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Poisson Approximation and the 
Chen-Stein ethod 
Richard Arratia, Larry Goldstein and Louis Gordon 

Abstract. The Chen-Stein method of Poisson approximation is a powerful 
tool for computing an error bound when approximating probabilities using 
the Poisson distribution. In many cases, this bound may be given in terms 
of first and second moments alone. We present a background of the method 
and state some fundamental Poisson approximation theorems. The body of 
this paper is an illustration, through varied examples, of the wide applica- 
bility and utility of the Chen-Stein method. These examples include birth- 
day coincidences, head runs in coin tosses, random graphs, maxima of 
normal variates and random permutations and mappings. We conclude with 
an application to molecular biology. The variety of examples presented here 
does not exhaust the range of possible applications of the Chen-Stein 
method. 

Key words and phrases: Poisson approximation, invariance principle, 
Stein's method. 

1. INTRODUCTION 

The central limit theorem has enjoyed a long and 
much deserved celebrated history. Overshadowed but 
perhaps of no less importance are theorems involving 
rare events and Poisson distributions. In generalizing 
the central limit theorem, one examines the conse- 
quences of relaxing the assumption that the sum- 
mands are independent and identically distributed. In 
the same spirit, one may follow this path in the 
simplest possible Poisson limit theorem. 

THEOREM 0. Let Xi,,, *.., X,,, be independent 
indicator random variables with 

P(Xin = 1) = PO- 

Let Xn = ,=1 Pi,n and Wn = Z,=1 Xi,n If n -- oo, 
maxi-n Pi,n - 0, and Xn -A X > 0, then Wn converges 
in distribution to Z, a Poisson random variable with 
mean X. 

In what follows, we will write Z - (X) to mean 
that Z has a Poisson distribution with mean X, that is, 
P(Z= k) = e-XXk/k! fork= O, 1, .... 

Focusing on occurrences of events, that is, on indi- 
cator random variables, the generalization of the 
above limit theorem to the case of other distributions 
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is ruled out. However, generalization in the direction 
toward dependence is quite fruitful, as many impor- 
tant and interesting questions may be phrased in 
terms of sums of possibly dependent indicator random 
variables. In fact, our goal in this paper is to illustrate 
the broad range of problems that may be successfully 
attacked by a powerful Poisson approximation method 
due to Stein (1972) and Chen (1975). In Section 2, we 
present a review of this technique. 

In Section 3, we present three Poisson approxima- 
tion theorems based on the Chen-Stein method. In 
Section 4, these theorems are applied to a wide collec- 
tion of examples that reduce to questions about sums 
of possibly dependent indicator random variables. The 
intuition that such a sum has a Poisson limit, and 
that the finite sum may therefore be approximated by 
a Poisson random variable, is essentially the same 
here as it is for the simplest theorem above. There are 
a large number of events, each of which has small 
probability of occurring. If the dependence between 
events is somehow confined, then the sum W should 
behave as in the case of no dependence. In addition, 
not only is W close to Poisson, but the entire process 
of indicators is close to a Poisson process. In practice, 
however, using a Poisson approximation to compute 
probabilities involving the indicators is not sufficient. 
One also needs to know what error is made in using 
the approximation. That the Chen-Stein method sup- 
plies an upper bound on this error is its main utility. 

When the dependence structure is local, finding 
the Chen-Stein bounds involves the same effort as 
computing first and second moments of the total 
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number of occurrences. In some of the examples below, 
we show that the rate achieved by the Chen-Stein 
method is sharp for the distance between the depend- 
ent indicator process and the approximating Poisson 
process. 

The six subsections of Section 4 may be read inde- 
pendently of each other. Each is an example of using 
the Chen-Stein method to establish a Poisson approx- 
imation. In Section 4.1, we determine bounds on prob- 
abilities for the general birthday coincidence problem. 
In Section 4.2, we- study the distribution of the 
length of the longest run of heads in a sequence of in- 
dependent coin tosses. In Section 4.3, we consider the 
distribution of the number of cycles in a random 
graph. Next, in Section 4.4, we discuss the problem of 
approximating the distribution of the maxima of se- 
quences of normal variates. Section 4.5 brings the 
Chen-Stein method to bear on the problem of per- 
mutations with restricted positions; the last example, 
Section 4.6, considers cycles in random permutations 
and mappings. 

Our interest in Poisson approximation arose from 
problems in molecular biology and the statistical 
analysis of DNA. An example of the Poisson approx- 
imation method applied to this area is the subject of 
Section 5. 

2. THE CHEN-STEIN METHOD 

In 1972, Charles Stein published "A bound on the 
error in the normal approximation to a distribution of 
a sum of dependent random variables." The goal of this 
work was to show convergence in distribution to the 
normal and produce an associated Berry-Esseen type 
theorem for sums of dependent random variables. The 
technique used was novel. 

Stein's technique was free of Fourier methods and 
relied instead on the elementary differential equation 

(1) f ' (x) - xf (x) = h(x) - Nh. 

In equation (1) above, h is a function that is used to 
test convergence in distribution and Nh = E[h(Z)], 
where Z is standard normal. The connection between 
this equation and the normal distribution is the fol- 
lowing characterization. For W an arbitrary random 
variable and 

(Lf)(x) = f'(x) - xf(x), 

E(Lf ) (W) = 0 for all differentiable functions f such 
that EIZf(Z)I < o0, if and only if W itself has a 
standard normal distribution. It now seems plausible 
that if E(Lf )( W) is small for many finctions f, then 
the distribution of W is close to that of Z. If W happens 
to be a normalized sum of an appropriate collection of 
random variables, then an argument involving a Tay- 
lor expansion about the sum W with a given term left 

out shows that the above expectation is indeed small 
if f is sufficiently smooth. The argument may be 
completed by demonstrating that smoothness prop- 
erties assumed on h translate into the required 
smoothness properties on f through the differential 
equation (1). Stein's method has been applied with 
much success in the area of normal approximation 
(See, for example, Erickson, 1974; Chen, 1978; Chen 
and Ho, 1978; Bolthausen, 1984; Barbour and Hall, 
1984b; Barbour and Eagleson, 1985; Stein, 1986; Baldi 
and Rinott, 1989; Baldi, Rinott and Stein, 1989; and 
Barbour, 1990). 

There are other techniques that prove the central 
limit theorem without involving Fourier methods (for 
example, Breiman's 1968 treatment of the proof of 
Lindeberg, or Rosenblatt's 1974 treatment of a proof 
of Petrovsky and Kolmogorov). Stein's technique, 
however, is unique in that one may determine the 
bound on the error made in the approximation, a 
property of paramount importance in the examples to 
follow in Section 4. 

Equation (1) above appears in other connections 
involving the normal distribution. Defining ho (x) = 1, 
and h,+1 = Lhn for n = 0, 1, *--, one generates the 
Hermite polynomials, that complete orthogonal sys- 
tem of polynomials on R with measure e-x'/2 dx. One 
may use a multidimensional version of equation (1) to 
recover and generalize Stein's (1956) remarkable re- 
sult on the inadmissability of the normal mean in 
three or more dimensions (Hudson, 1978), or to study 
other questions arising in the estimation of the mean 
of a multivariate normal (Stein, 1981). Lastly we 
mention that Lf ' is the generator of the Ornstein- 
Uhlenbeck process, which has a normal stationary 
distribution. 

In 1975, Chen applied Stein's ideas in the Poisson 
setting. Corresponding to the differential equation in 
the normal case above, one has an analogous differ- 
ence equation in the Poisson case. With Z now P (X), 
if we define 

(2) (Lf )(x) = Xf (x + 1) - xf (x), 

then E(Lf)(W) = 0 for all f such that EIZf(Z)I < 
00, if and only if W - 9@(X). For W a sum of many 
Bernoulli random variables, each with small expecta- 
tion, an argument involving leaving a given term out 
of the sum demonstrates that E[(Lf)(W)] is small 
and so W is approximately Poisson. Again, one re- 
quires that properties of the "test function" h translate 
into the desired properties of f through the difference 
equation 

(3) Xf (x + 1) - xf (x) = h(x) -xh; 

here, gAsh = E[h(Z)], where Z - NX). It is in 
this way that bounds may be obtained on the 
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distance between the distribution of such a sum and 
the Poisson. Chen's work has resulted in advances in 
the theory of Poisson approximation and has helped 
to develop and improve upon a body of interesting 
applications and examples. (For theoretical develop- 
ments, see Barbour and Eagleson, 1983, 1984; Barbour 
and Hall, 1984a; Barbour, 1987; Arratia, Goldstein 
and Gordon, 1989; Barbour, Holst and Janson, 1988b. 
For applications and examples, see Barbour, 1982; 
Bollobas, 1985; Holst, 1986; Janson, 1986; Stein, 1986; 
Barbour, Holst and Janson, 1988; Heckman, 1988; 
Barbour and Holst, 1989; and Holst and Janson, 
1990.) 

3. POISSON APPROXIMATION THEOREMS 
In this section, we will state three Poisson approx- 

imation theorems, each giving bounds in terms of the 
total variation distance between two distributions. 

Here is the definition of total variation distance. 
Write 2 (Y) for the law or distribution of Y. For a 
real valued function h defined on the support of Yo 
and Y,, let 

11 hjj = sup I h(k)I. 
k 

Define the total variation distance between YO and 
Y,, a real number between 0 and 2, by 

Y1 1(Yo)-2Y(Y) 11 = sup I E[h(Yo)]-E[h(Y,]). 
11 h 11=1 

Equivalently, one may write 

Y (YO) - Y (Y,) 11 

= 2 sup I P(Yo E A) - P(Y1 E A)I. 
A 

= 2 min P(Yo ? Y,). 

In the last equality, the minimum is taken over all 
realizations of Yo and Y, on the same probability 
space. 

The total variation distance has the following 
statistical interpretation. Consider the following 
two hypotheses on the distribution of the random 
variable Y: 

Ho: Y (Y) = Y(Yo) 

versus 

Hi: Y (Y) = Y(Y,). 

If we adopt the test with critical region C rejecting the 
null hypothesis when Y E C and accepting otherwise, 
then for any C that satisfies the natural condition 
P(Y1 E C) - P(Yo E C), the sum of the type I and 

type II error probabilities ac + fc is 

P(YO E C) + P(Y1 ( C) 

= 1 - IP(Yl E C) - P(Yo E C)j. 

Hence, 

inf (ac + 13c) = 1-l/211 | (Y) - (Yo) 11 
c 

All examples and theorems that follow will be set in 
the following framework. There is a finite or countable 
index set I. For each a E I, let Xa be a Bernoulli 
random variable with pa. = P (Xa = 1) > 0. Let 

W X= Xa and X = EW. 
aEI 

We assume X E (0, oo). Z will denote a Poisson random 
variable with the same mean as W. For each a E I, 
suppose we have chosen Ba C I with a E Ba. We think 
of the set Ba as a neighborhood of a consisting of the 
set of indices j3 such that Xa and Xfi are dependent. 

Define 

(4) b= PaPt,6 
aEI j3EBa 

(5) b2 = X Pati, where Pain = E[XaXj], 
aEI aA#3EBe, 

and 

(6) b3 E fI E JX EX- pa I a-(X6: A (4 B I 1. 
aEl 

Loosely, b1 measures the neighborhood size, b2 meas- 
ures the expected number of neighbors of a given 
occurrence and b3 measures the dependence between 
an event and the number of occurrences outside its 
neighborhood. 

