  I &] - E [ D k  I %-1]. 
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From Lemma 5,  shown below, there is a b > O  such that, when 1, and are 
separated by either 2 or 3 edges, there exist a, a’ such that I fa , , ,  - fU.,l > b. By the 
triangle inequality, it follows that either I fur , ,  - &, fB,unfl or I fa,u - Ea fa,unfI is at 
least b/2. Hence, by (16), and an appropriate choice of a, a’, E[d;] 2 b2&’/4, and so, 
by Lemma 2, Var [L]  L b2E2(1 + n/3)/4,  which provides the required lower bound. 
Therefore, the proof of the proposition is complete once we establish the following 
lemma. 

Lemma 5. I f  leaves 1, and 1k-I are separated by either 2 or 3 edges, then a and a’ 
can be chosen so that I fu , ,  - fU,,,I > b for some constant b > 0 independent of n. 

Proof of Lemma 5. Let S, be the root set of the tree in Figure 5, S, = 
( { x }  * P )  * Q, where P, Q are random variables taking values in 2’ - 0 (the non- 

Figure 5. S, = ( {x}  * P) * Q 
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empty subsets of the set of colors U), and x E U. Let 

Ea,, = P [ a  4 sa] - P[P 4 sa] 
= P[p E Sa] - P[a E Sa]. 

Returning to the tree T, if 1, and 1 k - l  are separated by three edges, then taking 
P, Q to be the root sets of the two rooted subtrees whose roots are adjacent to the 
two internal vertices of the path connecting 1k-I and l k ,  we have that E,,,= 

If 1, and 1k- l  are separated by just two edges, then this same equation applies if we 
take P to be the root set of the rooted subtree between 1k-1 and l k ,  and if we take Q 
to be U with probability 1. Thus to establish the lemma, it suffices to show that there 
exists q = q(IC&l)) 0, such that for any distribution on P, Q, there exists a pair 
a , / 3 ~ U w i t h I E ~ , p l > q .  Letxp=P[P=p],pE2'-0;y,=P[Q=q],  q ~ 2 " - 0 ,  
and let +:= E:,, 2 0. Note that + is a continuous function of the {xp} and 
{y,} (because + = E,,, (Ep,, Ap,xPy,)* for suitable coefficients Ap, = 0, *l) and that 
{xp, y,} are constrained to lie in the closed set C: 

, fapa -f@,a* 

P 

By continuity of t,b and closure of C, to establish the claim it suffices to show that JI 
is never 0 on C ;  i.e. we wish to show that for any distribution on P, Q, we can find a 
pair a, /3 such that E,,,#O. We suppose not to derive a contradiction. Thus, 
suppose for some distribution that E,;, = 0 for all a, p. In particular 

E,,, + E , ,  = O +  P[CY E S,] - P[a E Sa] + P[p E Sa] - P[p E Sp] = 0 
b f b  I + A,,, + A,., = 0. 

(17) 

Now, for any choice P = p ,  Q = q, we have 

(18) a E s, j a E sa 
(because if a e Sa we must have a 4 p U q, and a e p U q 3 a 4 So). Consequently 
A,,, 5 0, and hence A , ,  S 0 by symmetry. Thus, from (17), Ap,p = 0, and in order to 
obtain a contradiction it suffices to find a, /3 such that A,,, C 0. We distinguish two 
cases: 
(I) there exists a : P[a  E PI > 0 and P [ a  4 Q ]  > 0; 

(11) for all a : P [ a  E P]=O or P[a e Q]=O. 

In case (I), select p so that P [ a  4 Q, p E Q ]  > 0. Let E be the event a E P, a 4 Q, 
p E Q. Then P[E] > 0, and 

. 

P [ a  E Sa I E ]  = 1, P[a E S, I E ]  = 0. 
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By implication (18), P [ a  E Sa I P =p ,  Q = 91 Z P [ a  E S, I P = p ,  Q = q] for all p, 9, 
hence Aa,, < 0, which gives the required contradiction. 

For case (11) we consider the possible subcases: 
(i) there exists a, /3 : P [ a  E PI = 0, P[/3 6 Q] = 0; 
(ii) for all a : P[a e Q] = 0; 
(iii) for all a: P[(Y E PI = 0; (impossible!) 

contradiction. 

obtain Ea,p # 0 for any /3 # a. Case (iii) cannot arise. This completes the proof. 

