
Zero Biasing in One and Higher Dimensions, and

Applications ∗†‡

Larry Goldstein§and Gesine Reinert¶

October 14, 2004

Abstract
Given any mean zero, finite variance σ2 random variable W , there exists a unique

distribution on a variable W ∗ such that EWf(W ) = σ2Ef ′(W ∗) for all absolutely
continuous functions f for which these expectations exist. This distributional ‘zero
bias’ transformation of W to W ∗, of which the normal is the unique fixed point, was
introduced in [9] to obtain bounds in normal approximations. After providing some
background on the zero bias transformation in one dimension, we extend its definition
to higher dimension and illustrate with an application to the normal approximation of
sums of vectors obtained by simple random sampling.

1 Introduction

In [14], Stein proved the following fundamental characterization of the univariate normal
distribution: Z ∼ N (0, σ2) if and only if

EZf(Z) = σ2Ef ′(Z) (1)

for all absolutely continuous f with E|f ′(Z)| < ∞. Normal approximations through the use
of identity (1), first provided by Stein [14], have since been obtained by other authors using
variations in abundance (see e.g. [15], [5], [13] and references therein). In [9] the authors
introduced and studied the zero bias transformation in one dimension; further development
is continued in [7] and [8]. Here the authors extend the study of zero biasing to Rp, and
illustrate with an application.

If W is a mean zero variance σ2 variable then generally EWf(W ) does not equal
σ2Ef ′(W ), the normal being the unique distribution satisfying the Stein characterization
(1). Asking that identity (1) be satisfied by some transformation of the W distribution leads
to the following definition.
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Definition 1.1 For a mean zero, finite variance σ2 random variable W , we say that W ∗

has the W -zero biased distribution if

EWf(W ) = σ2Ef ′(W ∗), (2)

for all absolutely continuous functions f for which the expectations above exist.

In [9] the distribution W ∗ was shown to exist for all mean zero, finite variance W . In
particular, W ∗ is always absolutely continuous, and one can verify that

p∗(w) = σ−2E[W1(W > w)] (3)

is a density function for a distribution which satisfies (2). Though Definition 1.1 is stated
in terms of random variables, it actually defines a transformation on a class of distributions,
and we will use the language interchangeably.

The normal distribution being the unique fixed point of the zero bias transformation, one
can guess that when the transformation maps a variable W to a W ∗ which is close by, then
W itself is close to being a fixed point, and must therefore be close to normal. Equation (5)
indicates one way in which this intuition can be quantified.

Let W be a mean zero, variance 1 random variable, Z a standard normal and Nh =
Eh(Z) for a given test function h. Based on the characterization (1), Stein’s method obtains
information on Eh(W ) − Nh, the distance from W to the normal on a given test function
h, by solving the differential equation

f ′(w)− wf(w) = h(w)−Nh (4)

for f and considering the expectation of the left hand side. For instance, when W and W ∗

are jointly defined, from (4) and Definition 1.1 we obtain

|Eh(W )−Nh| = |E [f ′(W )−Wf(W )] | = |E [f ′(W )− f ′(W ∗)] |.

By [15] for h absolutely continuous we have ||f ′′|| ≤ 2||h′|| and hence, with ||·|| the supremum
norm,

|Eh(W )−Nh| ≤ 2||h′||E|W −W ∗|; (5)

in particular, when W and W ∗ are close in the sense that E|W −W ∗| can be made small,
Eh(W ) will be close to Nh.

Proposition 2.1 in Section 2 below, first shown in [9], gives the following zero bias ex-
planation of the Central Limit Theorem, that is, why a good normal approximation can be
expected when W is a sum of many comparable mean zero independent variables with finite
variances: such a sum can be zero biased by choosing a single summand with probability
proportional to its variance, and replacing it by one from that summand’s zero biased dis-
tribution. Hence, if the terms in the sum W are roughly comparable, W and the W ∗ so
constructed differ in only one like summand out of many, and W and W ∗ are close.

