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Abstract

We compare estimators of the (essential) supremum and the integral of
a function f defined on a measurable space when f may be observed at a
sample of points in its domain, possibly with error. The estimators compared
vary in their levels of stratification of the domain, with the result that more
refined stratification is better with respect to different criteria. The emphasis
is on criteria related to stochastic orders. For example, rather than compare
estimators of the integral of f by their variances (for unbiased estimators), or
mean square error, we attempt the stronger comparison of convex order when
possible. For the supremum the criterion is based on the stochastic order of
estimators.

For some of the results no regularity assumptions for f are needed, while
for others we assume that f is monotone on an appropriate domain.

AMS 2000 Subject Classification: Primary 65C05. Secondary 60E15, 62D05.

Keywords: convex loss, convex order, stochastic order, majorization, stratified
sampling.
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1 Introduction

In many situations the cost of computing the value of a function f is very high, ei-
ther because the analytic expression of the function is extremely complex, or because
the value is the result of a costly experiment. For example, f could be the level of
toxicity as a reaction to different doses of certain drugs, or it could be the output
of a chemical experiment, or it could be the survival time of a patient undergoing a
certain treatment. Therefore the function can be computed only at a limited num-
ber of points. One standard way to choose these points is via some Monte Carlo
randomization. Different possibilities arise: points could be sampled totally at ran-
dom, or some stratification could be used. When properly carried out, stratification
is known to improve the performance of estimators. The purpose of this paper is to
qualify the above statement in some relevant cases, and to compare different sampling
stratifications according to some suitable criteria.

Often the object of interest is some functional of f such as its supremum or
integral. Monte Carlo estimation of such functionals is the subject of a very large
number of papers. In most cases some regularity of the function f is assumed, see, for
example, Novak (1988) or Zhigljavsky and Chekmasov (1996). Under some regularity
conditions it is often reasonable to estimate the entire function and then use a plug-in
method to estimate the functional. When no regularity is assumed for f , then it may
be more reasonable to estimate the functional directly.

Given a measurable space (U,U ), let f : U → R be a measurable function f . In
order to estimate θ := supx∈U f(x) we can draw a sample X1, . . . , Xn of n points in
U and use the estimator T := max(f(X1), . . . , f(Xn)). Alternatively we can sample
the X’s by resorting to some stratification. Ermakov, Zhiglyavskĭı, and Kondratovich
(1988), Kondratovich and Zhigljavsky (1998), and Zhigljavsky and Žilinskas (2008)
prove that, if we consider two partitions of U, one of which is a refinement of the other,
and we sample in proportion to the measure of each element of the partition, then the
more refined partition produces a stochastically larger estimator of the supremum.
Since these estimators are almost surely smaller than θ (hence biased), and consistent,
the stochastically larger one performs better. Thus the more we stratify the better
the estimator we obtain.

In our paper we extend this result and show that the stochastic comparison for
estimators of the supremum holds also when observations are censored, that is, when
for a sample of pairs of random variables (Ui, Zi) we only know whether Zi ≤ f(Ui)
or not. In applications, there may be situations where exact evaluation of f(u) at a
given point is difficult or expensive, whereas a comparison of f(u) to a given constant
t is (at least for most values of t) much easier. For example, if f(u) represents a
lifetime, it may easier to see if it has exceeded a certain value, rather than wait to
obtain the exact value f(u) itself. This amounts to censoring.

When we want to estimate the integral I(f) of the function f , then it is easy
to construct an unbiased estimators of I(f) by using different stratified samples.
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Unbiasedness of these estimators implies that the comparison criterion cannot be the
stochastic order, as used for the maximum.

In much of the literature estimators are compared in terms of a given loss function,
which may be arbitrary. Typically the loss function is quadratic, so the criterion is the
mean square error, i.e., the variance, when the estimator is unbiased. More generally,
it may be possible to find comparison criteria that are valid for large classes of loss
functions, for instance all losses of the type |W − I(f)|p, where W is an estimator of
I(f) and p ≥ 1, or even the class of all convex loss functions. The use of the entire
class of convex loss functions in inference goes back at least to Laycock and Silvey
(1968) and Laycock (1972). Similar ideas have later been used, e.g., by Berger (1976),
Kozek (1977), Lin and Mousa (1982), Eberl (1984), Bai and Durairajan (1997), and
Petropoulos and Kourouklis (2001). A comparison of the performance of different
estimators, with respect to all convex loss functions, can be achieved by considering
the convex order. Comparison of experiments in term of the convex order traces back
to Blackwell (1951, 1953).

It is well known that stratification reduces the variance of estimators of I(f), but,
as will be shown below, stratification does not necessarily reduce E[|W − I(f)|p], for
p 6= 2, which implies that, even if stratification is useful in L2, it may be counter-
productive in L1, for instance. We will show that in some circumstances stratified
sampling is better not just in L2, but in terms of the convex order, which in turn
implies that it is better in Lp for every p ≥ 1. This is the case when observations
are censored, or the function f is univariate and monotone, or when it is multivariate
and monotone and the sampling is independent across coordinates. Papageorgiou
(1993) shows the computational advantage of using randomized methods to compute
the integral of monotone d-variate functions, and shows how this depends on d.