In case (i), P[a  E S,] = O  and P[/3 E S,] = 1, so E,,#O, the required 

In case (ii), we have P[Q = %‘I = 1, so select any (Y E P for which P[a  E PI > O  to 

Proof of Theorem 3. An outline of the proof is as follows. We use the 
tree-chopping lemma to construct a family of comparably-sized disjoint subtrees of 
T, the sum of whose intrinsic parsimony lengths approximates L( T) via Lemma 4. It 
is important that in chopping up T the component subtrees grow in size sufficiently 
quickly, but not as rapidly as their number. In this way, we can apply a version of 
the central limit theorem, due to Liapunov, for double arrays of random variables, 
and verify its hypotheses using Proposition 1 and Theorem 1. 

The required central limit theorem (Serfling 1980) states the following. For each 
n, let Xnl, - - ,  X,,, be r = r (n)  independent random variables with finite pth 
moments for some p > 2. Let 

. 

If 

Bipn 2 E[IX,,, - EIXnj]lP]+ 0 as n + 03, 
i 

(20) 

then W,, = (2, Xnj - A,,)/* converges to the standard normal distribution, written 
W,, + N(0,  l),  as n + m. 

We apply this theorem as follows. Firstly, use Lemma 3 with k(n) = LnYJ where 
y > 0.5 to construct a leaf-covering forest F = {&, - - , T,} for T which satisfies the 
constraints prescribed by Lemma 3 for k = k(n). The number r of trees in F has the 
property that rln“ is contained in a fixed positive interval for all trees, where 
q = 1 - y. Let Xnj = I,(?), as in Lemma 4. Consider the two quantities 

where A,, and B,, are given by (19). Then has at most 2k(n)  - 2 leaves, and (3) of 
Theorem 1 shows that IE[IX,,, - IE[Xnj]lP] = O(nwn). Also by the lower bound on the 
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variance given by Proposition 1, we have B, 2 r8k(n) > c’n for some constant c’ > 0 
independent of n. Thus, 

which converges to 0 as n-+ 00 when p >2. Thus, condition (20) is satisfied. 
Furthermore, for each n, X n l ,  - - , X,, are independent. Thus, the central limit 
theorem described above applies, and shows that W, -+ N(0,l). Now, 

where A is defined by Lemma 4. Again, invoking the lower bound for the variance 
(given by Proposition l ) ,  this time for V [ L ] ,  and the upper bound from Lemma 4, 
1A1< r = O(n9), we see that the second term in (21) converges in probability to 0. 
Regarding the first term, note that, from the definition of A,  we have: 

V [ L ]  = B, + Var [A]  + 2 COV I A,  2 Xnj I . 
L j - J  

Applying the Cauchy-Schwarz inequality, and again using the bound 1A1< r = 
Q(n9), we have: 

V [ L ]  = B, + O(nZq) + O ( n “ a ) ,  

so that B, /V[L]  converges to 1 as n-00 because B,>c’n. Thus, 
converges to 1 in probability and so, because W, --* N(0,  l), we can apply Slutsky’s 
lemma (see, e.g., Durrett (1991)) and deduce that ZT+N(O, l), as required. 

4. The exact distribution and its mean and variance 

Application of Theorem 1 depends on knowledge of E[L] and V [ L ] ,  the mean and 
variance of L = L(T) .  In this section, we present efficient recursions for calculating 
these quantities, given T and its leaf distribution m. First, however, we give an 
algorithm that is polynomial in n for computing the exact distribution of L = L( T). 

Let P[T, n, k ]  denote the probability that L ( T )  = k. To obtain a recursive 
formula, we need more generally to consider, for each non-empty subset X of colors, 
the quantity 

I 

4 P,[T, n, k ]  = P[L(T)  = k and S ( T )  = X I .  

Now consider the ordinary generating function: 

Subdivide an edge e of T, and let T,, T2 be the two rooted subtrees of T, whose 
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roots are adjacent to the root vertex on e. Let nl, n2 be the marginal distributions of 
rr restricted to the leaves in K and T2, respectively. 