Definition 1.1, and Proposition 2.1, for zero biasing are parallel to the well known def-
inition, and key property, of the W size biased distribution W s, which exists for any non-
negative W with finite mean µ, and is characterized by

EWf(W ) = µEf(W s) (6)
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for all functions f for which these expectations exist. In particular, (2) is (6) with variance
replacing mean, and f ′ replacing f . Moreover, the prescription for size biasing a sum of
non-negative independent variables is nearly the same as the one given in Proposition 2.1;
in particular, choose a summand with probability proportional to its mean and replace it
by one from that summand’s size biased distribution. Due to the similarity between zero
and size biasing, the transformation in Definition 1.1 was so coined as it offered a parallel of
size biasing for mean zero variables, hence, zero biasing. For use of size biasing for normal
approximation, see [11] and [8]; for families of distributional transformations of which both
zero and size biasing are special cases, see [10].

In [9], after introducing the zero bias transformation, the authors apply it to show that
smooth function rates of n−1 obtain for simple random sampling under certain higher order
moment conditions. In [7] zero biasing is used to provide bounds to the normal for hierarchi-
cal sequences, and in [8] for normal approximation in combinatorial central limit theorems
with random permutations having distribution constant over cycle type.

Here the authors generalize Definition 1.1 to Rp based on the Stein characterization that
Z ∈ Rp is a multivariate normal N (0, Σ) if and only if

E

p∑
i=1

Zifi(Z) = E

p∑
i,j=1

σijfij(Z), all smooth f : Rp → R,

where fi and fij denote the first and second partial derivatives of f , respectively.

Definition 1.2 Let Γ be an arbitrary index set and let X = {Xγ : γ ∈ Γ} be a collection of
mean zero random variables with covariances EXαXβ = σαβ. For pairs α, β with σαβ 6= 0, we
say that the collection of variables Xα,β = {Xα,β

γ : γ ∈ Γ} has the X-zero biased distribution
in coordinates α, β if for all finite I ⊂ Γ,

E
∑
β∈I

Xβfβ(X) = E
∑
α∈I

∑
β∈I

σαβfα,β(Xα,β) (7)

for all twice differentiable functions f for which the above expectations exist.

For γ ∈ Γ and a smooth function g, setting f(X) = g(Xγ) we have fβ(X) = g′(Xγ)1(γ =
β), fα,β(X) = g′′(Xγ)1(γ = α = β) and (7) reduces to

EXγg
′(Xγ) = σ2

γEg′′(Xγ,γ
γ ),

showing that Xγ,γ
γ has the Xγ zero bias distribution. More generally, if the collection Xα,β

satisfies Definition 1.2 for variables indexed over Γ, then the restriction of the same variables
indexed over a subset of Γ satisfies Definition 1.2 over that subset. In particular, when Γ is
finite we need only verify the definition for I = Γ.

Modifying the Stein normal characterization to yield an identity such as (2) which applies
to a large class of distributions is an approach also taken in [4]. Rather than changing the
distribution of X to satisfy the right hand side of (2), in [4] the existence of a function w
is postulated such that EXf(X) = σ2Ew(X)f ′(X). Based on an idea in [2], the use of
the w function is extended in [3] to a multivariate case for independent mean zero variables
X1, . . . , Xp with finite variances σ2

i under the condition that the given variables have density
pi(x), i = 1, . . . , p. In this case, one can define for each i the wi-function via σ2

i wi(xi)pi(xi) =
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E{Xi1(Xi > xi)}; we recognize wi(x) as the Radon-Nikodyn derivative of the zero bias
density (3) of X∗

i with respect to the density of Xi. Following this approach, in [3], the
covariance identity Cov(

∑p
i=1 Xi, g(X)) =

∑p
i=1 σ2

i E[wi(X)gi(X)] is obtained for smooth
functions g : Rp → R. In [12] the relationship between the w-function approach and the
zero-bias coupling is exploited. Whereas our interests here lie in normal approximation and
the associated couplings, the emphasis in [3] and in [12] is to derive variance lower bounds.