Computing b1 and b2 usually involves the same work 
as computing the first and second moments of W. In 
applications where Xa is independent of the collection 
IX,6: 1 (4 Ba t,, the term b3 = 0. When b3 = 0, b2-b, = 
E(W2) - E(Z2). Thus when b3 = 0 and b1 is small, 
the upper bounds on total variation distance given in 
the theorems below are comparable to the discrepancy 
between the second moment of W and that of the 
Poisson. 

Together with error bounds, our results are that 
when b1, b2, and b3 are all small, then 

1. Theorem 1. The total number W of events is 
approximately Poisson. 

2. Theorem 2. The locations of the dependent 
events approximately form a Poisson process. 

3. Theorem 3. The dependent events are almost 
indistinguishable from a collection of inde- 
pendent events having the same marginal 
probabilities. 
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The following theorems are proved in Arratia, Gold- 
stein and Gordon (1989). 

THEOREM 1. Let W = Z aEI Xa be the number of 
occurrences of dependent events, and let Z be a Poisson 
random variable with EZ = EW = X < oo. Then 

II5t(W) - 2(Z)II 

c 2 (b, + bi) 
1eX 

+ b3(1 A 1.4X-1/2)] 

< 2(b1 + b2 + b3), 

and 

I P(W = 0) - e-A 
< (b1 + b2 + b3)(1- e-N)/ 

< (1 A X-1)(b, + b2 + b3). 

The next theorem is a process version of the above 
theorem. 

THEOREM 2. For a E I, let Ya be a random variable 
whose distribution is Poisson with mean Pa, with the 
Ya mutually independent. The total variation distance 
between the dependent Bernoulli process X (Xa )aEI, 

and the Poisson process Y on I with intensity p(.), 
Y (Ya)aEI satisfies 

112(X) - 2'(Y)II c 2(2b1 + 2b2 + b3). 

Theorem 3 compares the dependent Bernoulli proc- 
ess X with an independent Bernoulli process X'. Since 

a Pa c b1, Theorem 3 implies that if the Chen-Stein 
method succeeds with b1, b2 and b3 all small, then in 
the sense of total variation distance the dependent X 
process is close to being independent. 

THEOREM 3. For a E I, let X' have the same 
distribution as Xa, with the Xa mutually independent. 
The total variation distance between the dependent 
Bernoulli process X (Xa)aEI, and the independent 
Bernoulli process X' (Xa )aEI having the same mar- 
ginals, satisfies 

112'(X) - 2(X')II c 2(2b1 + 2b2 + b3) + 2 Epa. 

Direct elementary computation shows that if X is 
Bernoulli and Y is Poisson, with EX = EY = p E 
[0, 1], then the total variation distance 

11 Y(X) - Y(Y) 11 

= j1-p-e-PI + lp-pe-PI + I0-P(Y>1)j 

c 2p2. 

Thus X and Y can be coupled, i.e., constructed 
on a single probability space, so that P(X ? Y) = 
1/2 1 27(X) - 27(y) 11 C p2. For the Poisson process Y 
of Theorem 2, and the independent events process X' 
of Theorem 3 above, coupling each coordinate shows 
that 

Y(Y) - 2(X') fl c 2P(Y $ X') ' 2 Zpa. 

Thus, Theorem 3 above is an elementary corollary of 
Theorem 2, using the triangle inequality 

1 ?(X) - 5 (X') 11 

' II Y(X) - y (Y) I + II-(Y) - Y2(X') I. 
Since E pa is small in typical applications, Theo- 
rem 2 is "almost" equivalent to Theorem 3. More 
precisely, the weakening of Theorem 2, in which the 
bound is increased by 4 i p2, is an elementary corol- 
lary of Theorem 3, using the triangle inequality. 

3.1 Compound Poisson Process Limits 

The Chen-Stein method is useful for situations in 
which occurrences happen in clumps and the distri- 
bution of number of clumps is approximately Poisson. 
In many situations, the distribution of the number of 
occurrences is approximately a compound Poisson 
distribution and the dependent process itself is close 
to a mosaic process in which locations are put down 
according to a spatial Poisson process and then at 
each location a type is assigned in some independent 
and identically distributed way. (See Aldous, 1989, or 
Hall, 1988.) 

This situation can be handled by the Chen-Stein 
method. All that needs to be done is to enlarge the 
index set so that it keeps track of the types as well as 
the locations of the clumps. In these situations, Theo- 
rems 2 and 3 are a tool for showing that a dependent 
process is close to a mosaic process. 

Here is a general overview; we will show how these 
considerations apply to the example of long head runs 
in Section 4.2. Start with a successful setup for the 
Chen-Stein method: an index set I, events Xa for 
a E I and neighborhoods B (a) for a E I such that 
b1, b2 and b3 can be shown to be small. Suppose 
that each event tXa = 1 can also be associated 
with a "type" chosen from some countable set T. 
Our new, enlarged index set will be I* I x T, and 
for (a, i) E I*, 

Xa,j Xa 1 (the occurrence at a is of type i), 

so that for each a E I, there is a partition: 

(7) Xa = E Xa.,j 
iET 
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The new neighborhoods B (a, i) will be based on the 
old neighborhoods: 

()B(at, i)--B(a) x T 

= 1(d,]j) E I*:: E B(a), j E T}. 

The new value b* is equal to the old value b1: 

bl* = S E (EXa,j)(EXa,j) 
aEI i,jET 

+ i i (EXa, j) (EXj6,j) 
a#/3EB(a) i,jET 

/ ~~~~2 
=-Xi ( Xi EXa, ) 

aEI iET 

+ i ( EXa,i)(j EX6,j) 
a0flEB(a) iET jET 

- fi (EXa)2 + i (EXa)(EXj3) = bi. 
aI at#f3B(a) 

Similarly, thanks to the partition structure (7) and 
the neighborhood structure (8), the value of b2 is 
unchanged: 

b* = b2. 

In general b3*- b3, but in many examples the neigh- 
borhoods Ba capture all of the dependence and it is 
easily verified that b3* = b3 = 0. 

Because of the partition structure (7), and because 
the Poisson process Y may be similarly constructed 
from the Poisson process Y* by setting Ya = ji Y,i 
for each a, the total variation distance for the proc- 
esses involved in Theorem 2 cannot decrease: 

11 Y(X) - (Y) 11 11 Y(X*) - Y(Y*)II 

Here, X* = (X,j)JEI,iET is the dependent events proc- 
ess, with values in 1f, lIXT, and Y* = (Ya,J)aEI,iET is 
the Poisson process, with values in {0, 1, 2, . . . IXT, 

having independent components and the same inten- 
sity as X*. 

4. APPLICATIONS 

We demonstrate the utility of Poisson approxima- 
tion by applying the above results to six examples, all 
of which reduce to questions about the number of 
occurrences of possibly dependent events. 

4.1 The Birthday Problem 

We first learned about Chen (1975a) from a lecture 
on the birthday problem and its variants by Persi 
Diaconis, who also suggested references on the birth- 
day problem: Diaconis and Mosteller (1989), Janson 

(1986), Holst (1986) and Stein (1987), which gives 
proofs of more general results using similar 
techniques. 

In the usual formulation of the birthday problem, 
we assume that birthdays of n individuals are inde- 
pendent over the d days in a year and compute the 
probability that at least two share the same birthday, 
that is, that there is at least one two-way coincidence. 
In the special case where birthdays are uniform, there 
is a simple exact formula. Letting W denote the num- 
ber of birthday coincidences, that is, the number of 
pairs of people that share a birthday, we have the 
probability of no coincidence given by 

n-1i i P(W=O)= Ii (1--). 
i=1 d 

If one were now interested in computing the probabil- 
ity of, say, exactly m two-way coincidences, or the 
probability of at least three people sharing the same 
birthday, or the probability that there are two people 
born within a week of each other, or probabilities 
under a nonuniform birthday distribution, then the 
counting arguments to arrive at exact formulas be- 
come much less tractable. However, extremely good 
approximate answers are quite easy to obtain using 
the Poisson approximation and one may use Theo- 
rem 1 to give an upper bound on the error. 

Let us begin by considering the general birthday 
problem of a k-way coincidence when birthdays are 
uniform. Let 11, 2, * , n} denote a group of n people, 
and let the index set I--a C 11, 29 .. * , n}: I a I = k}1. 
For example, in the classical case k = 2 and I is the 
set of all pairs of people among whom a two-way 
coincidence could occur. Let X, be the indicator of the 
event that the people indexed by a share the same 
birthday. The total number of coincidences is now 
given as the sum of dependent indicator random vari- 
ables, W = 2X,. 

Because W is the sum of many Bernoulli random 
variables, each with small success probability pa = 
d 1-k, it seems reasonable to approximate W as a 
Poisson random variable Z with mean X = EW. Easily 
then X = (*n)d 1k and the probability of no birthday 
coincidence is approximately 

P(Z= O) = e- = exp-(k)d1}. 

For the classical case of a birthday coincidence in a 
year of d = 365 days, it is widely known that n = 23 
is the least number of people required to make such 
a coincidence more likely than not; amusingly, 

2= (2)/365 is equal to ln(2) to 4 digits. 
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The probability of coincidence is approximated con- 
servatively by the Poisson distribution in this case; 

P(W = 0) 0.492 < 0.499998 

exp(-X) = P(Z = 0). 

The approximation is always conservative when birth- 
days are uniform; 

n-1 /; n-i1 

P(W =0) = II (1 < expt E i} 

= e- = P(Z = 0). 

In addition, the probability of coincidence is mini- 
mized when birthdays are uniform (see, for example, 
Olkin and Marshall, 1979), making the Poisson ap- 
proximation, assuming uniformity, conservative no 
matter what the true underlying distribution may be. 

Poisson approximation using X computed from the 
true distribution is not necessarily conservative when 
birthdays are nonuniform. One class of examples may 
be constructed by considering a distribution where 
one day has probability e and all other days divide 
the remaining probability uniformly, each with mass 
(1 - e)/(d - 1). In particular, for d = 7 days, 
n = 5 individuals and e = 2/3, we have 

X= + 6 = 4.63 

and 
P(W= 0) = 0.0118 > 0.0098 

= expl-EW} = P(Z = 0). 

We may bound the error in making the Poisson 
approximation with the help of Theorem 1 in Section 
3. Recall that Ba is a "neighborhood of dependence" 
for the random variable Xa. Note that, if a n ,s = 0, 
then Xa and X# are independent. This suggests that 
we should take the set 

Ba = { 3 E I:a n / 5 0} 

as our set of dependence. With this choice 

E I E{Xa-pa - pT (X,3: ABa) =?0 

by independence; hence b3 = 0. 
Since all pa. are identical, we calculate 

bi = III Ba lpa 

(n){() (n k )}22k 

Specializing now to the case k = 2, we may use that 
Xa and X# are pairwise independent, and that there- 
fore pai,, = PaP3. Hence, 

b2 = III(IBaI - l)p A = bi(IBaI - 1) bl? 1) D-,q = 
IBa 

Putting the above together, one finds the following 
bound for the error in approximating P(W= 0) by 
e- in the case k = 2: 

P(W= 0)-e-AI, (b, + b2) 1 

1 n 
(4n 7) 

1 

Although it is more difficult to exactly calculate the 
probability of a triple birthday coincidence, one may 
apply Poisson approximation with about the same 
ease as for the classical case. Suppose that we wish 
to compute the probability that in a group of 50, 
three or more share a birthday. We have then that 

D= ( /d2 and the approximation P(W = 0)-e-X; 
hence, in a group of 50, the probability that there 
is at least one triple coincidence is about 1 - = 
1 - 0.863 = 0.137. 