Our results also hold when the function f can only be observed with noise, for
instance, when f is observed as the outcome of some experiment. Moreover our
regularity assumptions on the function f are rather nonrestrictive: measurability
when estimating the maximum, boundedness when observations are censored, and
sometimes monotonicity when estimating the integral.

We emphasize that in our framework evaluations of f by experiment is the costly
part, and any precalculations, such as those required for computing strata and sam-
pling from the conditional distributions in strata, even if computer-time consuming,
are considered to have a relatively negligible cost.

The paper is organized as follows. Section 2 fixes notation and reviews various
properties of stochastic orders and certain dependence structures. Section 3 compares
estimators of the supremum of a function, considering also the case of censored ob-
servations. Section 4 compares estimators of integrals: first a variance comparison is
shown to hold in general, even when observations are affected by errors, then a counter
example is provided for a non-quadratic loss function. Then censored observations
are considered and a comparison in terms of the convex order is proved in this case.
Finally monotone functions are examined. In the univariate case a convex order com-
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parison holds. In the multivariate case this is true under some additional conditions
on the stratification and on the dependence of the underlying random vector.

Numerical examples can be found in Goldstein, Rinott, and Scarsini (2010).

2 Notation and preliminaries

In the whole paper a probability space (Ω,F ,P) is assumed in the background. The
stochastic order ≤st, the convex order ≤cx, the increasing convex order ≤icx, and the
majorization order ≺ are defined as follows (see, e.g., Marshall and Olkin (1979),
Müller and Stoyan (2002), Shaked and Shanthikumar (2007)). Given two random
vectors X,Y we say that Y ≤st X if

E[φ(Y )] ≤ E[φ(X)] (2.1)

for all nondecreasing functions φ; we say that Y ≤cx X if (2.1) holds for all convex
functions φ, and we say that Y ≤icx X if (2.1) holds for all nondecreasing con-
vex functions φ. It is well known that Y ≤st X iff P(Y ∈ A) ≤ P(X ∈ A) for
all increasing sets A, where we call a set increasing if its indicator function is non-
decreasing. In the case of univariate random variables X, Y , the above inequality
becomes P(Y ≤ t) ≥ P(X ≤ t) for all t ∈ R. It is well known that X ≤cx Y implies
E[X] = E[Y ] and Var[X] ≤ Var[Y ].

The statement Y ≤st X depends only on the marginal laws L (Y ) and L (X),
so sometimes we write L (Y ) ≤st L (X), and analogously for ≤cx and ≤icx.

Given two vectors x = (x1, . . . , xn), y = (y1, . . . , yn), we write y ≺ x if

k∑
i=1

y↓i ≤
k∑

i=1

x↓i for k = 1, . . . , n− 1,
n∑

i=1

yi =
n∑

i=1

xi,

where y↓1 ≥ · · · ≥ y↓n is the decreasing rearrangement of y, and analogously for x.
The relation y ≺ x holds if and only if there exists an n×n doubly stochastic matrix
D such that y = Dx.

A function ψ : Rn → R is called Schur convex, or Schur concave, if y ≺ x
implies ψ(y) ≤ ψ(x), or ψ(y) ≥ ψ(x), respectively. If ϕ : R → R is convex then
ψ(x) =

∑n
i=1 ϕ(xi) is Schur convex.

A random vector X is associated if for all nondecreasing functions φ, ψ we have
Cov[φ(X), ψ(X)] ≥ 0.

Recall that a subset A ⊂ Rd is a lattice if it is closed under componentwise
maximum ∨ and minimum ∧. A random vector X is multivariate totally positive of
order 2 (MTP2) if its support is a lattice and its density fX with respect to some
product measure on Rd satisfies fX(s) fX(t) ≤ fX(s ∨ t) fX(s ∧ t) for all s, t ∈ Rd.
MTP2 implies association. Also, any vector having independent components is MTP2.

Let U be a random variable with values in some measurable space (U,U ) with
nonatomic law PU . A finite sequence B = (B1, . . . , Bb) of subsets of U is called an

5



ordered partition of U if Bi ∩Bj = ∅ for i, j ∈ {1, . . . , b}, i 6= j, and ∪bi=1Bi = U. For
the sake of brevity in the sequel whenever we say partition we mean ordered partition.