In Section 2 we list some of the known properties of the zero bias transformation in
one dimension. Proposition 2.2, whose short zero bias proof provides a test function type
bound in the Central Limit Theorem for a sum of independent random variables in R,
is generalized to higher dimension by Theorem 3.1 in Section 3. These two results are
based on the principle that the proximity of a variate W to the normal can be measured
by the proximity of W to its zero biased version. Proposition 2.1, proving how a zero bias
coupling can be generated for the sum of independent variables by replacing one summand, is
generalized to higher dimension by Theorem 3.2. For this extension, we introduce the notion
of constant sign covariance. The type of specification given by Proposition 2.3 to generate
zero bias couplings in the non-independent case in R is used in Theorem 4.1 in Section 4
to construct vectors with the zero bias distribution of a vector whose dependent coordinates
satisfy certain exchangeability conditions. Finally, putting the bounds and the construction
together, in Theorem 4.2 we obtain bounds in a multivariate central limit theorem for sums
of vectors obtained by simple random sampling.

2 Zero Biasing in One Dimension

The key property of the zero bias transformation which illuminates its use for normal ap-
proximation is the following fact from [9], that the zero biased distribution W ∗ for a sum W
of independent variables can be constructed by choosing a single variable with probability
proportional to its variance, and replacing that variable with one from its own zero bias
distribution.

Proposition 2.1 Let X1, . . . , Xn be independent, mean zero random variables with finite
variances σ2

1, . . . , σ
2
n and σ2 = σ2

1 + · · ·+ σ2
n > 0, and set

W =
n∑

i=1

Xi.

Then with I a random index independent of X1, . . . , Xn having distribution

P (I = i) =
σ2

i∑n
j=1 σ2

j

,

and X∗
i having the Xi size bias distribution, independent of Xj, j 6= i and of I, the variable

W ∗ = W −XI + X∗
I

has the W -zero biased distribution.
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Proof: For any smooth f with compact support,

EWf(W ) =
n∑

i=1

EXif(W )

=
n∑

i=1

EXif(Xi +
∑
t6=i

Xt) =
n∑

i=1

σ2
i Ef ′(X∗

i +
∑
t6=i

Xt) (8)

= σ2

n∑
i=1

σ2
i

σ2
Ef ′(W −Xi + X∗

i ) = σ2Ef ′(W −XI + X∗
I ) = σ2Ef ′(W ∗),

where we have used independence of Xi and Xt, t 6= i in (8). Now extend from smooth f to
absolutely continuous f where expectations in (2) exist by standard limiting arguments.

Proposition 2.1 leads directly to the following simple proof of the Central Limit Theorem
with a smooth function bound on the rate under a third moment assumption.

Proposition 2.2 Let X1, . . . , Xn be independent mean zero variables with variances σ2
1, . . . , σ

2
n

and finite third moments, and let W = (X1 + . . . + Xn)/σ where σ2 = σ2
1 + . . . + σ2

n > 0.
Then for all absolutely continuous test functions h,

|Eh(W )−Nh| ≤ 2||h′||
σ3

n∑
i=1

E

(
|Xi|σ2

i +
1

2
|Xi|3

)
, (9)

so in particular, when the variables have variance 1 and common third absolute moment,

|Eh(W )−Nh| ≤ 3||h′||E|X1|3√
n

. (10)

Proof: Proposition 2.1 and the fact that (cW )∗ = cW ∗ for any constant c 6= 0 gives

E|W −W ∗| = 1

σ
E|XI −X∗

I | =
1

σ3

n∑
i=1

E|Xi −X∗
i |σ2

i since P (I = i) = σ2
i /σ

2. (11)

Letting f(x) = x2sgn(x) and f ′(x) = 2|x| in Equation (2) we derive σ2
i E|X∗

i | = E|Xi|3/2
and so

E|Xi −X∗
i | ≤ E (|Xi|+ |X∗

i |) ≤ E

(
|Xi|+

1

2σ2
i

|Xi|3
)

. (12)