To determine a bound on the error, one may 
calculate 

bi= IlI IBal Pa 

(n){() (n 3 )}d-4 

and, for a given a, breaking up B - Ia into those ,B 
such that n ,B n a I = 1 and those for which n d n a = 
2, we see 

b2= II{3( 2 )d4 + 3(n - 3)d3}. 

This shows the approximation above has an error of 
no more than 

(b, + b2)(1- e-X)/X = 0.0597, 

so that 

0.803 c P(W = 0) c 0.923 

Without too much difficulty, one can write down 
the exact formula for the probability of no triple 
coincidence. In order for there to be no triple coinci- 
dence, the d days of the year must be partitioned into 
h days where there are no birthdays, i days on which 
a single individual was born, and j days where exactly 
two individuals share a birthday. A factor of n!/2 j is 
needed to count the number of arrangements of n 
persons into such a configuration of i + j days. Hence, 

P(W=0)=d- +2n (,c~ )n PX W =O) = d 
i+2j n (, 

is j) 2jl 

For n = 50 and d = 365 we have that P(W = 0) = 
0.8736, for an actual error of 0.8736 - 0.8632 = 
0.0104 < 0.0597, the Chen-Stein bound on the error. 

For general k, in the case where birthdays are uni- 
form, it is possible to consider a slight improvement 
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on the choice on Ba. For a, ,B E I, knowing only the 
birthday of one member of a, say min(a), does not 
change the probability that XaXg = 1. Hence one 
could take 

Ba= {E I: (a - min(a)) nfl 0}, 

which is strictly smaller than the old choice of Ba; 
one still has b3 = 0. Working through the calculations, 
one finds only a slight improvement in the error 
bound. For example, for the case of the triple coinci- 
dence with n = 50 and d = 365, the bound improves 
from 0.0597 to 0.0582. The change is slight because 
the main contribution to the upper bound comes from 
the part of b2 where a nf = 2; this contribution 
remains unchanged using the smaller Ba. 

In the general case of computing k-way coincidences 
when birthdays are uniform, the Chen-Stein method 
gives the best possible rate of convergence of the total 
variation to zero. Take n, d -* oo in such a way that 
X/1 stays bounded away from zero and oo, which 
we denote by X >_ 1. This condition implies that 
nk dk"l and hence that b, = I2IBaI/ Il n"1. 
The order of the Chen-Stein bound here is the same 
as the order of b2, 

k-i n kt k 1j2 

b2 = 
E +j-2 

j=1 kkl 

The dominant contribution to b2 comes from pairs 
(a, /) with a n A = j = k - 1, and b2 is of the order 
nl+kd -k n/d n-1/(k-1). Thus the Chen-Stein 
method yields that the total variation distance decays 
at a rate no slower than 0(n-4/(k-1)). 

A lower bound on the total variation distance in 
the case of a k-way coincidence can be given by 
considering the event E that k + 1 individuals 
share a birthday, that is, that there exist a, /3 of 
size k with I a n /3I = k - 1 such that XaX: = 1. 
The actual probability P(E) can be bounded from 
below by the first two terms of the inclusion- 
exclusion formula; the first term is dominant and of 
the order (k+4)dk> n/d n-1 /(ki) Letting E' 
be the same event for the independent process, we 
have 

P(E ) Z E .a=k,j,t6l=k,jan,t6l=k-1 EXa'X# 

= n((D2-2k ) - 
1(k1 

0((k+l )d 2 = o(n-/-1 

Thus, the order of the total variation distance is at 
least as large as I P(E) - P(E') I P(E) n->/(k-1). 

Hence, the Chen-Stein method yields the correct or- 
der of the rate of decay of the total variation distance 
to zero. 

4.2 The Length of the Longest Head Run 

Consider many independent throws of a coin of 
success probability p, 0 < p < 1. No matter what p, 

there will be some stretches where the coin comes up 
heads every time. To begin the analysis of the distri- 
bution of Rn, the length of the longest of these head 
runs, first note that for a test length t, appropriately 
chosen, one sees a head run of length t begin at a given 
position a only with small probability. As the number 
of positions where such a run could occur is large, a 
Poisson approximation should be valid. 

However, one must first adjust for the fact that runs 
of heads occur in "clumps"; that is, if there is a run of 
heads of length t beginning at position a, then with 
probability p there will also be a run of heads of length 
t beginning at position a + 1, with probability p2 a 
run of heads of length t beginning at position a + 2 
and so forth. By counting only the first such run, the 
runs now counted are no longer clumped and, indeed, 
their number is Poisson in the limit. This is an ex- 
ample, with average clump size 1 + p + p2, * *.., of the 
"Poisson clumping heuristic" as described by Aldous 
(1989). By using the fact that having no runs of length 
t is equivalent to having the longest head run shorter 
than t one may approximate the distribution function 
of the length of the longest run of heads. 

Let then C1, C2, * * * be independent Bernoulli ran- 
dom variables with success probability p, and let 
Rn be the length of the longest run of heads begin- 
ning in the first n tosses. Set the index set to be I = 
I1, 2, . . *, n 3; the elements of the index set will denote 
locations where long head runs may begin. A head run 
of length t or more begins at position a if and only if 
the indicator random variable 

a+t-1 

Ya= f Ci 
i=a 

takes the value one. To declump, that is, in order to 
count only the first head run in a clump, we take 
Xi = Y1 and 

Xa = (1 - CO1) Ya, a = 2, 3, .. *, n. 

For a = 2, 3, . .. , n, Xa will be one if and only if a run 
of t or more heads begins at position a, preceded by a 
tail. If we had ignored clumping and simply taken 
Ya = Xa, we would have b2 not tending to zero, and, 
in fact, a Poisson approximation would not be valid. 

Write now the total number of clumps of runs of 
length t or more as the sum of dependent indicator 
random variables 

W = z Xa. 
aEI 

The Poisson approximation heuristic says we should 
be able to approximate the distribution of W by a 
Poisson random variable with mean 

X = (t) = EW = pt{(n - 1)(1 - p) + 1. 
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In particular then, since we have as events 

{Rn < ti = {W =O0 

the distribution function of Rn may be approximated 
as 

P(Rn < t) = P(W = 0) _ e 

The test length is dictated by requiring X to be 
bounded away from 0 and oo; this is equivalent to the 
condition that t - log,/p(n(1 - p)) is bounded. In fact, 
for integer t, with c defined by 

t = log,/p ((n - 1)(1 - p) + 1) + c, 

the above approximation predicts that 

P(Rn < t) _ e-An(t) = exp(_pc), 

that is, that Rn - logl/p((n - 1)(1 - p) + 1) has an 
asymptotic extreme value distribution. This is almost 
so; the limiting distribution is complicated by the fact 
that Rn can assume only integer values. However, this 
fact does not complicate the approximation itself. 

For example, with n = 2047 and a fair coin with 
p = 1/2, we look for runs of length log,/,((n - 1) 
* (1 - p) + 1) = log2(2046 * 1/2+ 1) = 10. Would a 
run of length, say t = 14 be unusual? By using the 
Poisson approximation, we see that P(R2047 ' 14) = 
1 - P(R2047 < 10 + 4) may be approximated by 
1- exp(-(?/2)4) = 0.06059. 

To assess the accuracy of the above Poisson ap- 
proximation, we apply Theorem 1. Define Ba = 
I#, E I: I a - A l < t I for all a. Since Xay is independent 
of - {X9: ,B 4 Ba }, we have b3 = 0. Furthermore, if 1 < 
I a - l < t, we cannot have that both Xa and X# are 
1, since we have insisted that a run begin with a tail; 
therefore Pat3 = 0 for ,B E Ba ,B 3 a, hence b2 = 0. 

In order to calculate bi = a E 6GEB, PaPfa we break 
up the sum over f E8 Ba into two parts, depending on 
whether or not Pi appears. This yields the bound 

(9) bi < X2(2t + 1)/n + 2Xpt. 

Theorem 1 now reveals that the Poisson approxima- 
tion is quite accurate for the example considered 
above; the probability computed is correct to within 
bi < 6.297 x 10-5, so that 

0.060527 c P(R2047 ' 14) < 0.0606453. 

4.2.1 Compound Poisson process limits and 
long head runs 

What follows is a concrete illustration of the dis- 
cussion in Section 3.1. Specifically, we show how the 
problem of long head runs may be treated to obtain a 
compound Poisson limit for the random variable 

U 3 CaCa+i ... Ca+t-1i 
aEI 

which counts the number of locations among the first 
n at which a head run of length at least t begins. As 
we have noted, these locations tend to occur in clumps; 
W counts the number of clumps and is approximately 
Poisson in distribution. The size of each clump, minus 
one, is the length by which the associated head run 
exceeds t and is distributed as a geometric random 
variable with parameter p. The clump sizes are mu- 
tually independent of each other and approximately 
independent of the total number W of clumps, so the 
distribution of U is approximately Poisson com- 
pounded by geometric. Furthermore, the clump sizes 
are approximately independent of the locations of the 
clumps, so that we have approximately a mosaic proc- 
ess. The Chen-Stein method gives us total variation 
bounds to make all of this precise. 

As described in Section 3.1, we will enlarge the index 
set from I to I* = I x T in order to keep track of the 
types of clumps; the values of b*, b* and b* are given 
by (4), (5) and (6) using I* and the new neighborhoods 
Ba*, defined below. Here we take T = I0, 1, *, t I as 
the set of possible types of clumps. Any run of exactly 
t + i heads for 0 c i < t corresponds to a clump of size 
i; a run of 2t or more heads corresponds to a clump of 
type i = t. The interpretation is that each of the Xa 
runs of heads of length at least t starting at a can 
independently be assigned a type i, corresponding to 
a run of exactly t + min(i, t) heads. (For the purpose 
of proving convergence of U to a compound Poisson 
limit, the upper bound t could be replaced by anything 
tending to infinity as n grows.) For a E I, i E T let 

X.,j e(1 - 1la > 1jCa_i)CaCa+i 

* Ca+t+-i (1 - lti < tlCa+t+j), 
so that for all a E I, Xa, = >iET X, i. Using the notation 
introduced in Section 3.1, in order to have b* = 0, we 
expand the neighborhoods by a factor of two: Let 
Bo* 3 EI: Ia - < 2t}, which yields b* < 2bj, 
where an upper bound on bi is given in (9). We have 
b* < bO. Applied to the setup with index set I x T, 
Theorem 2 yields the result 

(10) 1/2?II(X*) - (Y*) 
c 2b,* + 2b* + b3* < 8bj. 