Here we consider partitions B = (B1, . . . , Bb) of U where the sets Bi are mea-
surable and such that for i = 1, . . . , b we have P(U ∈ Bi) = ki/n, for some ki ∈
{1, . . . , n} satisfying

∑
i ki = n. We say that such a partition B of U and a partition

B∗ = (B∗1 , . . . , B
∗
b ) of N := {1, . . . , n} are associated if the cardinalities |B∗i | of the

sets B∗i satisfy |B∗i | = ki for i = 1, . . . , b. We then have

P(U ∈ Bi) =
|B∗i |
n
. (2.2)

The notation B ∈ B means that B is one of the sets Bi which comprise B, and,
given B ∈ B we let B∗ denote the corresponding set B∗i in B∗ such that (2.2) holds.

Given two partitions B∗ = (B∗1 , . . . , B
∗
b ) and C ∗ = (C∗1 , . . . , C

∗
c ) of N we write

C ∗ ≤ref B∗, that is, that B∗ is a refinement of C ∗, when every set in C ∗ is the union
of sets in B∗. We will use the same order ≤ref also for partitions of U. Clearly, if C
and B are partitions of U, each of which can be associated to some partition of N ,
then C ≤ref B implies that there exist partitions C ∗ and B∗ associated to C and B,
respectively, satisfying C ∗ ≤ref B∗.

Call A ∗ = ({1}, . . . , {n}) the finest partition of N and D∗ = (N) the coarsest
partition of N . Then D∗ ≤ref B∗ ≤ref A ∗ for all B∗, and for any partition A of U
associated to A ∗ we have P(U ∈ Ai) = 1/n.

For a partition B and B ∈ B, let PU |B denote the conditional law of U given U ∈
B. Let {V B

j , j ∈ B∗} be random variables with law PU |B with {V B
j , j ∈ B∗, B ∈ B}

independent.

3 The supremum

Let f : U→ R be measurable, and define

WB
S = max

B∈B
max
j∈B∗

f(V B
j ), (3.1)

where the subscript S indicates that WB
S will be used to estimate the (essential)

supremum of the function f .
Given a random variable U with values in (U,U ), let f ∗ := ess sup f(U). It is clear

that for any choice of partition B, P(WB
S ≤ f ∗) = 1. The following result compares

two estimators of type WB
S . Since both estimators underestimate f ∗, the stochas-

tically larger one is preferable. This theorem, which goes back to Ermakov et al.
(1988) and Kondratovich and Zhigljavsky (1998), can be found also in Zhigljavsky
and Žilinskas (2008, Theorem 3.4)

Theorem 3.1. If C ≤ref B, then W C
S ≤st W

B
S .
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A short proof of Theorem 3.1, different from the one in Zhigljavsky and Žilinskas
(2008), can be found in Appendix A.

As mentioned in the Introduction, in many practical situations data are not al-
ways observed exactly, but may be censored, for various reasons, including budget
constraints. We extend now the comparison result of Theorem 3.1 to the case of
censored observations. Let f : U→ R be bounded; without loss of generality we take
0 ≤ f(u) ≤ 1 for all u ∈ U . In this section we assume that for a sample of points of
the type (u, t) ∈ U× [0, 1] we are allowed to observe only the value of t and whether
t > f(u).

For any partition B with associated partition B∗, let {V B
j , j ∈ B∗}, B ∈ B,

and {Tj, j ∈ N} be independent random variables with law PU |B and the uniform
distribution on [0, 1], respectively, and let

SB =
⋃
B∈B

{j ∈ B∗ : Tj ≤ f(V B
j )}, and WB

CS = max
j∈SB

Tj.

When SB = ∅ we set WB
CS = 0. The letter C in the subscript CS indicates censored

data. Again it is clear that P(WB
CS ≤ f ∗) = 1, so the estimator WB

CS underestimates
f ∗.

Theorem 3.2. If C ≤ref B, then W C
CS ≤st W

B
CS.

Proof. Below when we write V B
j without specifying B, we mean that B ∈ B corre-

sponds in the sense of (2.2) to the set B∗ ∈ B∗ which contains the index j. For any
t ∈ [0, 1] we may calculate the distribution function of WB

CS at t by writing

{WB
CS ≤ t} =

⋃
R⊂N

{
max
j∈SB

Tj ≤ t, SB = R

}
=
⋃
R⊂N

{
Tj ≤ t, Tj ≤ f(V B

j ) for all j ∈ R, and Tj > f(V B
j ) for all j 6∈ R

}
=
⋃
R⊂N

{
Tj ≤ t ∧ f(V B

j ) for all j ∈ R, and Tj > f(V B
j ) for all j 6∈ R

}
.