Using (12) in (11) and applying (5) proves (9). By Hölder’s inequality when EX2
i = 1, we

have E|Xi| ≤ 1 ≤ E|Xi|3 from which follows (10).
The Wasserstein distance inequality

d(W, Z) ≤ 2d(W, W ∗) (13)

is almost immediate from (5) and was proved in [7]. The distance d is defined by

d(X, Y ) = inf
h∈L

|Eh(X)− Eh(Y )| where L = {h : |h(x)− h(y)| ≤ |x− y|},
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and also has the dual representation

d(X, Y ) = inf E|X − Y |

where the infimum is over all joint distributions on (X, Y ) with given marginals; the infimum
is achieved for variables on R. Choosing W, W ∗ to achieve d(W, W ∗) on the right hand side
of (5) and then taking supremum over h ∈ L gives (13).

For constants α1, . . . , αn, when

W =
n∑

i=1

αi

λ
Xi (14)

with X1, . . . , Xn i.i.d. mean zero variance 1 and
∑

i α
2
i = λ2, we have from Proposition 2.1,

with P (I = i) = α2
i /λ

2, that

|W ∗ −W | = αI

λ
|X∗

I −XI | =
n∑

i=1

αi

λ
|X∗

i −Xi|1(I = i).

Taking (X∗
i , Xi) =d (X∗, X) to achieve the infimum d(X, X∗) gives an instance of (W ∗, W )

on a joint space, and so

d(W, W ∗) ≤ E|W ∗ −W | =
n∑

i=1

|αi|3

λ3
E|X∗

i −Xi| = ϕd(X, X∗) (15)

where

ϕ =

∑n
i=1 |αi|3

(
∑n

i=1 α2
i )

3/2
.

It is easily checked that ϕ < 1 unless all but one of the αi values are zero, and so (15) makes
precise an intuition that in some sense a sum of n independent variables, even for n = 2, has
a distribution closer to the normal than that of its summands; iteration yields a contraction
mapping type proof of the Central Limit Theorem. The equally weighted case αi = 1 gives
λ =

√
n and ϕ = 1/

√
n, and now applying (13) we obtain

d(W, Z) ≤ 2d(W, W ∗) ≤ 2n−1/2d(X, X∗) → 0 as n →∞,

a simple proof of the Central Limit Theorem in the independent case, with a bound in
Wasserstein distance. Bounds in normal convergence when iterating non-linear ‘averaging’
functions was obtained in [7] using linear approximations of the form (14).

As first shown in [9], for W in general, a sum of dependent variables for example, a
construction of W and W ∗ on a joint space can be accomplished using Proposition 2.3 and
the exchangeable pair of Stein [15].

Proposition 2.3 Let W ′, W ′′ be an exchangeable pair with distribution dF (w′, w′′) satisfying
the linearity condition

E(W ′′|W ′) = (1− λ)W ′ for some λ ∈ (0, 1). (16)
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If Ŵ ′, Ŵ ′′ has distribution

dF̂ (ŵ′, ŵ′′) =
(Ŵ ′ − Ŵ ′′)2dF (ŵ′, ŵ′′)

E(W ′ −W ′′)2
,

and U ∼ U [0, 1] is independent of Ŵ ′, Ŵ ′′, then the variable

W ∗ = UŴ ′ + (1− U)Ŵ ′′ has the W ′ zero bias distribution.

Proof: It suffices to verify (2) for smooth f with compact support. Letting σ2 = Var(W ′),
we have

σ2Ef ′(UŴ ′ + (1− U)Ŵ ′′) = σ2E

(
f(Ŵ ′)− f(Ŵ ′′)

Ŵ ′ − Ŵ ′′

)

= σ2E

(
(f(W ′)− f(W ′′))(W ′ −W ′′)

E(W ′ −W ′′)2

)
.

Now using (16) to see that EW ′′f(W ′) = (1 − λ)EW ′f(W ′) and E(W ′ − W ′′)2 = 2λσ2,
expanding the expression above yields

σ2E

(
W ′f(W ′)−W ′′f(W ′)−W ′f(W ′′) + W ′′f(W ′′)

E(W ′ −W ′′)2

)
=

2λσ2EW ′f(W ′)

E(W ′ −W ′′)2
= EW ′f(W ′).