In the example with n = 2047, t = 14, p = 1/2 that we 
treated above, this upper bound is 8 x 6.297 x 10'. 
The Poisson process Y*3 (Y, i )aEI,iET may be viewed 
as a refinement of the Poisson process Y= (Ya)aEI, 
with Ya = hET Yaj for each a E IL The distribution 
of the type i of each clump is exactly geometric (p), 
truncated at height t. 

To show that U is approximately compound 
Poisson, consider any set A C {0, 1, 2, .* and let 
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h be the functional 

h(X*) = 1A { (j + 1)X,i} 

h(Y*) = 1A { ( + 1) Ya,i} 

First, observe that U equals h(X*), except possibly 
on the event that there is a head run of more than 2t, 
so that 1/211y(U) - 5(h(X*))Il C np2t. Second, 
observe that the distribution of h(Y*) is exactly the 
compound of Poisson (Xn(t )) by the distribution "one 
plus a geometric (p), truncated at t." If we write G for 
the compound Poisson (Xn (t )) by the distribution "one, 
plus a geometric (p)," (without truncation), then the 
net result is 1/2II 2(U) - 2 (G)II c 8b, + np2t + Xpt, 
where the last error term, Xpt, bounds the truncation 
error. 

4.3 Cycles in Random Graphs 

In this section, we apply the Chen-Stein method to 
a problem treated in Takacs (1988), who considers the 
total number of cycles in a random graph with n 
vertices, in which any pair of vertices, independently 
of all other pairs, is connected by an edge with prob- 
ability p = p/n E (0, 1). The main result of Takacs is 
that for fixed p E (0, 1), as n -> oo, the limit distribution 
of the number of cycles is Poisson with parameter 

2 \1 p 2 4 

The Chen-Stein method gives another proof of the 
Poisson convergence and also yields an upper bound 
on the distance to the Poisson. With no additional 
work, our Theorems 2 and 3 give approximations to 
the entire process of indicators of cycles. Theorem 3 
confirms and quantifies the notion that the cycles 
occur jointly with a distribution that is close to that 
of mutual independence. The Poisson process in Theo- 
rem 2, indexed by individual cycles, is a refinement of 
a Poisson process, indexed by lengths, which approx- 
imates the process which counts the number of cycles 
of each length. This latter approximation supplies 
answers to questions such as: what is the probability 
that there are more cycles of even length than of odd 
length, what is the distribution of the number of 
different lengths represented by cycles, what is the 
distribution of the sum of the lengths of all cycles, and 
so on. Similar questions are considered by Wilf (1983) 
for the case of random permutations. 
For j 2 3, let Ij be the set of potential cycles of 

length j, where the vertex set is 11, 2, ... , n }. We have 
I I = (n)j/(2j), where (n)j (2)j! counts the num- 

ber of ways to select j distinct vertices in order, and 
the factor 1/(2j ) appears since, for j > 2, a permuta- 
tion of j vertices corresponds to a choice of a cycle in 
Ij together with a choice of any of two orientations 
andj starting points. For a E Ij, let Xa be the indicator 
of the event that the cycle a is a subgraph of our 
random graph, so that EX,, = pj = pI/n'. Let Xj be 
the expected number of cycles of length j: 

PJp (n)j Xj1E 2 Xa=lIjlEX,=2 j 
aEI(j) 2j n' 

with Xj increasing up to pi /2j as n oo. 
Let I U3cscn Ij be the set of all possible cycles, so 

that W e aEI I, is the total number of cycles, with 

EW= Xj 

PI(n)j 1 Pi = z P ) = a(p). 
3 jsn 2] nJ. 2 3 --j i 

We define the neighborhoods Ba for a E I by 

Baf3-{ E I: a and 13 have at least 

one edge in common}, 

so that b3 = 0. Observe that here, a and d are neighbors 
if and only if Xa and X, are strictly positively corre- 
lated, since 

(11) E(X.aXfl) = p-(Iedgescommontoaand) EX.EXO 

The result of using the Chen-Stein method in the 
above setup is summarized by the following theorem, 
whose proof we give at the end of this section. 

PROPOSITION 4. For a E I, let Xa, be the indicator 
that a occurs as a cycle in a random graph on n points, 
with p = p/n, let YaF be Poisson, and let X' be Bernoulli, 
with EYaf = EX' = EXa, with all of the Ya, and 
X' mutually independent. Write X = (Xa)aEI, Y- 
(Ya )aEI, and X' (X' )a,EI for the process of indicators 
of cycles, a Poisson process of the same intensity 
and an independent events process, respectively. 
For each positive 6 < 1, uniformly in 0 < p < 6, 
as n -- 00, the total variation distances between 
the distributions of the processes X, Y and X' 
are all O(n-1). Furthermore, the rate n-1 
is sharp in the sense that lim inf n 11 Y (X) - ? (Y) 11, 
lim inf n 11 Y (X) -Y (X') 11 > 0. 

The lower bound at the end of Proposition 4 arises 
by considering the probability that our random graph 
contains any pairs of triangles sharing-a common edge. 
The expected number of such pairs is (p/n)5(n)4/4 - 
n-1p5/4, and the second term of the inclusion- 
exclusion series is 0(n-2), so this gives the asymp- 
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totic probability of at least one such pair. Thus 
Eg(X) - n-rp5/4, where g is the functional with 
g(X) = 1(1 ' 2ad,EI(3),I#EB(a) XaX,). For the Poisson 
and independent events process we have 

Eg(Y), Eg(X') c , EX,aEX#= 0(n 2). 
a,#eI(3),#eB(a) 

Thus 

lim inf n 11 Y (X) - Y (X') 1 

2 lim n (Eg (X) - Eg (X')) 

- p5/4 > 0. 

Notice also that b2 2 E(# pairs of neighboring trian- 
gles) so that b2 decays no faster than 0(n-1). 

For j 2 3, let Wj1 ,Eu(j) Xa, Zj aeI(j) Ya, SO 
that Wj is the number of cycles of length j, and Zj is 
a Poisson random variable having the same mean as 
W,. For j > n, Wj is identically zero. Thus W- 
(W )j3 is the process that counts the number of cycles 
of each length, and Z (Zj )j,3 is a Poisson process 
with independent components. Since there is a func- 
tional h(.) such that W = h(X), Z = h(Y), we have 
as a corollary to Proposition 4 that 

(12) 11 (W) - 2'(Z) 11 
c 11 Y (X) - 2 (Y)I1 = 0(1/n) 

uniformly in p c a < 1. The convergence of the finite 
dimensional distributions of W to their independent 
Poisson process limit is given in Bollob'as (1985 
page 79). 

We now show how the Poisson process Z supplies 
an answer to the question: what is the probability that 
there are more cycles of even length than of odd 
length. Consider the functionals (one for each value 
of n) defined byf (c3, C4, Cn (C4 + C6 + > 

C3 + C5 + * * * ), so that our question is: what is the 
value of Ef (W). Our answer is: approximately Ef (Z), 
with error at most 1/2 112(W) - (Z)I, since the 
functional f takes values in [0, 1]. 

One may simplify the answer further at the expense 
of some additional error of approximation as fol- 
lows. The Poisson parameter for Z1, namely Xj = 
n i(n)jpj/(2j) (which is zero for j > n), can be 
replaced by its limit value, p i/(2 j ), for j = 1, 2, 
The total variation error introduced by this approxi- 
mation is of the same order as the increase in expec- 
tation, namely 

(13) j ) 

which for fixed p is 0(1/n), the same as the 
error controlled by the Chen-Stein method. Now 
Zodd Z3 + Z5 + and Zeven -Z4 + Z6 + *. are 

independent, Poisson random variables with means 

aodd(p) EZodd 2(- + 3 ) 

n1 _+__ _ 

(14) 4\l- p 4' 

aeven(p) EZeven 24 6 

11/1 A p 

4 1 - p2J 2 

We have just proved that the probability that there 
are more cycles of even length than of odd length 
converges to P(Zeven > Zodd), where Zeven and Zod are 
independent Poisson, with parameters aeven(p) and 
aodd(p), respectively. Furthermore, the distance be- 
tween the actual probability for the graph on n vertices 
and its limiting value is no greater than the sum of 
(12) and (13). 

The exact expression for b2 is complicated; below 
we give an upper bound. In the second line of the 
bound (15), j -3 is the number of vertices in a, k- 1 
is the number of shared segments common to a and A 
and 1 - 0 is the number of vertices in : which are not 
on the common segments. Formally, a shared segment 
of a and : is an unoriented, maximal sequence of 
edges that occur consecutively in both a and fA. Each 
of the k common segments corresponds to a factor of 
p/n in E(XarX) that is not matched by a choice of 
one of n vertices, which suggests that for p not too 
large, the main contribution to b2 comes from the case 
k = 1, and b2 = 0(1/n); we prove this below for 
p < 1/2. Unfortunately, for p sufficiently close to 1, 
both b2 and the second moment of W blow up expo- 
nentially fast as n -- oo. In these cases we must resort 
to a truncation argument to prove Proposition 4. 

b2= i X E(Xa.X) 
aEI I#EB(a)\JaJ 

k 
(15) 3z5n2 (n) j 

2 n (2k 

3jn 2] In k-1\/\k 

X (n(k + 1 - 1)!2 

Here are further details for explaining the upper 
bound (15). Consider for example, 

a = (1 2 3 4 5 6 7 8) 
and 

A=(1 2 3 8 9 5 4 6 7), 
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which has i = 8 vertices in the cycle a. There are 
k = 3 common segments without regard to order of 
transversal; these are (123), (45), (67). The three 
common segments share the six common endpoints 
11, 3, 4, 5, 6, 7}. There are 1 = 2 vertices of : not on 
the common segments; they are 18, 91. The factor 
2U(2k) is the number of ways to choose the k common 
segments from a, since k segments must have 2k 
distinct vertices as endpoints, and a set of 2k end- 
points determines two sets of k segments. In our 
example above, the other choice of segments using the 
same six endpoints is (34), (56), (78 1). The factor 
(k + 1 - 1)!2k-1 is the number of ways that the k 
common segments from a and the 1 additional vertices 
can be arranged into a cycle fA, choosing orientations 
for each segment after the first. Not all of these 
arrangements correspond to a choice of : sharing the 
given k segments: in our example, if the segment (4 5) 
were given the opposite orientation, A would be 
changed into fd' = (123894567), with a and fd' 
classified as sharing not k = 3 but rather k = 2 
segments, namely (123) and (4567). Another reason 
that our bound on b2 is an overestimate is the factor 
(n 2k) for choosing 1 additional points for fA. If i is the 
actual number of points used in the k common seg- 
ments, with 2k c i c j, then the number of ways to 
choose additional points for A is (LVi) < (n 2I). 

To see that b2 and therefore EW2 _3 00 for 
p sufficiently close to 1, consider g(n, k, m, p), 
the contribution to b2 from pairs of cycles a, A, 
each of length 2k + m, and sharing k common seg- 
ments, each consisting of a single edge. Observe that 
g(n, k, mg p) = p3k+2mg(n, k, mg 1). Let 

f (a, b) = lim n-1log g(n, LanJ, LbnJ, 1), 
n-i-oo 

where a > 0, b > 0, 2a + b < 1. 