Hence, conditionally on {V B
j , j ∈ B∗, B ∈ B}, using the fact that the Tj’s are

uniform, we obtain:

P(WB
CS ≤ t |V B

j , j ∈ B∗, B ∈ B) =
∑
R⊂N

∏
j∈R

P(Tj ≤ t ∧ f(V B
j ))

∏
j 6∈R

P(Tj > f(V B
j ))

=
∑
R⊂N

∏
j∈R

(t ∧ f(V B
j ))

∏
j 6∈R

(1− f(V B
j )) (3.2)

=

|B∗
1 |∑

h1=1

· · ·
|B∗

b |∑
hb=1

∑
R⊂N

∀i,|R∩B∗
i |=hi

∏
j∈R

(t ∧ f(V B
j ))

∏
j 6∈R

(1− f(V B
j )).
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Taking expectation we obtain the unconditional distribution,

P(WB
CS ≤ t) =

|B∗
1 |∑

h1=1

· · ·
|B∗

b |∑
hb=1

b∏
i=1

(
|B∗i |
hi

)(∫
Bi

(t ∧ f(u)) dPU |Bi
(u)

)hi

·
(∫

Bi

(1− f(u)) dPU |Bi
(u)

)|B∗
i |−hi

=
∏
B∈B

(∫
B

(t ∧ f(u)) dPU |B(u) +

∫
B

(1− f(u)) dPU |B(u)

)|B∗|

.

Let

qB =

∫
B

(t∧f(v)) dPU |B(v)+

∫
B

(1−f(v)) dPU |B(v) =

∫
B

[(t∧f(v))+(1−f(v))] dPU |B(v).

If C is a union of disjoint sets Bi then

qC =
∑
i

qBi
P(U ∈ Bi)

P(U ∈ C)
=
∑
i

qBi
|B∗i |
|C∗|

. (3.3)

If C ≤ref B then

(qC1 , . . . , qC1︸ ︷︷ ︸
|C∗

1 |

, . . . , qCc , . . . , qCc︸ ︷︷ ︸
|C∗

c |

) ≺ (qB1 , . . . , qB1︸ ︷︷ ︸
|B∗

1 |

, . . . , qBb , . . . , qBb︸ ︷︷ ︸
|B∗

b |

).

To see this, observe that (3.3) implies that the vector on the left-hand side above is
obtained from the one on the right by multiplying it by the n× n doubly stochastic
matrix D which is block diagonal where the i-th block is the |C∗i | × |C∗i | matrix
with all entries equal to 1/|C∗i |. Therefore, by the Schur concavity of the function
(θ1, . . . , θn) 7→

∏n
i=1 θi, we have

P(W C
CS ≤ t) =

∏
C∈C

(
qC
)|C∗| ≥

∏
B∈B

(
qB
)|B∗|

= P(WB
CS ≤ t).

For every n ∈ N and for every partition Bn associated to a partition B∗n of
{1, . . . , n}, we have WBn

CS ≤st W
Bn
S . Therefore

WDn
CS ≤st W

Bn
CS ≤st W

Bn
S ≤st f

∗.

Since WDn
CS is consistent for f ∗ as n→∞, we have that WBn

CS and WBn
S are consistent,

too.
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4 The integral

With the subscript I standing for integral, let

WB
I =

1

n

∑
B∈B

∑
j∈B∗

f(V B
j ) (4.1)

WB
IE =

1

n

∑
B∈B

∑
j∈B∗

(
f(V B

j ) + εj
)
, (4.2)

where the variables εj are independent copies of a random variable ε having mean 0
and finite variance, independent of the variables V B

j . Clearly WB
I and WB

IE are both

unbiased estimators of f := E[f(U)] =
∫
f(U) dP when

∫
|f(U)| dP is finite, and

WB
I is the special case of WB

IE when the error has zero variance, that is, there is no
measurement error.

The following result is well-known when the error has zero variance (see, e.g.,
Glasserman, 2004, Section 4.3). We extend it to a more general case, relevant when
the evaluation of f is the result of an experiment.

Theorem 4.1. If C ≤ref B, then Var[WB
IE] ≤ Var[W C

IE].

The proof of Theorem 4.1 can be found in Appendix A.
It follows immediately from Theorem 4.1 that Var[WA

IE ] ≤ Var[WD
IE], hence, in

particular, Var[WA
I ] ≤ Var[WD

I ]. The following counterexample shows nevertheless
that, even when the function is observed without error, WA

I 6≤cx W
D
I , that is, dom-

ination in the convex order does not hold. In the counterexample we consider the
absolute error, that is, (L1), rather than mean square error, (L2).

Example 4.2. Let U = [0, 1] and U have a uniform distribution on [0, 1]. Furthermore
let n = 2, and A1 = [0, 1/2], A2 = (1/2, 1]. Define

f(u) = 4I[0,1/2](u) + 2I(1/2,3/4](u) + 6I(3/4,1](u).

Then WD
I takes the values 2, 3, 4, 5, 6 with probabilities (1, 4, 6, 4, 1)/16, respec-

tively. The variable WA
I , based on one random observation from each of the above

intervals Ai, takes the values 3 and 5 each with probability 1/2. Therefore E[WA
I ] =

4 = E[WD
I ].

We have Var[WD
I ] = Var[WA

I ] = 1, but for the convex function ψ(u) = |u− 4| we
have

E[ψ(WD
I )] = E|WD

I − 4| = 2
2

16
+ 2

4

16
=

12

16
< 1 = E|WA

I − 4| = E[ψ(WA
I )].