This construction is the basis for deriving the Kolmogorov supremum norm type bounds
to the normal distribution function for the combinatorial central limit theorem application
in [8].

3 Multivariate Zero Biasing

Using Definition 1.2 we now generalize some of the properties of univariate zero biasing given
in Section 2 to higher dimension. In particular, Theorem 3.1 is a multidimensional version of
the bound (5), Theorem 3.2 a generalization of Proposition 2.1, and Theorem 4.1 in Section
4 an extension of Proposition 2.3.

Given a vector a in Rp, let ||a|| = max1≤i≤p |ai|. Given a p × p matrix A = (aij) we
set ||A|| = max1≤i,j≤p |aij| , and more generally for any array, || · || will denote its maximal
absolute value. For an array of functions arbitrarily indexed, say A(w) = {aα(w)}α∈A,
||A|| = supw supα |aα(w)|. For a smooth function h : Rp → R we let ∇h or Dh denote
the vector of first partial derivatives of h, D2h the Hessian matrix of second order partial
derivatives and in general Dkh is the array of kth order partial derivatives of h.

Theorem 3.1 Let W be a mean zero random vector in Rp with positive definite covariance
matrix Σ = (sα,β). Suppose that for all sα,β 6= 0, we have vectors Wα,β with the W zero
biased distribution in coordinates α, β. Then for a three times differentiable test function
h : Rp → R, Z a standard normal vector in Rp and Nh = Eh(Z),

|Eh(Σ−1/2W)−Nh| ≤ p4

3
||Σ−1/2||3||D3h||

p∑
α,β=1

|sαβ|E||W −Wα,β||.
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Proof: Following [6], and [1] (see also [11]), a solution f to the differential equation

trΣD2f(W)−W · ∇f(W) = h(Σ−1/2W)−Nh

exists and satisfies∣∣∣∣∣ ∂k∏k
j=1 ∂wαj

f(w)

∣∣∣∣∣ ≤ pk

k
||Σ−1/2||k||Dkh|| k = 1, 2, 3. (17)

Applying Definition 1.2,

|Eh(Σ−1/2W)−Nh| = |E
(
trΣD2f(W)−W · ∇f(W)

)
|

= |E
p∑

α,β=1

sαβ(fα,β(W)− fα,β(Wα,β))|

= |E
p∑

α,β=1

sαβ∇fα,β(ξα,β) · (W −Wα,β)|,

where ξα,β is on the line segment between W and Wα,β. The proof is completed by applying
the triangle inequality and the bound (17).

Given a collection of vectors Xi = (X1,i, . . . , Xp,i) ∈ Rp, i = 1, . . . , n let

W =
n∑

i=1

Xi, and set σjl,i = Cov(Xj,i, Xl,i).

In order the generalize Proposition 2.1 to higher dimension, we make the following

Definition 3.1 The collection of vectors Xi = (X1,i, . . . , Xp,i) ∈ Rp, i = 1, . . . , n has con-
stant sign covariance if the sign of σjl,i does not depend on i.

Example 3.1 If each vector in the collection (Xi)i=1,...,n has uncorrelated components then
trivially the collection has constant sign covariance.

Example 3.2 If the components of each vector Xi ∈ Rp, i = 1, . . . , n are obtained by a
simple random sample of size p from a population with characteristics Ai, |Ai| = Ni > p,
satisfying ∑

a∈Ai

a = 0,

then

σ2
j,i =

1

Ni

∑
a∈Ai

a2 and σjl,i =
−1

Ni(Ni − 1)

∑
a∈Ai

a2 for j 6= l,

and hence the collection (Xi)i=1,...,n has constant sign covariance.
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When a collection of vectors (Xi)i=1,...,n has constant sign covariance then for every
j, l = 1, . . . , p we may define a probability distribution on indices i = 1, . . . , n by

P (Ijl = i) =
σjl,i

sjl

, with sjl =
n∑

i=1

σjl,i, (18)

and in addition, if for i 6= i′ we have Cov(Xi,Xi′) = 0, then

sjl = Cov(Wj, Wl) where Wj =
n∑

i=1

Xj,i.

