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1
Multiple Testing

1.1 Discourse on Multiple Testing

In many statistical studies, a large number of hypotheses are tested simul-
taneously. For example, a genome-wide association study (GWAS) involves
scanning loci across the complete sets of DNA or genomes of a sample
of subjects in order to find genetic variations in the hopes of associating
particular loci with a given trait or disease. A locus is a specific location
of a gene or some other part of the DNA sequence, such as a Single Nu-
cleotide Polymorphism, or SNP. The study may comprise diseased subject
and controls, or subjects with different degrees of severity of some disease.

For each of many thousands of loci in the DNA sequence we set a null
hypothesis that it is not related to the disease in question. Rejecting this
null amounts to a discovery of a gene or a SNP which is associated with
the disease. If we test for m loci at level of significance α = 0.01, and
m = 20, 000, say, which is roughly the number of protein-coding human
genes, then we should expect about 200 ‘discoveries’ even if the disease has
no genetic component. Such a number of false discoveries is a reason for
concern, which we address in this chapter.

For another example consider the well-known issue of disease clusters
which appear occasionally in certain areas and groups, and are sometimes
ascribed to some source of contamination. How does one prove that a high
incidence of a certain disease in a particular group is caused by the alleged
source, and is not due to random variation? If a large number of different
groups of people who at some period in the past lived in the same region,
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say, get together and search for common diseases from large lists of diseases,
it is inevitable that there will arise groups with a higher than average
incidence in certain diseases. They may then believe, and claim, that their
observed higher incidence is significant and not random, and that pollution
or some other problem in the region in question is the cause.

While the GWAS example above is a planned scientific study with a
well-defined search space and a family of hypotheses, it is usually not so in
disease cluster examples. In fact, various types of exploratory data-mining
in medical records may clearly lead to groups and diseases that may appear
to be suspicious clusters, and these may then presented to the public and to
courts without ever defining the extent of the search. In studies having clear
search procedure and a list of hypotheses, it is not clear how to formally
determine statistical significance and control the error rate of the combined
inference.

In cases where the search and the associated family of hypotheses are well
defined, one can take the large number of hypotheses into consideration in
performing confirmatory data analysis that controls the error rates in var-
ious ways. For a reference on multiple testing procedures,see, for example,
Hochberg and Tamhane (1987).

1.2 The p-value

Given data X, a statistic T = T (X), a hypothesis H0 and rejection region
A, the probability PH0(T ∈ A) is well defined when H0 is a simple hypoth-
esis. For H0 composite we will take PH0(T ∈ A) as supH P (T ∈ A), where
the sup is taken over all the hypotheses H in H0. This notation is used in
the following definition of the p-value, which is not the most general, but
suffices for most purposes.

Definition 1.2.1 Given data X, a statistic T = T (X), a simple or com-
posite hypothesis H0 and a procedure that rejects H0 for T ≥ c for some c,
set G(t) = PH0

(T ≥ t). The p-value associated with an observed value of
T is defined to be G(T ), and will be denoted by P .

In words, the p-value is the probability of getting a value at least as extreme
as the one associated with the observed T . A small p-value suggests that
T is extreme and H0 should be rejected. In particular a p-value less than
some small α implies rejection of H0 at significance level α.

For a given significance level α ∈ (0, 1), define

cα = inf{c : PH0
(T ≥ c) ≤ α},

the critical value of the test statistic for level α.

Proposition 1.2.2 We have P = inf{α : T ≥ cα}.
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Proof: Note that cα = inf{c : G(c) ≤ α}. Given T , let α satisfy T ≥ cα.
This implies G(T ) ≤ α and thus the p-value P satisfies P ≤ α. This proves
that P ≤ inf{α : T ≥ cα}. If P < inf{α : T ≥ cα} then for some α0 we have
G(T ) = P = α0 and T < cα0

. The latter inequality implies G(T ) > α0, a
contradiction. 2

Proposition 1.2.3 For all u ∈ (0, 1) it holds that PH0
(P ≤ u) ≤ u.

Proof: From the definition of cu we have that PH0
(T ≥ cu) ≤ u. This

implies PH0
(P ≤ u) = PH0

(inf{α : T ≥ cα} ≤ u) = PH0
(T ≥ cu) ≤ u. 2

If T is a continuous variable and H0 is simple then P ∼ U [0, 1]; see
Exercise 1.4.1.

1.3 Family-wise Error Rate

Family-wise error rate (FWER) is the probability of making one or
more false discoveries, that is, rejection of a true Hi

0, when hypotheses
H1

0 , . . . ,H
m
0 are being tested simultaneously. If V denotes the number

of false rejections, then when all hypotheses are true, the probability of
rejecting at least one of them is

FWER = P (V ≥ 1) (1.1)

where P is any probability distribution for which allHi
0 are true; the FWER

criterion requires FWER ≤ α for a prescribed value of α.