A more general example can be constructed as follows. Consider a partition A
associated to the finest partition A ∗ of N . Split A1 into two measurable subsets
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A1a, A1b such that P(U ∈ A1a) = P(U ∈ A1b) = 1/(2n). Consider now a function f
defined as follows:

f(u) =


1 if u ∈ A1a,

−1 if u ∈ A1b,

0 elsewhere.

(4.3)

For all i ∈ N we have E[f(U)|U ∈ Ai] = 0 and

Var[f(U)|U ∈ Ai] =

{
1 for i = 1,

0 for i 6= 1.

Hence

Var[WA
I ] = E[(WA

I )2] =
1

n2
.

Moreover, if V1, . . . , Vn are i.i.d. copies of U ,

Var[WD
I ] = Var

[
1

n

n∑
j=1

f(Vj)

]

=
1

n2

n∑
j=1

Var[f(Vj)]

=
1

n2

= Var[WA
I ].

Analogously

E[|f(U)||U ∈ Ai] =

{
1 for i = 1,

0 for i 6= 1.

Therefore

E|WA
I | =

√
E[(WA

I )2] =
1

n
.

For any square integrable random variable Y we have E|Y | ≤
√

E[Y 2] and the in-
equality is strict if Y is not almost surely constant. Hence

E|WD
I | <

√
E[(WD

I )2] =
√

E[(WA
I )2] = E|WA

I | =
1

n
.

Example 4.2 proves that the convex order does not hold in general between es-
timators WB

I and W C
I when C ≤ref B. Nevertheless, in the following subsections

we show that, under some natural conditions, comparisons in the convex order are
possible.
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4.1 Censored observations

Keeping the notation and spirit of Section 3, consider a function f such that 0 ≤
f(u) ≤ 1 for all u ∈ U. Assume that for a sample of points of the type (u, t) ∈ U×[0, 1]
we are allowed to observe only the value of t and whether t ≤ f(u), and let

WB
CI =

1

n

∑
B∈B

∑
j∈B∗

I{Tj≤f(V B
j )}.

Note that WB
CI is an unbiased estimator of f = E[f(U)], as

E[WB
CI] =

1

n

∑
B∈B

∑
j∈B∗

P(Tj ≤ f(V B
j )) =

1

n

∑
B∈B

∑
j∈B∗

∫
U

∫ 1

0

I{t≤f(u)} dt dPU |B(u)

=
∑
B∈B

|B∗|
n

∫
U

f(u) dPU |B(u) =
∑
B∈B

P(B)E[f(U)|U ∈ B]

= E[f(U)].

Theorem 4.3. If C ≤ref B, then WB
CI ≤cx W

C
CI.

Proof. By a result in Karlin and Novikoff (1963) (see also Marshall and Olkin, 1979,
Sections 12.F and 15.E), if

Xp =
1

n

n∑
i=1

ξi,

where ξ1, . . . , ξn are independent Bernoulli variables with parameters p1, . . . , pn, and
p = (p1, . . . , pn), then

p ≺ q implies Xq ≤cx Xp. (4.4)

Define
pC = P(Tj ≤ f(V C

j )), pB = P(Tj ≤ f(V B
j )),

and

p = (pC1 , . . . , pC1︸ ︷︷ ︸
|C∗

1 |

, . . . , pCc , . . . , pCc︸ ︷︷ ︸
|C∗

c |

), q = (pB1 , . . . , pB1︸ ︷︷ ︸
|B∗

1 |

, . . . , pBb , . . . , pBb︸ ︷︷ ︸
|B∗

b |

).

If C =
⋃

iBi then

pC =
∑
i

pBi
|Bi|
|C|

,

so p ≺ q and invoking (4.4) completes the proof.

Notice that in the case of censored observations the comparison holds in the convex
order, whereas in the case of perfect observation a variance comparison holds, but
Example 4.2 shows that comparisons in the convex order do not.
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4.2 Univariate monotone functions

In the rest of this subsection the space U is totally ordered, and without loss of
generality we choose U = [0, 1]. For subsets G and H of the real line, we write G ≤ H
if g ≤ h for every g ∈ G and h ∈ H. We call a partition B = (B1, . . . , Bb) of U
monotone if B1 ≤ · · · ≤ Bb.

Theorem 4.4. Let B and C be monotone partitions of U and let C ≤ref B. If f is
nondecreasing, then

WB
IE ≤cx W

C
IE. (4.5)

To prove Theorem 4.4 we will apply the following lemma.