Theorem 3.2 Let (Xi)i=1,...,n be a collection of mean zero constant sign covariance vectors,

independent over i, and for each i = 1, . . . , n and j, l = 1, . . . , p suppose that Xjl
i has the Xi

zero biased distribution in coordinates j, l and is independent of Xj for j 6= i. Then with Ijl

having distribution (18) and independent of all other variables

Wjl = W −XIjl + Xjl
Ijl = Xjl

Ijl +
∑
t6=Ijl

Xt

has the W zero biased distribution in coordinates jl. In particular, when W has positive
definite covariance matrix Σ = (sjl), then for any three times differentiable test function
h : Rp → R, and Nh = Eh(Z) for a standard normal vector Z ∈ Rp,

|Eh(Σ−1/2W)−Nh| ≤ p4

3
||Σ−1/2||3||D3h||

p∑
j,l=1

|sjl|E||XIjl −Xjl
Ijl||.

Proof: It suffices to consider a smooth function f with compact support, for which

E

p∑
j=1

Wjfj(W) = E

p∑
j=1

n∑
i=1

Xj,ifj(W) = E
n∑

i=1

p∑
j=1

Xj,ifj(Xi +
∑
t6=i

Xt)

=
n∑

i=1

E

p∑
j=1

Xj,ifj(Xi +
∑
t6=i

Xt) =
n∑

i=1

E

{
p∑

j=1

p∑
l=1

σjl,ifjl(X
jl
i +

∑
t6=i

Xt)

}

= E

p∑
j=1

p∑
l=1

sjl

n∑
i=1

σjl,i

sjl

fjl(X
jl
i +

∑
t6=i

Xt)

= E

p∑
j=1

p∑
l=1

sjl

n∑
i=1

P (Ijl = i)fjl(X
jl
i +

∑
t6=i

Xt) = E

p∑
j=1

p∑
l=1

sjlfjl(W
jl).

The second assertion follows directly from Theorem 3.1, completing the proof.

4 Construction using Exchangeable Pairs

Theorem 4.1 demonstrates how to construct the zero biased vectors Xjl ∈ Rp, j, l = 1, . . . , p
for a mean zero vector X ∈ Rp with components satisfying conditions similar to those
imposed to prove Proposition 2.1 and Theorem 2.1 in [9]; we note (X ′

j, X
′′
j ) in (19) is an

embedding of a univariate exchangeable pair in a multidimensional vector.
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Theorem 4.1 Let X′ = (X ′
1, X

′
2, . . . , X

′
p) be a vector of mean zero finite variance variables

with Var(X ′
j) = σ2 > 0 and EX ′

jX
′
l = κ for j 6= l, σ2 > κ. Assume that for every j there

exists X ′′
j such that

X
′ ′′

j = (X ′
1, . . . , X

′
j, X

′′
j , . . . , X ′

p) = d(X
′
1, . . . , X

′′
j , X ′

j, . . . , X
′
p); (19)

let dF
′ ′′
j (x) denote the distribution of X

′ ′′
j . By (19) for all j 6= l,

E(X ′′
j X ′

l) = κ; (20)

assume that (20) holds for j = l as well. In addition, assume that for some λ,

E(X ′′
j |X′) = λY ′ where Y ′ =

p∑
m=1

X ′
m. (21)

By the foregoing, the positive quantity

v2 = E(X ′
j −X ′′

j )2 = 2(σ2 − κ) (22)

does not depend on j, and we may consider the p + 1 vector

X̂
′ ′′

j = (X̂ ′
1, . . . , X̂

′
j, X̂

′′
j , . . . , X̂ ′

p)

with distribution

dF̂
′ ′′

j (x̂) =
(X̂ ′

j − X̂ ′′
j )2

v2
dF

′ ′′

j (X̂1, . . . , X̂
′
j, X̂

′′
j , . . . X̂p), (23)

and X̂′
j and X̂′′

j the p-vectors obtained by removing X̂ ′′
j and X̂ ′

j from X̂
′ ′′
j , respectively.