Proposition 1.3.1 Let Pi denote the p-values associated with m null hy-
potheses, Hi, i = 1, . . . ,m. Then the procedure that rejects the hypotheses
for which Pi ≤ α/m satisfies FWER ≤ α.

Proof: Let Gi(t) = PHi
(Ti ≥ t). By Proposition 1.2.3, PHi

0
(Pi ≤ α/m) ≤

α/m. Now FWER ≤ P (
⋃m
i=1{Pi ≤ α/m}), where the probability P is

any probability under the assumption that all Hi
0 hold. The inequality

between FWER and the probability of the union follows from the fact that
if some null hypotheses are untrue, they can be omitted from the union.
By Bonferroni’s inequality FWER ≤

∑m
i=1 PHi

0
(Pi ≤ α/m) ≤ α.

1.4 False Discovery Rate

The term discovery refers to the fact that in many situations, the rejection
of a null hypothesis amounts to a discovery. For example, a typical null
hypothesis is that two treatments, and old one and a proposed new one,
are equal, and a discovery would be that the new treatment is better.

Suppose tests are performed on m null hypotheses, each producing a
p-value. To achieve a type I error level α over the collection of tests, the
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Bonferroni procedure rejects all those hypotheses having p-values no greater
than α/m. Though this procedure indeed has Type 1 error no more than α,
it may be overly conservative. Following hoc and Hochberg and Benjamini
(1990) we discuss a criterion that leads to a different procedure based on
these same p-values.

Let R be the total number of null hypotheses rejected, sometimes called
discoveries, and of those, V , the number false rejections. We set

Q = V/R,

the proportion of rejections that were false; we set Q = 0 when R = 0. The
False Discovery Rate, or FDR, is defined as

FDR = E[Q],

represents the expected proportion of false rejections out of the total num-
ber of rejections. Thus, the FDR represents the expected number of false
discoveries relative to the total number of claimed discoveries. A procedure
that satisfies the constraint

FDR ≤ α (1.2)

allows a scientist to err in proportion to the total number of discoveries in
a given study.

For example, if in a genetic study we wish to discover which of m DNA
loci are associated with a certain phenotypical trait, such as the height
of a plant, then the FDR criterion (1.2) allows an average proportion of
α of the declared discoveries to be false, that is, ‘discoveries’ of loci not
associated with the given trait. This criteria should be compared with the
Family Wise Error Rate approach which sets a bound on the probability of
making one or more false discoveries, which will only be small when with
high probability all discoveries are true ones, and thus errors are allowed
only with small probability.

Let P(1) ≤ · · · ≤ P(m) be the ordered p-values corresponding to the m
tested hypotheses. Define

K = max{i : P(i) ≤ iα/m}.

The Benjamini Hochberg procedure rejects the null hypotheses correspond-
ing to P(1), . . . , P(K). Note that among the rejected hypotheses the largest
p-value must satisfy P(i) ≤ iα/m for i = K, but for i < K this inequality
need not hold. The thresholds iα/m in the BH procedure against which
the p-values are tested are never smaller than α/m, the threshold of the
Bonferroni procedure, leading to more rejected hypotheses, that is, more
claimed discoveries.

Here is a simple example. Suppose m = 3 and P3 < P1 < P2. Then, writ-
ing these values in increasing order as P(1) < P(2) < P(3), if the largest of
them, P(3) = P2 is strictly smaller than 3α/3 = α then all three hypotheses
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are rejected. If not, but P(2) = P1 < 2α/3 then the hypotheses correspond-
ing to P(2) = P1 and P(1) = P3, that is, the first and third hypotheses are
rejected, and so on.

To study the behavior of the BH procedure we make the following
definition.

Definition 1.4.1 The random variables X1, . . . , Xn are PRDS (Positive
Regression Dependence on each one from a Subset) for S ⊆ {1, . . . , n}
if, for any coordinatewise nondecreasing function g, and for each i ∈ S,
E[g(X1, . . . , Xn) | Xi = x] is nondecreasing in x. If S = {1, . . . , n} we say
that the variables are PRDS

Independent random variables are clearly PRDS. Note that PRDS implies
PRDS on any S, so PRDS is a stronger assumption. We will actually require
a weaker property than PRDS, as defined in the following.

Proposition 1.4.2 If the random variables X1, . . . , Xn are PRDS on S ⊆
{1, . . . , n} then for any coordinatewise nondecreasing function g, and for
each i ∈ S, E[g(X1, . . . , Xn) | Xi ≤ x] is nondecreasing in x.