In view of 

(22) 

Lemma 1 we have: 

because we add 0 or 1 to the sum of the lengths of & and G depending on whether 
A n B # 0 or A f l  B = 0, by the forward recursion version of Fitch's algorithm. The 
summation is over pairs A, B satisfying the stated conditions. Note that if Ti has just 
one leaf i, then 

Thus, one can efficiently .calculate the polynomials {F,(T, n, x ) : X  # 0) by 
starting from the leaves, working up to the root, and storing all the intermediate 
polynomials generated in the construction. Then P[T, n, k] is simply the coefficient 
of x k  in 

Next we consider the complexity of this algorithm. For the subtree T, below u, we 
must evaluate (22) 2' - 1 times, once for each X # 0. The terms FA(T,, nl, x )  and 
FB(T', n2, x )  can be multiplied in time proportional to (max L(Tl))(max L(T,)) 
steps, which is less than or equal to the product of the number of leaves of the two 
trees. This product for tree T, will be denoted by n(u). The number of solutions to 
A * B = X i s  

Fx(T, n, x ) .  

Thus, Fx(T, n, x )  can be computed from {FA(K, n', x ) ,  A #0} and &(G, n2, x ) ,  
B # 0) in 0((2Ix1 + 3'-'Xt)n(u)) steps. Noting that Ex 2w1 + 3'-w1 = 3' + 4', we see 
that {Fx(T,, n, x ) ,  X # 0) can be obtained from the previous sets in 0(4'n(u)) 
steps. A straightforward inductive argument shows that, for any tree T with n leaves, 
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(This upper bound is realized by a ‘caterpillar’ tree). Thus, {Fx(T,, m, x ) ,  X # 0) 
can be computed in 0(4‘n2) steps. 

This recursive description allows the distribution of L( T) to be effectively 
calculated, even when n is quite large (say Id). At each vertex, we must compute Fx 
for all non-empty subsets X .  For c colors, this means 2‘ - 1 values of X .  While this is 
not a problem for c = 4, it would be a problem for c = 20. In any case, this recursion 
appears to be of little heip in determining what the limiting distribution is as n -+ CQ. 

Now, we describe a special algorithm designed to directly compute E[L] = E[L(T)] 
and V [ L ]  = V [ L ( T ) ] .  First we compute E[L]. 

Subdivide an edge of T, root T at this newly created vertex, and direct all the 
edges of T away from this root. For any non-leaf vertex u of T, let T, denote the 
subtree of T consisting of those vertices that are descendents of u. Note that T, is a 
rooted binary tree, with v as its root. Let 

Px[ T,] = P[S( T )  = XI. 

Because u is not a leaf, it has two immediate descendent vertices u’ and v”, and 
then, by Lemma 1, 

Thus we can calculate the set R = { P x ( T u ) : X # O ,  deg(u)> l}, starting with the 
following initial conditions on the leaves: 

Constructing R requires O(n4‘) steps, as T has O(n) vertices. Now, by Lemma 1, 

so that E[L] can be calculated in a further O(n3‘) steps from the set R constructed 
above; thus E[L] is computable in O(n4‘) steps. 

Recall that L = L’ + L” + D, where 

if S( T’) n S( T”) = 0, 
= {A: otherwise. 

Now L’ and L“ are independent and 

(23) V [ L ]  = V[L’]  + V[L”] + 2 Cov (D,  L’ + L”) + V [ D ] .  
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The quantity V [ D ]  is handled next. Since D has values 0 and 1,  V [ D ]  = P[D = 
1] {1  - P[D = l ] } ,  and 

P [ D  = 11 = P[S(T’)  = A]P[S(T”) = B] .  
A n B = 0  

The probabilities in the above summand are computed in the algorithm for E[L]. 
V [ D ]  is now computable in U(3‘) additional steps because 

Now we consider the covariance term in (23): 

cov (D, L‘ + L”) = IE[DL’] + IE[DL”] - E[D](IE[L‘] + E[L”]). 

The terms not already considered are IE[DL’] and E[DL”]. Now, 

= C, P[S( T”)  = B I Z  kP[L’ = k n {S( T‘) = A } ]  
A n B = D  k 

= P[S( T’) = B]F( T‘ ,  A ) ,  
A n B = 0  

where F (  T’, A )  is defined by the last equation. 

Breaking the sum into three parts, we obtain 

F( T, A )  = E {F(  T’ ,  B)P[S( T”) = C ]  + F( T“, C)P[S( T ’ )  = B ]  
B * C=A 

+ O(B n c = ~)P[s(T’)  = B]P[s(T”)  = c]}. 
Clearly this last equation allows us to recursively compute IE[DL’], and similarly 
E[DL”]. Hence Cov (D,  L’ + L”), and (23) for V [ L ]  can be computed. The number 
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of pairs B, C such that B * C = A  is 2HA' + 3'-H1, and therefore V [ L ]  can be 
computed in time O(4'n). 