Then, with Uj a uniform U(0, 1) variable independent of {X̂′
j, X̂

′′
j}, and

Xjj = UjX̂
′
j + (1− Uj)X̂

′′
j , (24)

with Vjl Bernoulli random variables P (Vjl = 1) = P (Vjl = 0) = 1/2 independent of
{Xjj,Xll}, the collection

Xjl = VjlX
jj + (1− Vjl)X

ll, j, l = 1, . . . , p

has the X zero bias distribution in coordinates j, l.

Since 0 ≤ Var(X ′′
j + Y ′) = (p + 1)(σ2 + pκ), it follows pκ ≥ −σ2 and hence Var(Y ′) =

p(σ2 + (p − 1)κ) ≥ −pκ. Therefore κ < 0 implies Var(Y ′) > 0; clearly if κ ≥ 0 then
Var(Y ′) > 0, directly. Hence the denominator of the ratio (25) below, relating λ and κ, is
always strictly positive, and these two values share the same sign.

Remark 4.1 When |X ′
j| ≤ M for j = 1, . . . , p then ||X′|| ≤ M giving in turn ||X′ ′′

j || ≤ M ,

and then by the construction in Theorem 4.1, that ||X̂′ ′′
j ||, ||X̂′

j||, ||X̂′′
j || and finally ||Xjl|| are

all bounded by M . That the support of a variate and that of its zero bias distribution do
not coincide in general, however, is easy to see even in R; if X has the discrete uniform
distribution on the two values −1 and 1, then the X zero-bias distribution is the continuous
uniform U [−1, 1].
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Proof of Theorem 4.1 Multiplying the conditional expectation in (21) by Y ′ and taking
expectation we obtain

EX ′′
j Y ′ = λV arY ′ = λp(σ2 + (p− 1)κ).

But from (20) we also have that EX ′′
j Y ′ = κp, and equating it follows that

λ =
κ

σ2 + (p− 1)κ
. (25)

Using (23) and (24), with f any smooth function and, suppressing j, letting X′ and X′′

denote the vector obtained by removing X ′′
j and X ′

j from X
′ ′′
j respectively,

Efj(X
jj) = Efj(UjX̂

′
j + (1− Uj)X̂

′′
j )

= E

(
f(X̂′

j)− f(X̂′′
j )

X̂ ′
j − X̂ ′′

j

)
=

1

v2
E(X ′

j −X ′′
j )(f(X′)− f(X′′))

=
2

v2
E
(
X ′

jf(X′)−X ′′
j f(X′)

)
=

2

v2
E
(
X ′

jf(X′)− λY ′f(X′)
)

by (21).

Now, taking expectation over Vjl and noting that fjl = flj, we have

E

p∑
j=1

p∑
l=1

σjlfjl(X
jl) = σ2

p∑
j=1

Efjj(X
jj) +

κ

2

p∑
j=1

∑
l 6=j

{Eflj(X
jj) + Efjl(X

ll)}

=
2σ2

v2

p∑
j=1

E
(
X ′

jfj(X
′)− λY ′fj(X

′)
)

+
2κ

v2

p∑
j=1

∑
l 6=j

E
(
X ′

jfl(X
′)− λY ′fl(X

′)
)

=
2σ2

v2

p∑
j=1

E
(
X ′

jfj(X
′)− λY ′fj(X

′)
)

+
2κ

v2

p∑
j=1

E

{
p∑

l=1

X ′
jfl(X

′)−X ′
jfj(X

′)− λ

p∑
l=1

Y ′fl(X
′) + λY ′fj(X

′)

}

=
2(σ2 − κ)

v2

p∑
j=1

E
(
X ′

jfj(X
′)− λY ′fj(X

′)
)

+
2κ

v2

p∑
j=1

E

{
p∑

l=1

X ′
jfl(X

′)− λ

p∑
l=1

Y ′fl(X
′)

}
.