Proof: The claim follows readily from the fact that if h(x) is nondecreasing
in x then

∫ x
−∞ h(t)dF (t)/F (x) is nondecreasing in x for any distribution

function F . This fact and the rest of the proof is left to the reader, see
Exercises 1.4.2 and 1.4.3, with the hint that

E[g(X1, . . . , Xn) | Xi ≤ x]

=

∫ x

−∞
E[g(X1, . . . , Xn) | Xi = t]dFXi

(t)/FXi
(x).

Theorem 1.4.3 Suppose of m null hypotheses being tested that exactly m0

are true, and let P1, . . . , Pm be PRDS on the set of indices corresponding
to the true null hypotheses. Then the BH procedure guarantees E[Q] ≤
αm0/m. Equality holds when P1, . . . , Pm are independent, the statistics Ti
are continuous, and the null hypotheses are simple.

Proof: Let Ii denote the indicator of the event that under the BH proce-
dure, Hi

0 is rejected. Recalling that R is the number of rejected hypotheses,
we first claim that

{R = r, Ii = 1} = {R = r, Pi ≤ rα/m} for all i = 1, . . . ,m. (1.3)

The verification is left as Exercise 1.4.4.
Assuming without loss of generality that the true m0 hypotheses are

H1
0 , . . . ,H

m0
0 , we have Q =

∑m0

i=1 Ii/R. Since

E(Ii/R) =

m∑
r=1

1

r
P (R = r, Ii = 1),

we obtain, first by using (1.3),
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EQ =

m0∑
i=1

m∑
r=1

1

r
P (R = r, Ii = 1)

=

m0∑
i=1

m∑
r=1

1

r
P (R = r | Pi ≤ rα/m)P (Pi ≤ rα/m)

≤ α

m

m0∑
i=1

m∑
r=1

P (R = r | Pi ≤ rα/m) =
α

m

m0∑
i=1

[
P (R ≥ 1 | Pi ≤ α/m)

+

m∑
r=2

P (R ≥ r | Pi ≤ rα/m)− P (R ≥ r | Pi ≤ (r − 1)α/m)
]

≤ α

m

m0∑
i=1

P (R ≥ 1 | Pi ≤ α/m) = αm0/m, (1.4)

where the first inequality holds by Proposition 1.2.3, and the second follows
by PRDS which implies

P (R ≥ r | Pi ≤ rα/m)− P (R ≥ r | Pi ≤ (r − 1)α/m) ≤ 0, (1.5)

see exercise 1.4.5.
Equality holds in the first inequality if H1

0 , . . . ,H
m0
0 are simple and T

has a continuous distribution function, see remark after Proposition 1.2.3.
The second inequality is an equality under independence of the Pi’s, since
given Pi ≤ κα/m for κ ≤ r the events {R ≥ r} holds if and only if for some
j ≥ r there exists j − 1 p values, excluding Pi, satisfying P(k) ≤ kα/m,
a condition that does not involve Pi. We apply this to the terms in (1.5)
with κ = r and κ = r − 1, respectively. 2

The above proof is due to Finner et al. (2009) Note that it suffices to
assume PRDS on the set of true Hi

0’s. This is not very useful, since in
general we don’t know which hypotheses are true, of course.

In the case that m0 = m, that is, all null hypothesis are true, we have
V = R since any rejection of a null hypothesis is false. In this case Q = 1
if R > 0 and 0 otherwise and Theorem 1.4.3 implies that P (R > 0) ≤ α so
that the BH procedure guarantees FWER ≤ α.

Exercise 1.4.1 If T is a continuous variable and H0 is simple then P ∼
U [0, 1].

Exercise 1.4.2 We recall that for two random variables U and V we say
that U is stochastically dominated by V , and write U ≤st V , when

E[h(U)] ≤ E[h(V )] for all non-decreasing functions h.
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Prove that U ≤st V if and only if there exists a joint distribution for the
pair (U, V ) having the given marginal distributions, and satisfying

P (U ≤ V ) = 1.

Hint: Consider applying the inverse probability integral transformation.

Exercise 1.4.3 For any random variable X and u ∈ R let Xu be such that

P (Xu ≤ x) = P (X ≤ x|X ≤ u) for all x ≤ u.

Prove, perhaps by using Exercise 1.4.2, that the distributions Xu, u ∈ R are
stochastically increasing in u, that is,

Xs ≤st Xt for all s ≤ t.

Hint: Note that p = P (Xt ≤ s) and q = P (s < Xt ≤ t) are non-
negative and sum to one. Consider generating Xs and Xt in a way such
that Xs ≤ Xt with probability one by flipping a coin with success probablity
p, and adopting different strategies for generating the variables depending
on whether the coin comes up ‘heads’ or ‘tails’.

Now show how the claim in Proposition 1.4.2 follows, that is, that∫ x
−∞ h(t)dF (t)/F (x) is nondecreasing in x whenever h(x) is nondecreasing

in x.

Exercise 1.4.4 Show 1.3.

Exercise 1.4.5 Show 1.5.
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