From a calculation below, 

f (a, b) = alog2- (3a + 2b) + L(1 -2a) 
- L(a) + 2L(a + b) - 2L(b) - 2L(1 - 2a -b) 

where L(x) = x log(x). Numerical search gives us, for 
a = .02, b = .1, that 0 < f (a, b) = .00398 * . .. Thus 
for p sufficiently close to 1, g(n, L.02nJ, L.lnJ, p) 
and hence b2 and the second moment of W blow up 
exponentially as n -- oo. To derive the formula above 
for f (a, b), we start with an asymptotic formula for 
g(n, k, m, p), with n, k -+ 00: 

g(n, k, m, p) 

P+2m (n)2k n - 2k\ 
n k!2k m 

x (k + m - 1)! 2k-1)exp(-,u). 

In the above formula for g, the first factor is E(X,afXo). 
The second factor counts the number of ways to form 
k nonoverlapping edges to serve as common segments 
for a and fA. The third factor counts the number of 
ways to pick m additional vertices for a, to order the 
k edges and m vertices, and to orient the k edges, and 
to do the same for fA. The final factor, an exponential 
that is bounded away from zero, is the Poisson ap- 
proximation for what fraction of the arrangements 
just counted actually have k common segments of 
length 2. For an upper bound on ,u = ,u(n, k, m), we 
have ,u s 2, which, in case both a and : had chosen 
the same m additional vertices, is the expected number 
of pairs of objects, either edges or vertices, adjacent in 
both a and A3. 

The pairs a, ,B counted in g(n, k, m, p) form 
part, but not all, of the term in (15) indexed by 
k, j = 2k + m, 1 = m. As a check on the above 
computation of exponential growth, the values of 
g(n, .02n, .ln, 1)exp(,u) for n = 1000, 2000, *.., 

7000, 8000 are approximately .0001132, .001077, 
.0210, .5496, 16.90, 575.4, 21020.3 and 808488. 

However, for small p, we have b2 = O(n-1), which 
we show at the end of this section. We note that 

X (EX.)2 = E i(2 i = 0(n-3). 

Using (11) to bound the off-diagonal terms EXafEXg 
of b, as multiples of the corresponding terms E(X,fX,3) 
of b2 shows that 

(16) bi c E (EXa)2 + Pb2. 
aEI n 

Thus, when p is small enough that b2 = O(n-1), we 
have b1 = O(n2), and Proposition 1 follows directly 
from the Chen-Stein method given in Theorems 1-3. 
For p close to 1, however, b2 -- 00, and we must resort 
to the truncation argument given below. 

Fix e c 1 and consider only cycles a of length I a 
up to en. Formally, consider the truncated indicators 
of cycles: for a E I, 

X'c 1(1 a I en)X,, 

which form the process Xc (X).,a,. We have 

1/211 Y(Xc) - 27(X) || ' P(X $? X) 

en 

j>en 1 -p 

so that the approximation error in replacing X by Xc 
is exponentially small as n -+ a). The same holds for 
truncation of the Poisson process Y and the inde- 
pendent events process X'. The bound (16) applies 
also to the truncated process, so that Proposition 1 
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for the truncated process will be proved if we can show 
that for the truncated process, b2 = O(nD'). The 
original version of Proposition 1 then follows by using 
the triangle inequality to compare the original with 
the truncated processes. 

Using the Chen-Stein method with the same neigh- 
borhoods as before, we have the following upper 
bounds, corresponding to (15) for the truncated 
process. 

MO E)= E E(X X) 
aEI #IEB(a)\IaJ 

en 
(n)j p (2k 

j.= 2Jf2 

( j=3i (n-k (k n 

en pj / (k\l- 1)!2k1 

j=3 2jk21 k n JI\2kJ (1-p)k 

en j i/2p k./L,A 

1=3 2j k-1 ( ( ao 
en I (Y \( 1/ 

j=3 k-1 2 nk2k2I)l - 

en j /2 2pk/n 
k 

Pi p1/ i __k 

j=321- 

To get the second equality, use the identity 
20O xl(k + 1 -l)k-1 = (k - 1)! (1 - X)-k. To get the 

next line, just replace (k - 1)! by kk. To get the next 
line, we use 2k < j. For the final line, use the inequality 
k21 (2k C X2j2(1 + x)i for x > 0. 
For 0 < p < 6 < 1, the final line of (17), which has 

j/n ' e, shows that 

b2 (0)< n 1 ,j326+ 6 i 

Given 6 < 1, we can find e > 0 so small that 6 + 
6 `6e/(1 -b) < 1. For such a choice of e, we thus have 
b2(e) < C(6)/n, uniformly in 0 < p < 6 < 1. This 
completes the proof of Proposition 1. In particular, we 
observe that e = 1 works if 6 < 1/2, so that for p < 1/2, 
b1 + b2 = O(n-1) and the Chen-Stein method works 
directly with no truncation. 

4.4 Maxima of Independent and Dependent Normal 
Variates 

The power of the Chen-Stein method is well illus- 
trated by the classical problem of determining the 

distribution of the maximum of normal variates. An 
extensive treatment of this topic also using Stein's 
method appears in Holst and Janson (1990). See also 
Barbour, Holst, and Janson (1988b) for a treatment 
of the m-dependent case very similar to ours. Consider 
a sequence of independent standard normal variates 
IZ1, Z2, ... 1. Let Mn = Mln= maxa.Sn Za. 

Hall (1980) analyzes the distribution of Mn. He 
concludes that the usual approximation as scaled ex- 
treme value is too slowly convergent to be satisfactory 
for practically occurring sample sizes, and he suggests 
alternative approximations for it and for Mk,n, the kth 
largest of the first n observations. His derivation 
involves a careful asymptotic analysis. A number of 
similar results may be obtained using the Chen-Stein 
method in the independent case. 

Choose a test value t. We wish to approximate 
PIMn C t}. Let X, = lZ,,<t> t}, so that EX, = 
p(t) = 1 - 1(t). If the test value is to be sufficiently 
large to be of interest, we may expect p (t ) to be rather 
small, so that the Poisson approximation should ap- 
ply. With I = 11, 2, ..., n}, we have W = Z2asi Xa, 
EW = Xn(t) = np(t); we are led to believe that 
PiMn c t I _= eAnt 

Bounds on the quality of the approximations are 
given by Theorem 1. Using independence, we choose 
the neighborhood of dependence B (a) = Ia} and find 

bi = np2(t) = X2(t)/n 

b2 = 0 

b = 0. 

We may conclude immediately that since {Mn < t = 

e-xn(t) X2(t)/n < PlMn C t} 
(18) 

c e n( ) + Xn(t )/n. 

Hall's approximations essentially involve writing 

piMn < t I ( (t ))n 
(19) 

= (1 - (1 -_ f(t )))n -exp(-Xn(t)), 

approximating the upper tail of the normal by the 
asymptotic expansion (26.2.12) of Abramowitz and 
Stegun (1964) and providing usably simple explicit 
bounds for the error of approximation. Note that the 
last term of (19) can be interpreted as the Poisson 
probability whose error of approximation is bounded 
by (18). 

In Table 1, we give various lower and upper bounds 
for P iMn _ t }. Compared are the bounds given in Hall 
(1980) with the bounds (18), and with modified bounds 
given by replacing the normal distribution with the 
bounds (20) for Mill's ratio. 
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Following Hall (1980), write: 

Q, = Q1ln(t) 

(t __ 1 3 +(t) \ =-exp- I 1- +-+n1 = 
-tt t2 t4 2(n-)1)/ 

Q2n(t) = exp( n 1t - 

Q3n(t)= expn (t) 1 1 + 3 
)15\ t t 2 t0 

all valid when 27rt 2et > n. Hall shows the function 
Qln is a lower bound on the distribution of Mn, and 
that Q2n and Q3n are upper bounds. 

In the following analysis we make repeated use of 
the inequalities: 

(20) 2 1-(t) 4O < 
t t+~4 d) 3t +1,t-2+ 8 

for t - 0. The lower bound is due to Birnbaum (1942); 
the upper bound is proved in Sampford (1953). Both 
bounds can be obtained as corollaries to Karlin (1982), 
in which total positivity is used to prove the monoton- 
icity of the variance of certain families of truncated 

distributions, including the left-truncated normal 
family. 

Write X,,(t) = 4n)(t)/(3t + V8 + t) and 
Xn(t) = 2n4(t)/(t + V4 + t2). Observe that 

An(t) < An(t) < Xn(t), following directly from (20). 
We present in Table 1 a comparison of the lower 
bounds Qln(t ), the Chen-Stein bound L0n (t ) from (18) 
and Lln(t) obtained by substituting the upper bound 
Xn(t) in (18). The upper bounds UOn and U1n are 
similarly obtained, save that both An(t) and An(t) 
need to be used in obtaining U1n from UOn. All errors 
are reported as percentages of the actual upper tail of 
the exact distribution of the maximum. 

Note that the Chen-Stein bounds Lo and Uo using 
the normal distribution function are by far the tightest 
of all the bounds displayed over the range of values 
tabulated. If one wishes to approximate the upper tail 
of the normal distribution using Mill's ratio, then the 
bounds L1 and U1 are next preferred, save when the 
test value t exceeis 4, in which case Q3, which uses an 
asymptotic expansion to sixth order, is preferred to 
U1. As Hall notes, taking more terms in an asymptotic 
expansion is not always desirable. Compare the errors 
for Q2 and Q3 when n = 10. 

An appealing feature of the Poisson approximation 
is its versatility. Since lMk,n ,< t I = I W < k j, from the 

TABLE 1 

Percent relative errors for bounds on the distribution of the maximum of independent normal variates 

4n(t Qln_ 4n Lin -+ Lon -+ Uon - 4 Uln - 4 Q2n_ - sn Q3n_ 4n 
n t 'k() 1 -, n 1 - zn 1 - <|n 1 - <|n 1 - 4,n 1 - 4,n 1 - n 

10 1.6 .5692 -24.26 -5.40 -4.89 9.05 11.14 20.02 73.76 
2.0 .7944 -10.30 -1.78 -1.50 3.53 5.05 10.84 15.90 
2.4 .9210 -4.33 -.62 -.46 1.24 2.29 6.08 4.78 
2.8 .9747 -1.94 -.22 -.13 .38 1.10 3.55 1.62 
4.0 .9997 -.28 -.02 -.00 .00 .25 .96 .11 

50 2.2 .4966 -4.76 -1.60 -1.44 2.40 3.35 6.14 6.50 
2.6 .7917 -2.58 -.42 -.31 .73 1.52 4.22 2.50 
3.0 .9347 -1.30 -.14 -.07 .20 .78 2.70 .96 
3.4 .9833 -.67 -.06 -.02 .05 .46 1.74 .38 
4.5 .9998 -.14 -.01 -.00 .00 .17 .62 .05 

100 2.4 .4391 -2.82 -1.04 -.93 1.46 2.17 4.18 3.27 
2.8 .7743 -1.71 -.26 -.18 .40 1.04 3.17 1.45 
3.2 .9336 -.91 -.09 -.04 .10 .58 2.12 .59 
3.6 .9842 -.49 -.04 -.01 .02 .37 1.41 .25 
4.5 .9997 -.14 -.01 -.00 .00 .17 .62 .05 

500 3.0 .5090 -.94 -.19 -.14 .23 .65 1.97 .69 
3.4 .8449 -.62 -.06 -.02 .05 .43 1.62 .36 
3.8 .9645 -.36 -.03 -.00 .01 .30 1.14 .16 
4.2 .9933 -.21 -.02 -.00 .00 .21 .80 .08 

1000 3.2 .5029 -.65 -.11 -.07 .12 .46 1.54 .43 
3.6 .8529 -.46 -.04 -.01 .02 .34 1.31 .23 
4.0 .9688 -.27 -.02 -.00 .00 .25 .95 .11 
4.4 .9946 -.16 -.01 -.00 .00 .18 .67 .05 
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identical calculations, the Chen-Stein method yields 
with no more work 

k-|1 X (t) e - -t 
n= n 

Similar bounds are not explicitly available in Hall 
(1980) and would require substantially more work. 