Employing (22) for the first term, and letting divf(x) =
∑

l fl(x), this expression can be
written

p∑
j=1

EX ′
jfj(X

′)− λEY ′divf(X′) +
2κ

v2
E (Y ′divf(X′)− λpY ′divf(X′))

11



=

p∑
j=1

EX ′
jfj(X

′) +

(
−λv2 + 2κ(1− λp)

v2

)
EY ′divf(X′)

= E

p∑
j=1

X ′
jfj(X

′),

since by (22) and (25),

−λv2 + 2κ(1− λp) = 2
(
−λ(σ2 − κ) + κ(1− λp)

)
= 2(κ− λ(σ2 + (p− 1)κ)) = 0.

Example 4.1 Independent Variables. It is not difficult to see directly from Definition 1.2
that a vector X of independent random variables can be zero biased in coordinate j by re-
placing Xj by a variable X∗

j having the Xj zero biased distribution, independent of Xl, l 6= j;
this construction is equivalent to the special case of Theorem 4.1 when taking X ′′

j in (19) to
be an independent copy of X ′

j. In particular, in this case

||X−Xjj|| = |Xj −X∗
j |.

From this observation and calculations parallel to those in Proposition 2.2 we obtain the
following corollary of Theorem 3.2.

Corollary 4.1 Let (Xi)i=1...,n be an independent collection of mean zero random vectors in
Rp whose coordinates Xj,i, j = 1, . . . , p are independent with variance σjj,i and finite third
absolute moments. Then for

W =
n∑

i=1

Xi and sjj =
n∑

i=1

σjj,i,

and any three times differentiable test function h,

|Eh(Σ−1/2W)−Nh| ≤ p4

3
( min
1≤j≤p

sjj)
−3/2||D3h||

p∑
j=1

n∑
i=1

E

(
σ2

jj,i|Xj,i|+
1

2
|Xj,i|3

)
,

and when Xj,i, i = 1, . . . , n are identically distributed with variance 1 for all j = 1, . . . , p,

|Eh(Σ−1/2W)−Nh| ≤ p4

2
√

n
||D3h||

p∑
j=1

E|Xj,1|3.

In our next example we consider vectors having non-independent components.

Example 4.2 Simple Random Sampling. Let X′ ∈ Rp be a vector whose values are obtained
by taking a simple random sample of size p from a population having characteristics A, |A| =
N > p, with

∑
a∈A a = 0. Taking one additional observation X ′′

j we form an enlarged vector
that satisfies (19). In the notation of Theorem 4.1,

E(X ′
jX

′′
l ) =

−1

N(N − 1)

∑
a∈A

a2, (26)
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and (20) is satisfied with κ the value (26), and

E(X ′′
j |X′) =

−1

N − p
Y ′,

so (21) is satisfied with λ = −1/(N −p). Hence the hypotheses of Theorem 4.1 hold, and the
construction so given can be used to produce a collection with the X′ zero biased distribution.

We now arrive at

Theorem 4.2 Let (Xi)i=1...,n be an independent collection of mean zero random vectors
in Rp obtained by simple random sampling as in Example 3.2. Suppose |a| ≤ M for all
a ∈ Ai, i = 1, . . . , n, and let

W =
n∑

i=1

Xi and sjl = Cov(Wj, Wl).

Then for a three times differentiable test function h,

|Eh(Σ−1/2W)−Nh| ≤ 2

3
Mp4||Σ−1/2||3||D3h||

p∑
j,l=1

|sjl|.

Proof: As shown in Example 3.2, the collection of vectors have constant sign covariance,
and hence Theorem 3.2 applies. Using the construction given Theorem 4.1 and the bound
from Remark 4.1 we have

||XIjl
−Xjl

Ijl
|| ≤ 2M,

and the conclusion follows.
In typical situations, Σ and sjl will have order n, resulting in a bound of the correct

order, n−1/2.
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