Lemma 4.5. Let ξ and η be random variables such that ξ ≤st η, and let ξi and ηj
be independent copies of ξ and η respectively. Let K be an integer valued random
variable, independent of all ξj and ηj, satisfying K ≤ m for some integer m, and
having an integer valued expectation, E[K] = k. Then

k∑
j=1

ξj +
m∑

j=k+1

ηj ≤cx

K∑
j=1

ξj +
m∑

j=K+1

ηj. (4.6)

Proof. Since ξ ≤st η we may construct i.i.d. pairs (ξi, ηi) with P(ξi ≤ ηi) = 1 for all
i = 1, . . . ,m. We adopt the usual convention that if k = 0 then

∑k
j=1 ξj = 0. First

note that, by Wald’s Lemma,

E

[
k∑

j=1

ξj +
m∑

j=k+1

ηj

]
= E

[
K∑
j=1

ξj +
m∑

j=K+1

ηj

]
.

Therefore (see, e.g., Müller and Stoyan, 2002, Theorem 1.5.3) it suffices to show that

k∑
j=1

ξj +
m∑

j=k+1

ηj ≤icx

K∑
j=1

ξj +
m∑

j=K+1

ηj.

Let φ be an increasing convex function and set

g(k) := E

[
φ

(
k∑

j=1

ξj +
m∑

j=k+1

ηj

)]
.

Note that

g(k) = E

[
φ

(
K∑
j=1

ξj +
m∑

j=K+1

ηj

)∣∣∣K = k

]
and E[g(K)] = E

[
φ

(
K∑
j=1

ξj +
m∑

j=K+1

ηj

)]
.
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Thus we have to show that g(k) ≤ E[g(K)]. Since E[K] = k, this follows readily by
Jensen’s inequality, once we prove that g(k) is a convex function.

The following part of the proof follows ideas of Ross and Schechner (1984). Setting

Sk =
k∑

j=1

ξj +
m∑

j=k+2

ηj,

We have
g(k + 1)− g(k) = E[φ(ξk+1 + Sk)]− E[φ(ηk+1 + Sk)].

Since φ is convex, and ξk+1 ≤ ηk+1, the function

h(s) := E[φ(ξk+1 + Sk) |Sk = s]− E[φ(ηk+1 + Sk) |Sk = s]

is decreasing in s. Now note that

Sk+1 =
k+1∑
i=1

ξi +
m∑

i=k+3

ηi ≤st Sk =
k∑

i=1

ξi +
m∑

i=k+2

ηi

because ξk+1 ≤st ηk+2. Hence g(k + 1) − g(k) = E[h(Sk)] is increasing in k, thus
proving that g is convex, as required.

Proof of Theorem 4.4. Since B = (B1, . . . , Bb) and C = (C1, . . . , Cc) are monotone
partitions satisfying C ≤ref B there exist 1 = i1 < i2 < · · · < ic < ic+1 = b + 1 such
that

Cq =

iq+1−1⋃
j=iq

Bj, for q = 1, . . . , c.

As the union above may be formed by taking the union of two consecutive sets at a
time, it suffices to prove (4.5) for the case where c = b−1, Cm = Bm∪Bm+1, Ck = Bk

for k ∈ {1, . . . ,m− 1}, and Ck = Bk+1 for k ∈ {m+ 1, . . . , c}.
In this case we have

WB
IE =

1

n

 ∑
C 6=Cm

∑
j∈C∗

f(V C
j ) +

∑
j∈B∗

m

f(V Bm
j ) +

∑
j∈B∗

m+1

f(V
Bm+1

j ) +
∑
j∈N

εj

 ,
W C

IE =
1

n

 ∑
C 6=Cm

∑
j∈C∗

f(V C
j ) +

∑
j∈C∗

m

f(V Cm
j ) +

∑
j∈N

εj

 .
Note that

L

∑
j∈C∗

m

f
(
V Cm
j

) = L

 K∑
j=1

f
(
V Bm
j

)
+

|C∗
m|∑

j=K+1

f
(
V

Bm+1

j

) ,
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where K is binomially distributed with parameters(
|C∗m|,

|B∗m|
|C∗m|

)
.

It is easy to see that if two variables are ordered by the convex order (see (2.1)) and
we add the same independent variable to each one, to wit,

∑
j∈N εj, then the convex

order is preserved. This fact and Lemma 4.5 now yield (4.5).

4.3 Multivariate monotone functions

In this section we extend the results in Section 4.2 to the multivariate case. When
we consider multivariate monotone functions, stratifying can still yield improvement
in the convex order, but some restrictions are needed, both on the distribution of the
random vector used for sampling and on the stratifying partitions. More specifically,
we consider estimation of an integral with respect to a random vector whose com-
ponents are independent, and under a stratification that preserves independence on
each set of the partition. The result we prove below actually only requires that the
random vector have an MTP2 distribution (independence being a particular case of
it), and that the stratification preserves MTP2.