Our interest in the Chen-Stein Poisson approxi- 
mation arose from our study of maxima of weakly 
dependent random sequences. Our initial tool was the 
Bonferroni inequalities, whose effective use we learned 
from the seminal paper of Watson (1954). Watson's 
method implicitly requires that one compute all mo- 
ments of the sum of indicators E X,. Hence the use 
of Watson's method is equivalent to proving conver- 
gence in distribution to the distribution hoped to be 
determined by limits of moments of the counting 
process. Watson illustrates the utility of his method 
by evaluating the limiting distribution of the maxi- 
mum of a stationary k-dependent sequence of jointly 
normal variates. 

Here is the corresponding computation using the 
Chen-Stein method for the case of a 1-dependent 
moving average of normal variates. Let Y, = (Z, + 
OZ,+i)/ vfl + T be a stationary sequence of normal 
variates with mean 0, unit variance, and common 
lag-1 autocorrelation p = 0/(1 + 02). Let M* = 
max,asn Y,. Again choose test value t. Form X, = 
11Ya > t} so that 

n 
PMn* < t} = P{ 2 Xa = 0} 

at=l 

Choose neighborhoods of dependence B. = { - 1, a, 
a + 11 n 11, .. * , n}. Letp(t) = 1 - b(t) and An(t)= 
np(t ) be as before. We then have for positive t 

3X2n(t) 

n 

b2 < 2C(P)Xn(t)( 2 + 1) 

b3 = 0, 

where u = t -12/(1 + p ), and 

(21) C(p) = /2r(1-P)/(1+o) 2(1 +) 

The bound on b1 is immediate from the definition of 
Ba. The bound on b2 is a consequence of the elemen- 
tary inequality of Lemma 1-stated and proved at the 
end of the section. The term b3 is zero because de- 

pendence is local. Hence by Theorem 1 

P{ maxY, Kt}_t - n(t) 

(22) < (1 - exn())(3At + 2C (P)(2 

x (t ))(1-p)/(l+P) 
n 

The bounds are useful when Xn(t )/n is close to 0, and 
so are Poisson approximations to the distributions of 
other extreme order statistics. 

Although bounds for rates of convergence are im- 
plicit in Watson's (1954) use of the Bonferroni ine- 
qualities, they are certainly more conveniently avail- 
able in the Chen-Stein formulation. 

An exhaustive treatment of rates of convergence for 
stationary Gaussian time series is given in Rootzen 
(1983). There, rates of convergence are established and 
bounds with explicit constants are given in substantial 
generality. Connections are made with Poisson ap- 
proximation using coupling methods due to Serfling 
(1975). The chief tool is a technical lemma relating 
the distribution of dependent and independent 
Gaussian variates. 

The bounds obtained with the Chen-Stein method 
are frequently quite good. This is true in our simple 
example above, in which, when t grows like 12 ln(n), 
the rates of convergence of the bounds given 
above are exactly those of the bounds obtained by 
Rootzen (1983), shown there to be of best possible 
order. In this case, the coefficient of the leading term 
in (22) is about 1.92, compared to Rootzen's 4.47. The 
computation sketched above carries over with obvious 
modification for finite moving averages. 

Finally, we end the section with the promised 
lemma: 

LEMMA 1. Let Y1, Y2 be jointly standard normal 
with covariance p. For t > 0, write u = t 12/(1 + p). 
Then 

PfminlYi, Y2 > t} 

(23) < (1 +) (u) - u(1 - 4(u))) 

/(1 - p/(l+p) 
(24) < C(p)(2 + J -(t,,21'1+p) 

where C (p) is defined in (21). 

PROOF. Note that Y1 + Y2 and Y1 -Y2 are un- 
correlated, and that the event Imin Y1, Y21 > t} = 

This content downloaded  on Sat, 9 Feb 2013 01:24:07 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


POISSON APPROXIMATION AND THE CHEN-STEIN METHOD 417 

{lY1-Y2 1/2 < (Y1 + Y2)/2-t . Hence 

P{min{Yi, Y21 > t}I 

=2PO < Y1 -Y2 

< Y1 + Y2 - 2tl Y1 + Y2> 2t} 

x P Y1 + Y2 > 2t} 

<2 E{ EY 
47r(l - p) EY 

+ Y2 - 2tI Y1 + Y2> 2t1 

x (1 - 4(u)) 

12(1 + P) u) 

x (1 -b(U)) 

proving the first inequality. To prove the second, use 
(20) repeatedly: 

o(u)-u(l - u)) 

< [1- ~2u ](u) 

+4+ 
u 

[/ +4- u] 

? + 4 +u- 

2 
= (l-p)/(l+) /2 (t )2/(l+p) 

- 7('P)/(1+P)[ 2 
+ 4 + u 

2-2/(l+p) 

LvU2 + 4 + u 

2 2/(l+p 

x 1(t- 
/ 4 + u A 

2 2pl(l+p) 

>M+ 4 + u 

x [-(t )]2/(l+p) 

_ _p/(l+p) 

< J2r(1-P)I(l+P) + 

x [1 - b (t )]2/(l+p) 

4.5 Permutations with Restricted Positions 

Consider a probability model in which all n! 
permutations ir on $1, 2, *.., n are equally likely. 
For i = 1, 2, *.. , n, let Fi C {1, 2, *.. , n be given, 
to be thought of as the set of restricted positions for 

element i. The random variable 

W-W(7r)- E l(i E Fi) 

counts the number of restricted positions taken by a 
random permutation. Its expectation is 

X-EW =-E IFi. n 

Our goal is to understand the relation between the 
number of permutations with no elements in restricted 
positions, and the Poisson approximation, n!e X. 
More generally, we are concerned with how well the 
distribution of W matches the Poisson distribution 
with parameter X, and how close in distribution are 
the family of dependent events (t-ri E Fi)l)i-n and a 
family of independent events of the same individual 
probabilities. 

The problem of permutations with restricted posi- 
tions is also treated in Chen (1975b) and Barbour and 
Holst (1989), which contains many references. These 
papers also start with Stein's method as embodied by 
Equations (2) and (3). The next step, as presented 
clearly in Barbour and Holst (1989), is to look, for 
each of the events being counted, for a good coupling 
between the total number W of events, and a random 
variable equal in distribution to the number of events, 
minus one, conditioned on the occurrence of the one 
selected event. That treatment of Stein's method al- 
lows the user more freedom of choice than what we 
are presenting in this paper as the "Chen-Stein 
method." For the benchmark example of permutations 
with restricted positions, the Chen-Stein method as 
presented here is both harder to use and gets a worse 
bound on the Poisson approximation for W. In detail, 
apart from constant factors, the bounds in the other 
two papers, and our term bl, are equivalent, but we 
also have a term b3, which is greater than b, by a 
factor which is of the order of log n. 

Overall then, for the class of problems as described 
in Example 1.3, our bound shows that the number of 
restricted positions taken by a uniformly selected ran- 
dom permutation is approximately Poisson, with a 
bound on the error decreasing at rate log n/n. How- 
ever, for no additional work, the Chen-Stein method 
yields information about the entire process of occur- 
rences, via Theorems 2 and 3. 

EXAMPLE 1.1. Derangements. Let Fi = {il for 
i = 1 to n. Then W is the number of fixed points 
of a random permutation, IW = 0O is the set of 
derangements of n objects and X = 1. This example is 
exceptional and misleading, in that the error in the 
Poisson approximation is superexponentially small as 
n -- oo. 
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EXAMPLE 1.2. The menage problem. Let Fi = 
{i, i + 11 for i = 1 to n - 1 and Fn = In, 1[. Here X = 
2, and careful use of inclusion-exclusion shows that 
the Poisson approximation satisfies I P( W =0) -e-2 l 
- cn-1, in contrast to the superexponential decay of 
Example 1.1. 

EXAMPLE 1.3. Derangements, menage problems, 
etc. Let Fi= fig i + 1, * , i +d - 1 for i= lto n, 
with the additions taken modulo n. Here X = d, and 
the two examples above are the special cases d = 1, 2 
of this more general example. In even greater gen- 
erality, following Riordan (1978), we may consider 
{W = 0O to be the set of permutations discordant 
with d given permutations ,o1, 02 ***, ad, by taking 
Fi= {al(i), *-, od(i)} for i = 1 to n. We will ana- 
lyze this example using the Chen-Stein method below 
to get bi c d (2d - 1)/n, b2 = 0 and b3 = O(log n/n). 

EXAMPLE 2. Let Fi = {i, n) for i = 1 to n-1 and 
Fn = In, 11. Here X = 2, and the Poisson approximation 
is not at all valid, since P( W = 0) = 0. 

The "natural" way to use the Chen-Stein method 
wouldbe to takel= {1, *., nI andXXi 1((ri E F) 
for i E I. The neighborhood of dependence in this 
setup would then be BiI j GE I: Fi n Fj $ 01. 

Instead, we take an approach which gives symmetric 
treatment to the domain and range of the random 
permutation. Thus, we let 

la c= (i, j): jGEFi I 

and 

forae=(,j)EEI, X.=l(,xi=j)g 

so that I may be thought of as the set of restricted 
edges in the bipartite graph Kn,n of possible edges 
between n men and n women, with EX,, = 1/n for all 
a E I, and I I I = An. Our choice of the neighborhood 
of dependence of a is the set of edges sharing an 
endpoint with a: 

for a = (i, i ), 
B3 = (i',j') E I: i = i' orj =j'1. 

The first two components of the Chen-Stein bound 
then are 

bi = , , EXaEX = n-2 E IBal, b2=0? 
aEI OE-B, aEI 

In Example 1.3 we have Il B, I c 2d - 1, so b1 < 
d (2d - 1)/n. If we have used the "natural" setup 
described in the first paragraph of this section, then 
b, would be increased by a factor of d in this example. 
Instead of having b2 = 0, in the "natural" setup we 
would use the easily established bound E(XaXo) c 
n/(n - 1)(EXfEX,), so that b2 < n/(n - 1)bl. For b3, 
the technique we use below leads to the same upper 
bound on b3 with either setup. 

Random permutations embody long-range, global 
dependence, so any choice of neighborhoods will have 
b3 > 0, other than the choice Ba I, which gives the 
useless large value b1 = X2. It is possible but difficult 
to give a useful upper bound on b3; we carry this out 
in the next three lemmas. The first lemma states the 
bound on b3 and relies on the next two lemmas. The 
thing most worth observing in the lemmas below is 
the technique for getting a handle on b3, displayed by 
the equality in (26): since each term of b3 is the 
expectation of the absolute value of the conditional 
expectation of something with mean zero, each term 
can be expressed as twice the expectation of the pos- 
itive part (or the negative part) of that conditional 
expectation. 