We collect the results of this section in the following theorem. 

Theorem 4. Let T be any binary tree with n leaves, colored from a set of c colors. 
Then the exact distribution of L( T )  may be computed in 0(n24c) steps, and the mean 
and variance of L(T) ,  E[L] and V [ L ] ,  may be computed in O(n4') steps. 

5. An example 

Consider a 'bush' of height h, i.e. any binary tree Th for which the path from any 

from the set {a, p }  with xp = K, where 1 > K > 1. Clearly, by Theorem 3, the normal 
limit holds in this case. However, in this section, we show that this is an example for 
which the vertex set S(Th) is degenerate as the size of the tree tends to infinity; in 
particular, 

leaf to the root contains exactly h edges, and take the leaves of G to be colored 

lim P[S(Th) = {a}] = 1. 
h+= 

This behavior is in marked contrast to the case = 5, where, from Charleston 
and Steel (1995), 

P[S(Th) = {a}]  = P[S(Th) = {p}]  = f [ l  - (-0.5)h], 
and so 

lim P[S(Th) = X ]  = 4 for X = {a}, {p}, {a, p}. 
h-r- 

Thus, the distribution of S( Th) can be asymptotically degenerate even when the leaf 
coloration distributions are i.i.d. and bounded away from zero (Le. satisfy condition 

In order to substantiate our claim, write P[S( G) = XI as px(h). Deleting the root 
and its two incident edges from Th gives two bushes of height h - 1, thereby 
providing the following system of simultaneous recursions: 

(8)). 

P{,dh) =p?& - 1) + 2Pla)(h - l)Pb,P)(h - 11, 

P{P}(h) =P?P)(h - 1) + 2 P d h  - 1)Pb,Pdh - 111 

P{p,P)(h) =p%,p,(h - 1) + 2 P d h  - llP,dh - 1). 

Now, consider D(h)  = p{,)(h) - pip}(h). We have 
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But now, pin)@ - 1) + ~ { ~ } ( h  - 1 )  = 1 - p{p,p)(h - l) ,  and so, 

(24) D ( h )  D(h - 1)[1 +P{a,p}(h - 111. 
Thus 1 I D ( h )  5 D(h - 1) * sZD(1) > 0, and hence D(h)  converges to a positive 
limit. Hence, using (24), p{p ,p} (h)  converges to zero. Therefore, the third equation of 
the recursion shows that pfp)(h)p,)(h)+O. Since D ( h )  has a positive limit, this 
forces p{&) + 0 and p{,}(h)  + 1. 

4. Discussion 4 

Theorems 1 and 3 apply to one position of n aligned homologous sequences. The 
common assumption in phylogenetic analysis is that positions are i.i.d. For aligned 
sequences, the criterion is the sum of parsimony scores over all positions. In this 
case, the central limit theorem for i.i.d. random variables applies. Our Theorem 3 
shows that the individual terms making up this sum are themselves approximately 
normal, hence an excellent fit of this sum to the normal is expected. In contrast, 
Theorem 2 gives large deviation bounds for the tree that attains the minimum length 
(maximum parsimony) score over k positions of n aligned homologous sequences 
where we have no knowledge that such a central limit theorem applies. 

We note finally that the asymptotic normal limit distribution does not hold in 
general for non-binary trees. For a simple counterexample, take the star tree, i.e. 
take the tree with n + 1 vertices and n edges all of the form {uo, u }  for a 
distinguished (center) vertex uo. For the star tree, the minimum coloration 
extending a given leaf coloration is the one in which the center vertex is colored the 
most frequent color; the length L is therefore the number of leaves not colored with 
the most frequent color. Hence, in the case of two colors a and p, for k 5 n/2 ,  L = k 
when there are k or n - k leaves with color a. Assigning each color with equal 
probability at each leaf, P [ L  = k ]  = (32l-" if OS k 4 n / 2  and 0 otherwise. As this 
probability decreases from its maximum value to 0 when increasing [n /2]  by 1 to 
[n/2]  + 1, the distribution of L cannot converge to the normal. 
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