Let f : [0, 1]d → [0, 1] be nondecreasing in each variable, and let U be a random
vector taking values in [0, 1]d with a nonatomic distribution. Our goal is to show that
the estimate of E[f(U)] improves by refining stratifications as follows: recalling the
definitions in Section 2, start with a partition C = (C1, . . . , Cb) of [0, 1]d such that for
some i the distribution L (U |U ∈ Ci) is associated. Then split Ci into Ci ∩ G and
Ci∩Gc, where G is an increasing set. Lemma 4.8 below shows that the new partition
obtained by this splitting achieves a better estimator of the integral in terms of the
convex order, and Theorem 4.6 provides some conditions for its application.

Theorem 4.6. Consider a partition C = (C1, . . . , Cc) of [0, 1]d where each Ci is a
lattice. Let B be a partition obtained by a sequence of refinements C = C1 ≤ref

· · · ≤ref Cm = B, such that for k = 1, . . . ,m − 1 the partition Ck+1 is obtained from
Ck by splitting one set of Ck, say Cik,k, into Cik,k ∩ Gk and Cik,k ∩ Gc

k, where Gk =
{x = (x1, . . . , xd) ∈ [0, 1]d : ak ≤ xj} for some ak ∈ [0, 1] and some j ∈ {1, . . . , d}.

If U is MTP2 on [0, 1]d and f : [0, 1]d → [0, 1] is nondecreasing, then WB
IE ≤cx W

C
IE.

As mentioned earlier, independence is a particular (and in our framework the most
important) case of MTP2. Independence makes simulation of a multivariate random
vector easy, even when conditioned on an interval, since the strata can be constructed
by knowing only the quantiles of the marginal distributions. If the cost of simulation
is negligible relative to the cost of evaluating f , then even rejective sampling can be
used, once the strata are defined.

The proof of Theorem 4.6 is preceded by the following lemmas.

14



Lemma 4.7. If U is an associated random vector, and G is an increasing set, then

L (U |U ∈ Gc) ≤st L (U |U ∈ G). (4.7)

Conversely, if (4.7) holds for every increasing set G, then U is associated.

Proof. First note that (4.7) is equivalent to

P(U ∈ A |U ∈ G) ≥ P(U ∈ A |U ∈ Gc)

holding for all increasing sets A. The latter inequality is easily seen to be equivalent
to

P(U ∈ A ∩G)[1− P(U ∈ G)] ≥ [P(U ∈ A)− P(U ∈ A ∩G)]P(U ∈ G).

By simple cancelation this inequality is equivalent to

P(U ∈ A ∩G) ≥ P(U ∈ A)P(U ∈ G),

which is equivalent to association of the random vector U by e.g., Shaked (1982).

Lemma 4.8. Consider a partition C = (C1, . . . , Cc) of [0, 1]d such that for some Ci

the distribution L (U |U ∈ Ci) is associated. Let G be an increasing set and let B =
(C1, . . . , Ci−1, Ci ∩ G,Ci ∩ Gc, Ci+1, . . . , Cc). If f : [0, 1]d → [0, 1] is nondecreasing,
then WB

IE ≤cx W
C
IE.

Proof. With L (V 1) = L (U |U ∈ Ci ∩ Gc) and L (V 2) = L (U |U ∈ Ci ∩ G),
Lemma 4.7 yields V 1 ≤st V 2. The monotonicity of f implies f(V 1) ≤st f(V 2), and
Lemma 4.5 now proves the claim, applying arguments as in the proof of Theorem 4.4.

The following result can be found in Karlin and Rinott (1980).

Lemma 4.9. If an MTP2 vector U takes values in a lattice of which C is a sublattice,
then L (U |U ∈ C) is MTP2 and hence associated.

The following corollary is obvious, and only requires the fact that the intersection
of sublattices is a lattice.

Corollary 4.10. If an MTP2 vector U takes values in some lattice, and C, G and
Gc, are all sublattices, then both L (U |U ∈ C ∩ G) and L (U |U ∈ C ∩ Gc) are
MTP2, and hence also associated.

Proof of Theorem 4.6. We first prove by induction that L (U |U ∈ Ci,k) are MTP2

for all Ci,k ∈ Ck and k = 1, . . . ,m. For k = 1 this follows from Lemma 4.9 and the
assumptions that U is MTP2 and that Ci = Ci,1 are sublattices of [0, 1]d. Assuming
the statement true for 1 ≤ k < m, to verify that it is true for k+1 we need only show
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that L (U |U ∈ Cik,k ∩ Gk) and L (U |U ∈ Cik,k ∩ Gc
k) are MTP2, which follows

from Lemma 4.9, thus completing the induction.
Hence, again using Lemma 4.9, L (U |U ∈ Cik,k) is associated. Since Gk is

increasing, Lemma 4.8 now yields W
Ck+1

IE ≤cx W
Ck
IE for all k = 1, . . . ,m − 1, and,

therefore, the theorem.

A sequence of partitions as in Theorem 4.6 can be generated as follows: start
with the whole space [0, 1]d, then split it into boxes by repeatedly subdividing one
element of the partition by an intersection with some G and Gc. In [0, 1]2 the resulting
partition forms a tiling of the square by rectangles. Note that from the first step, a
sequence of partitions created using G as above has at least one line which crosses
the whole square from side to side. Therefore the tiling of Figure 1 is not attainable
by such a sequence.