LEMMA 2. 

b3 min (2Xk + 2nX2k-eke) 
1<k<n n- k 

2X (2 log2(n) + Xe/ln 2) if = o (n). 
n 

PROOF. Fix a E8 I, let V = Z,B. X,6, and for 
J C I - Ba define the event 

25) E J--X#= 1 VlE J, 
(25) 

X=0 V E I- Ba - JI, 

so that on the event EJ we have V = I J I. There are 
nX contributions to b3 of the form 

SaC E E(Xa --o(Xo: f ,Ba)) 

E E(X. _ XE )P(E ) 

(26) = , 2(E(X - EJ)) P(EJ) 

< 2 E( 1 -1 P(EJ) 

(using Lemma 3) 

=2 ( )P(V j) 
0-<jn n- n 

< 2( --) + 2P(V -k). n -k n 

To bound the last term, we use the upper bound based 
on Lemma 4: since V c W, P(V-k) c P(W-k) < 

2k*E2w _ 2-*exe. Multiplying by I I I =nX, for every 
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positive integer k, we have the upper bound 

b3 c 2Xk/(n - k) + 2nX2ke e. 

If X = o(n), then taking k = r2 log2(n) + Xe/In 21 
makes the second term negligible and demonstrates 
the asymptotic claim. O 

LEMMA 3. For the event EJ defined in (25), 

(27) E(XaIEj) ' 1/(n - IJI). 

PROOF. To describe the conditioning event EJ, let 
k = IJ , and relabel the men and women so that 
a = (1, 1) and J = I(n-k + 1, n-k + 1), *.. , (n, 
n) 1. The conditioning event EJ can then be viewed as 
a collection of matchings between a set of n - k men 
and n - k women, and the conditions of the form 
X, = 0 forbid certain matchings, which do not involve 
man 1 or woman 1 since f 4 Ba. This event EJ can 
be partitioned into n - k subsets according to the 
mate chosen by man 1, Uj {Jr E Ej:ir1 = j I, so that 
the conditional probability above is the ratio 
I U1 I / I E . Thus, it suffices to show that, for j = 1 
to n - k, we have I U1 I I Uj I . 

We prove that U11 I Uj I for ] = 2 to n- k 
by presenting a one-to-one map f which maps U1 
into Uj, namely composition with the appropriate 
transposition: 

f(7) = (1 j) o X 

Informally, f is the map that has women 1 and j 
swap their mates. We observe that when ir E U,, then 
f (7r) E Uj, because the two new matchings created 
involve man 1 or woman 1, and hence EJ places no 
restriction on the use of these edges. We have ine- 
quality in Lemma 3 because f may not be onto, for if 
a E Uj with as = 1, then ir = f-1(a) has 1rj = 1 and 
wi = j, but if f = (i, j) E I is a restricted edge, then 
X,(r) = 1 so that r 4 Ej, hence r 4 U1. C1 

LEMMA 4. 

E 2 W c eAe. 

PROOF. Observe that, for any J C I with I J I =k 
E [l aECJ Xa, is either zero, in case any of the edges in 
Jintersect, or else is (n - k)!/n! = l/(n)k. Recall that 
I = nX. Thus 

E2w = E fl (1 + Xa,) 
aEI 

= S E [I X. 
JCI aEJ 

For the kth term of the last sum we have 

1 (nX)k = 
(Xe)k 

X k!J (n)k- k! (n/e)k k! 

4.6 Cycles in Permutations and Random Mappings 

As in Section 4.5, we again consider a probability 
model in which all n! permutations ir on 11, 2, ... , n} 
are equally likely. Our goal is to understand to what 
extent cycles of a random permutation occur approx- 
imately independently and whether a Poisson approx- 
imation holds for the numbers of cycles of various 
lengths. For any fixed j 2 1, it is easy to show by 
inclusion-exclusion that the number Wj of cycles of 
length j converges to Zj, a Poisson random variable, 
with EZj = 1/j. 

The first interesting phenomenon illustrated by this 
example is that the Chen-Stein method and the idea 
of computing the total variation distance to a process 
with independent coordinates let us compute a "criti- 
cal boundary" for Poisson approximation. Consider 
Z (Z1, Z2, *...) the Poisson process with EZj = 
1/j and independent coordinates. It can be shown by 
inclusion-exclusion that finite dimensional distribu- 
tions of the cycle counting process converge to those 
of Z, and, since E j Wj = n, it is easy to see that the 
full process counting cycles, W (W1, *.., WA), is 
not close, in total variation, to the first n coordinates 
of the Poisson process Z. We will consider jointly all 
cycles of length 1 (i.e., fixed points), 2, 3, * * f (n), 
where, for example, f (n) grows like sIn or n/log n. It 
turns out that a Poisson approximation for I W1, ***, 
Wf(n) } is good as long as f (n) = o(n). 

The second phenomenon illustrated is that a Pois- 
son approximation for the process IW1, ***, Wf (n)} 
may be valid even when the Chen-Stein method fails. 
This occurs here in all cases where f (n) / nH oo and 
f (n)/n -O 0. In these cases, the process of indicators 
is not approximately independent, the total variation 
distances in Theorems 2 and 3 tend to 2 and, hence, 
(b1 + b2 + b3) cannot tend to zero and Theorem 1 
cannot yield a successful approximation for W. This 
reflects what is usually a virtue of the Chen-Stein 
method; when the method does certify a successful 
approximation for the number W of occurrences via 
(b, + b2 + b3) -O 0, the method would also imply, 
through Theorems 2 and 3, that the process of indi- 
cators is approximately independent. 

4.6.1 Independence among the short cycles 

The natural way to establish a Poisson approxima- 
tion for (W1, ..., Wf(n)) is to use an index set I 
consisting of all cycles of length at most f (n). For 
j-1, let Ij be the set of cyclic permutations a of 
exactly j elements of 11, 2, *.., n}, so that IIh = 
(fl)1!]. For a E Ij, let Xa be the indicator of the event 
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that a is a cycle of the random permutation lr, so that 
Wi Z,,-EIj(j) Xa, is the number of cycles of length j. 
Now EXa, = 1/(n)j, and the expected number of cycles 
of length j is therefore 

EWj =E ,XO{ I, =. if jc< n. 
aEI(j) (n)j J 

In a slight abuse of notation, we speak of the inter- 
section of two cycles rather than the intersection of 
the corresponding sets of elements involved. Two 
cycles a, A3 will be considered neighbors if their inter- 
section is nonempty. Note that distinct neighbors 
cannot both be cycles of the same permutation, so 
that 

a # E3E Ba implies XaX,O, 

hence b2 = 0. 
Fix a function f mapping the positive integers to 

positive integers, and let the index set I If consist 
of all "short" cycles, i.e., cycles of length at most f (n): 
I Ujcf(n) Ij. 

This paragraph and the next discuss situations in 
which the Chen-Stein method implies a Poisson ap- 
proximation for the number of cycles of length at most 
f (n). We claim that 

b O-0 if and only if -O0 n 

(28) and furthermore 

n 

We prove here only the second half of the above claim. 
Note that for each j, the expected number of elements 
in cycles of length j is jEWj = 1, so the expected 
number of elements in cycles in our index set I is f (n). 
This implies that the expected number of cycles in I 
containing any fixed element i E 11, 2, ..., n is 
f (n)/n. Thus 

b,= E 1(a n fl 0)EXcEX# 
a,f3E 

< E alnIEXaEXfl 
a,fiI 

2 

= z (a>fi 1(i E8 a)EXa) 

=n (n)2 =fn )2 

n n 

If f (n) < n1/2'c for some e > 0, then techniques 
similar to those in the last section show that b3 -O 0. 
Furthermore, if bl, b2 and b3 tend to zero, then 
Theorem 3 implies that the short cycles (i.e., 

those of length at most f(n)) occur with a joint 
distribution that is close to mutual independence: 
II 2'(X) - 59(X') II 0. (Here, X and the independ- 
ent process X' are indexed by a E I If.) 

Next we consider cases of f for which the Chen- 
Stein method cannot possibly succeed. If f (n)2/n is 
bounded away from zero [respectively, goes to infin- 
ity], then b1 is bounded away from zero [goes to 
infinity]. Consider T aI a#EB(a) a # , which 
is the number of pairs of distinct neighbors in X', 
and recall that the number of pairs of distinct neigh- 
bors in X is identically zero, so that the total vari- 
ation distance between X and X ' is at least 2P(T> 0). 
Now b1, apart from its diagonal terms, is ET: 
bi - .aEI1 (EX.)2 = >.aEI >.afIEB(a) EXaEXOj = 
>aEI >a#IiEB(a) a #1 = ET. If f (n)2/n is bounded 
away from zero [goes to infinity], then b1 and ET 
are bounded away from zero [go to infinity], and 
P(T > 0) and 1/2 11 (X) - 22(X') 11 are bounded away 
from zero [tend to 1]. The implication that ET > 0 
can be shown by the method of first and second 
moments or another application of the Chen-Stein 
method. Even though (W1, *.., Wf(n)) is approxi- 
mately Poisson for all f = o(n), this cannot possibly 
be established by the Chen-Stein method for f with 
f 2(n)/n -->00, since in this case the process of indica- 
tors is not close to being independent. 

Instead of random permutations, consider random 
mappings of $1, ... , n into {1, ... , n }, with all n n 
mappings equally likely. Using exactly the same setup 
as above, we have b2 = b3= 0, so that b1 tells the entire 
story. For a cycle a of length j, the value of EXa 
changes from 1/(n)j to nm', but the statements in (28) 
and all the qualitative relations above involving 
f (n)2/n, bl, P(T> 0) and 11 5 (X) - 59(X') fl remain 
the same as in the case of permutations. 

4.6.2 Independence among the numbers of cycles 
of short lengths 

A necessary and sufficient condition for the first 
f (n) coordinates of the cycle counting process to be 
close, in total variation, to the first f (n) coordinates 
of its limiting Poisson process, is that f (n) /n -- 0: 

(29)| (WVi, ..., Wf(n)) (Z1 * ...* Zf(n))I -- 0 

if and only if f (n) = o (n). 

This result, from Arratia and Tavar6 (1990), has a 
surprisingly easy direct proof, starting from Cauchy's 
formula for the number of permutations with a given 
cycle structure. 

What the last section shows is that the Chen-Stein 
method applied to cycles of length at most f (n) cannot 
establish (29) beyond f (n) ='-, because the events 
indexed by cycles carry too much information to be 
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approximately independent. The cycle events process 
X of the previous section not only detects the number 
of cycles of each length up to f (n), it also carries 
information about which elements of 1, 2, ** , n are 
related by being in the same short cycle. 

It is possible to get around this problem, by assign- 
ing to each cycle of a random permutation ir exactly 
one of its elements as its "marker." In more detail, let 
I=1,*, n x 1,.. , f (n)}, and for (i, j) E I, 

Xi = 1 {i "marks" a cycle in ir of length j }. 