FIGURE 1 ABOUT HERE

Lastly, recall that the hypothesis of MTP2 includes as a particular case the uni-
form distribution on [0, 1]d, so Theorem 4.6 applies to the estimation of the integral∫
f(u) du on [0, 1]d, or any lattice.

A Appendix

Lemma A.1. Given a partition B∗ of N , consider a collection of independent random
variables {ξB∗

j }, B∗ ∈ B∗, j ∈ B∗, with those indexed by the same element B∗ of the
partition being identically distributed.

For C ∗ ≤ref B∗ let {ξC∗
j } with C∗ ∈ C ∗ and j ∈ C∗ be a collection of independent

random variables with the mixture distribution

L (ξC
∗

j ) =
∑

B∗⊂C∗

|B∗|
|C∗|

L (ξB
∗

j ). (A.1)

Then
max
C∗∈C ∗

max
j∈C∗

ξC
∗

j ≤st max
B∗∈B∗

max
j∈B∗

ξB
∗

j . (A.2)

Proof. Let pB
∗

= P(ξB
∗

1 ≤ t) for B∗ ∈ B∗, and pC
∗

= P(ξC
∗

1 ≤ t) for C∗ ∈ C ∗.
We claim that

(pC
∗
1 , . . . , pC

∗
1︸ ︷︷ ︸

|C∗
1 |

, . . . , pC
∗
c , . . . , pC

∗
c︸ ︷︷ ︸

|C∗
c |

) ≺ (pB
∗
1 , . . . , pB

∗
1︸ ︷︷ ︸

|B∗
1 |

, . . . , pB
∗
b , . . . , pB

∗
b︸ ︷︷ ︸

|B∗
b |

) .

To see this, observe that (A.1) implies that the vector on the left-hand side above is
obtained from the one on the right by multiplying it by the n× n doubly stochastic
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matrix D which is block diagonal where the i-th block is the |C∗i | × |C∗i | matrix with
all entries equal to 1/|C∗i |.

Hence, by the Schur concavity of the function (θ1, . . . , θn) 7→
∏n

i=1 θi, we have

P
(

max
C∗∈C ∗

max
j∈C∗

ξC
∗

j ≤ t

)
=
∏

C∗∈C ∗

(pC
∗
)|C

∗| ≥
∏

B∗∈B∗

(pB
∗
)|B

∗| = P
(

max
B∗∈B∗

max
j∈B∗

ξB
∗

j ≤ t

)
,

which is equivalent to (A.2).

Proof of Theorem 3.1. Let B∗ and C ∗ be partitions associated with B and C , re-
spectively, satisfying C ∗ ≤ref B∗, and let {ξB∗

j , B∗ ∈ B∗, j ∈ B∗} and {ξC∗
j , C∗ ∈

C ∗, j ∈ C∗} be collections of independent random variables with distributions

P(ξB
∗

j ≤ t) = P(f(U) ≤ t |U ∈ B)

P(ξC
∗

j ≤ t) = P(f(U) ≤ t |U ∈ C).

Then (A.1) holds (law of total probability), and the result follows by Lemma A.1.

Proof of Theorem 4.1. In what follows we consider conditional expectation with re-
spect to a partition. Though the notion is standard, specifically, by E[f(U)+ε |B] we
mean the random variable that takes values fB := E[f(U) |U ∈ B] with probability
|B∗|/n. Then

Var[f(U) + ε |B] = E
[
{f(U) + ε− E[f(U) + ε |B] }2 |B

]
= E

[
{f(U) + ε− E[f(U) |B]}2 |B

]
is a random variable taking values E

[(
f(U) + ε− fB

)2 |U ∈ B] with probability

|B∗|/n, and

E[Var[f(U) + ε |B]] =
∑
B∈B

|B∗|
n

E
[
(f(U) + ε− fB)2 |U ∈ B

]
=

1

n

∑
B∈B

|B∗|E
[
(f(V B

1 ) + ε− fB)2
]

=
1

n
Var

∑
B∈B

∑
j∈B∗

i

f(V B
j ) + εBj


= nVar[WB

IE].

If C ≤ref B, then for any random variable Y , say, Var[E[Y |B]] ≥ Var[E[Y |C ]]
by Jensen’s inequality, and now the usual variance decomposition of Y (see, e.g.,
Rosenthal, 2006, Theorem 13.3.1) implies E[Var[Y |B]] ≤ E[Var[Y |C ]]. Therefore

E[Var[f(U) + ε |B]] ≤ E[Var[f(U) + ε |C ]],
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and hence

Var[WB
IE] =

1

n
E[Var[f(U) + ε |B]] ≤ 1

n
E[Var[f(U) + ε |C ]] = Var[W C

IE].
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Figure 1: Non-attainable tiling.