With this setup, Wj, the number of cycles of length j, 
equals 1 -si-n Xij. Two elements a = (i, j), d = (k, 1) 
are taken to be neighbors if i = k, so b2 = 0. The 
computation of b, shows that we should be careful in 
picking a notion of "marking" a cycle: if a cycle is 
marked by its smallest element, then for each j, EXij 
is a messy decreasing function of i. If instead we take 
an independent auxiliary random permutation to 
serve as a ranking and mark a cycle by its element of 
smallest rank, then EXij = 1/(nj) and 

= (xt (n) 1) 2 (log f (n))2 
ni n 

even for f (n) = n. 
Finally, with either notion of marking, it should be 
the case that b3 -- 0 if and only if f (n)/n -O 0. We 
believe this on intuitive grounds but we have not tried 
to give a detailed proof, since the direct proof of (29) 
is simple and yields a stronger result than the Chen- 
Stein method would yield with this setup. 

5. A BIOLOGICAL EXAMPLE 
Our continuing desire is to solve problems relevant 

to molecular biology. This desire was the original 
motivation for studying the Chen-Stein Poisson ap- 
proximation. In this section, we present its application 
to a problem motivated by current data analytic tech- 
niques in molecular biology. 

A strand of DNA can be represented as a long string 
of letters from the finite alphabet {a, c, g, t 1. Currently, 
a large amount of laboratory effort is being expended 
in the determination and subsequent compilation of 
genetic information from various organisms. This in- 
formation consists of listings of these long strings. 
These data are collected in international data- 
bases, GenBank in the United States and EMBL in 
Europe. Currently, release 62.0 of GenBank contains 
37,183,950 letters of DNA, made up roughly of se- 
quences of 1,000 letters each. Given two strings of n 
and m letters, information about their comparison is 
conceptually summarized as a matrix of n x m posi- 
tions in which a match of letters in positions i and j 
is traditionally represented by a dot in position 

(i, j)-a practice leading to the biologists' term "dot 
matrix analysis." 

A natural question arises from comparison of two 
or more such strings, when the scientist wants to know 
whether a comparison detects an unusual congruence 
shared among the strings. In our problem, congruence 
is measured by the number of letters that match 
between two subwords of these sequences. Although 
important biological questions involve the more gen- 
eral notions of insertion and deletion, we restrict our 
study to the simpler question of matching and non- 
matching positions. Such statistical problems are nat- 
urally cast in the usual hypothesis-testing context in 
which we need to compute the tail probability (the 
biologists' p-value) for a seemingly unusual event. 

The standard tool used to solve such problems has 
been a probabilistic use of the Bonferroni inequalities 
as pioneered in Watson (1954). See, for example, the 
moment calculations in Karlin and Ost (1987) and the 
discussion in Karlin, Ghandour, Ost, Tavar6 and Korn 
(1983). Use of the Bonferroni inequalities requires 
computation of moments of arbitrarily large order; the 
task is always tedious and frequently technically 
demanding. The technical difficulties that can now 
be avoided are exemplified in Arratia, Gordon and 
Waterman (1986). The Chen-Stein method allows for 
an easier treatment of the same problem that leads to 
stronger results with no extra work. 

In Arratia, Gordon and Waterman (1990), we study 
a more general version of the following problem. 

Let A1, ... A, An ... and B1, *.. Bn, . * * be inde- 
pendently chosen according to the same common dis- 
tribution Iuj I from a common alphabet 11, 2, * d [. 
Choose a test value t and compute 

t-1 

(30) Mn(t) = max E llAi+k= Bj+k3, 
1-iXj-n-t+1 k=O 

the largest number of matches witnessed by any com- 
parison of length t substrings. What is the distribution 
of Mn(t)? 

An asymptotic analysis is possible using the Chen- 
Stein method. Effectively, we rigorously use Aldous' 
(1989) Poisson clumping heuristic to obtain rates of 
convergence for the Erdos-R6nyi strong law, with a 
two-dimensional index set. While a proof is beyond 
the scope of this paper, we can easily guess the ulti- 
mate result. 

Write a = (i, j ), and write Sa = k= 1 lAk+i= Bk+j [. 
Choose s < t and let Ya = 1 ISa 2 s 3. The special case 
s = t corresponds to perfect matching, which is similar 
to the case of perfect head runs dealt with in Sec- 
tion 4.2. We have P$Mn(t) < sl = PIE Ya = 01. 
Denote by p = g tL2 the probability of seeing a match 
between two arbitrarily selected letters. Each Sa 
is distributed as binomial(t, p), and there are 
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(n - t + 1)2 possible index pairs among two sequences, 
each of length n. There is only local dependence 
among the Y,; if a = (i, j) and a' = (i', j'), then 
Y, and Y,a are independent whenever I i - i' I and 
I j -j ' I both exceed t. Hence the natural neighbor- 
hoods of dependence used in computing the Chen- 
Stein bounds will ensure that b3 = 0. However, the 
intuition that ,,a Y, admit a Poisson approxima- 
tion is incorrect; as in the case of head runs in 
Section 4.2, there is a substantial clumping which 
would result in an excessively large value of b2. In 
order to succeed, we must declump, performing the 
analysis instead on the modified indicators X(jj) = 
Y(i ) I kt= (1 Yi-kJ-k) ). The indicators X have 
negative correlations, ensuring a small b2. The price 
paid for negative correlation is an extended-but still 
finite--neighborhood of dependence, and a less ob- 
vious explicit representation for EX,. The latter is 
obtained with the help of the ballot theorem. To make 
the method work at all, we also need to impose a weak 
technical condition on the alphabet probabilities {,a I 
to deal with dependence engendered by pairs a, a' 
where i - i' # j-j '. The net result is 

PIMn(tn) < SI 

(31) 
- exp -(t- p n2P{binomial(tn, p) ' sl) S- O, 

as n -- oo whenever tn/ln(n2) __*c > 1/ln(1/p) and 
c < oo. Loosely interpreted, there are about n2 blocks 
of length t requiring comparison. The ballot theorem 
and declumping reduces the effective number of com- 
parisons to (s/tn- p)n2. Multiplying by the indicated 
binomial probability gives an "expectation." The 
Poisson probability of seeing zero events gives us a 
distribution function. 

Finally we present in Figure 1 a test of the appli- 
cability of our results. This graph portrays data taken 
from a larger experiment whose results are reported 

in Arratia, Gordon and Waterman (1990). Calcula- 
tions are done as if the sequences studied were gen- 
erated independently with letters from the alphabet 
la, c, g, t I with probabilities At = (.3544, .1430, .1451, 
.3575) and p = 2 = .2949. The left-hand glyph 
summarizes 200 simulations with n = 512 and t= 21 
in which the assumptions concerning frequencies and 
independence are exactly obeyed. The random number 
generator used was that provided by the MATLAB 
package, in which all programming was done on a 
Sun 3/260 computer (see Moler, Ullman, Little and 
Bangert, 1987). 

The probabilities g,AI} are determined by the inci- 
dence of base pairs in the subject of the second glyph 
the complete chloroplast genome of the liverwort 
Marchantia polymorpha, taken from the GenBank da- 
tabase. See Fickett and Burks (1988) for a description 
of the GenBank database. The complete genome of 
Marchantia polymorpha is there given as a sequence 
of 121,024 letters from the alphabet la, c, g, t 3. The 
genomic sequence was cut into 236 blocks of exactly 
512 letters with the remaining letters ignored. The 
highest number of matches over all 21-segments was 
again computed for a simple random sample of 200 
pairs from the population of all block pairs. 

The glyphs themselves are hanging histograms, in 
which the empirical fraction hangs from the predicted 
density given by the Poisson approximation (31). The 
predicted density is shown above a bar, actual ob- 
served frequency is shown at the lower part of a bar. 
For example, the richest matching segments were 
predicted to have exactly 16 of 21 matches in exactly 
57% of the 200 trials. In the simulation experiment 
displayed on the left, 40% of the simulations were 
found to have exactly 16 matches in the richest match- 
ing 21-segments. In the sample of 200 pairs from 
blocks of Marchantia polymorpha, 32% were found to 
have had 16 matches in the richest matching pair of 
21-segments. 

simulation liverwort sequence 

matches: 14 15 16 17 13 14 15 16 17 18 19 21 21 21 2 21 21 21 21 21 21 21 21 

57% 57% 

40 32 
?2.57 s.e. { . - - -- O . a 10 

56 7 

99% predicted tolerance 99% predicted tolerance 

FIG. 1. Maximum matches between 21-segments in 200 pairs of 512 letter sequences, simulated and biological. Empirical histogram hanging 
from predicted histogram after arcsine transformation. 
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Relative frequencies on a base of 200 are plotted 
after arcsine transformation in order to stabilize var- 
iance. The horizontal dotted lines lie at heights 0 and 
?2.56 standard errors, giving barwise 99% confidence 
limits. For example, in the rightmost glyph, 27% of 
200 pairs were predicted to have had 15 matches in 
their richest matching 21-segments; 32% were ob- 
served. The lower end of the bar is plotted at rela- 
tive height arcsin(v 1) - arcsin( 64/200), corre- 
sponding to (.5475 - .6013)/.0354 = -1.52 standard 
error units of size 1/(2 V160). Tolerance intervals 
based on (31) are given by the horizontal extent of the 
dotted lines. These cover horizontally at least 99% of 
the predicted distribution, from the lower .005 quan- 
tile to the upper .995 quantile. Were the approximate 
distribution exact, one would expect fewer than two 
simulated values to exceed the tolerance limits in 
either glyph. It is remarkable, given the known de- 
pendence of adjacent nucleotides, that predictions 
based on assumptions of iid generation of sequences 
should fit as well as they do. For an analysis of 
dependence among adjacent nucleotides, see Tavare 
and Giddings (1989). 

The empirical distribution is less concentrated than 
the simulated distribution, no doubt attributable to 
departures from distributional assumptions. For ex- 
ample, slow systematic variation in fraction of letters 
represented in a section of a genome could result in a 
more spread out distribution than the Poisson approx- 
imation would predict. 

Interestingly, the outlying comparison-a perfect 
match of 21/21 with approximate p-value < .00006- 
has biological implications. The outlier corresponds 
to a perfect match beginning at nucleotide 26,665 and 
at nucleotide 67,475. Ohyama, Fukuzawa and Kohchi 
(1986) study the chloroplast gene organization using 
the complete DNA sequence. From Ohyama, the first 
segment is located in an intervening sequence within 
the gene coding a tRNA for lysine, while the second 
segment is located in an intervening sequence within 
open reading frame ORF203. Higher organisms have 
gene (protein encoding) DNA sequences interrupted 
by so-called intervening sequences which are removed 
from transcribed RNA by a mechanism known as 
splicing. There is as yet no consensus regarding the 
biological role of intervening sequences. Open reading 
frames indicate regions of DNA that could encode 
proteins, although it has not yet been determined 
whether the region's DNA is actually translated into 
proteins. 
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Comment 
J. Michael Steele 

This beautiful exposition leaves little room for quib- 
bles. Still, if forced to raise some issue, I suspect my 
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best shot is to point out that, despite its power, the 
Chen-Stein method is not omnipotent. In fact, there 
are simple problems where one might suspect that a 
Poisson law lurks below the surface, yet the hooks 
provided by the Chen-Stein method leave us without 
a catch. 

Consider a simple random walk S,, = X1 + X2 + 
... + X, in R2 where the Xi are iid. To make life as 
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