A Berry-Esseen Theorem for the Lightbulb Process

Larry Goldstein, Haimeng Zhang

http://arxiv.org/abs/1001.0612

The Lightbulb Process

Motivated by a study in the pharmaceutical industry on the effects of dermal patches designed to activate targeted receptors. An active receptor will become inactive, and an inactive one active, if it receives a dose of medicine released from the dermal patch.

The Lightbulb Process

Motivated by a study in the pharmaceutical industry on the effects of dermal patches designed to activate targeted receptors. An active receptor will become inactive, and an inactive one active, if it receives a dose of medicine released from the dermal patch.

In the lightbulb process of Rao, Rao and Zhang, on days $r=1, \ldots, n$, out of n lightbulbs, all initially off, exactly r bulbs, selected uniformly and independent of the past, have their status changed from off to on, or vice versa.

The Lightbulb Process

The random variable of interest is X, the number of bulbs on at the terminal time n.

The Lightbulb Process

The random variable of interest is X, the number of bulbs on at the terminal time n.

Rao, Rao and Zhang found expressions for the mean and variance of X, and recursions for the exact distribution as a function of n.

The Lightbulb Process

The random variable of interest is X, the number of bulbs on at the terminal time n.

Rao, Rao and Zhang found expressions for the mean and variance of X, and recursions for the exact distribution as a function of n.

Their histograms indicated that X is asymptotically normal, but left the question open. 'Out of the box' central limit theorems seem to not apply easily to this process.

Mean and Variance

For $s=1, \ldots, n$, let
$\lambda_{n, 1, s}=1-\frac{2 s}{n} \quad$ and $\quad \lambda_{n, 2, s}=1-\frac{4 s}{n}+\frac{4 s(s-1)}{n(n-1)}$,
and $\lambda_{n, b, \mathbf{s}}=\prod_{r=1}^{n} \lambda_{n, b, s_{r}}$. Then with switch pattern $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$,

$$
E X_{\mathbf{s}}=\frac{n}{2}\left(1-\lambda_{n, 1, \mathbf{s}}\right)
$$

and

$$
\operatorname{Var}\left(X_{\mathbf{s}}\right)=\frac{n}{4}\left(1-\lambda_{n, 2, \mathbf{s}}\right)+\frac{n^{2}}{4}\left(\lambda_{n, 2, \mathbf{s}}-\lambda_{n, 1, \mathbf{s}}^{2}\right) .
$$

Berry Esseen Theorem for Lightbulb

Theorem 1 Let X be the number of bulbs on at the terminal time n, an even integer, and $\mu=n / 2$ and $\sigma^{2}=\operatorname{Var}(X)$. Then
$\sup _{z \in \mathbb{R}}\left|P\left(\frac{X-\mu}{\sigma} \leq z\right)-P(Z \leq z)\right| \leq \frac{n}{2 \sigma^{2}} \Psi_{0}+1.64 \frac{n}{\sigma^{3}}+\frac{2}{\sigma}$
where Z is standard normal and

$$
\Psi_{0} \leq \frac{1}{2 \sqrt{n}}+\frac{1}{2 n}+e^{-n / 2} \quad \text { for } n \geq 6
$$

Yields a bound of order $O\left(n^{-1 / 2}\right)$ as $n \rightarrow \infty$.

Composition Markov chains of multinomial

type

Considered by Zhou and Lange, such chains in general are based on a $d \times d$ Markov transition matrix P which describes the transition of a single particle in a system of n identical particles, a subset of which is selected uniformly to undergo transition at each time step according to P.

Very complete spectral decompositions of such chains may be available; this decomposition becomes essential to the calculation of the Berry Esseen bound for this problem.

Ehrenfest chains, Hoare-Rahman chains, Kimura's model for DNA base-pair substitution.

Size Bias Coupling

Let X be nonnegative with finite mean μ. Recall X^{s} has the X-sized biased distribution if

$$
E[X f(X)]=\mu E\left[f\left(X^{s}\right)\right]
$$

for all smooth f.
If $X=\sum_{i=1}^{n} X_{i}$ is the sum of exchangeable indicators, then one may form X^{s} by picking i uniformly and summing the variables having distribution

$$
\mathcal{L}\left(X_{1}^{i}, \ldots, X_{n}^{i}\right)=\mathcal{L}\left(X_{1}, \ldots, X_{n} \mid X_{i}=1\right)
$$

Size biased Coupling

With $W=(X-\mu) / \sigma$, and $W^{s}=\left(X^{s}-\mu\right) / \sigma$,

$$
\begin{aligned}
& E(h(W)-E h(Z)) \\
&= E\left(f^{\prime}(W)-W f(W)\right) \\
&= E\left(f^{\prime}(W)-\frac{\mu}{\sigma}\left(f\left(W^{s}\right)-f(W)\right)\right) \\
&= E\left(f^{\prime}(W)\left(1-\frac{\mu}{\sigma}\left(W^{s}-W\right)\right)\right. \\
&\left.-\frac{\mu}{\sigma} \int_{0}^{W^{s}-W}\left(f^{\prime}(W+t)-f^{\prime}(W)\right) d t\right) .
\end{aligned}
$$

When monotone $W^{s} \geq W$.

Concentration Inequality

Size bias version of exchangeable pair concentration inequality of Shao and Su (2005).

Lemma 1 Let X be a nonnegative random variable with mean μ and variance σ^{2}, both finite and positive, and let X^{s} be given on the same space as X, having the X size biased distribution and satisfying $X^{s} \geq X$. Then with $W=(X-\mu) / \sigma$ and $W^{s}=\left(X^{s}-\mu\right) / \sigma$, for any $z \in \mathbb{R}$ and $a \geq 0$,

$$
\frac{\mu}{\sigma} E\left(W^{s}-W\right) \mathbf{1}_{\left\{W^{s}-W \leq a\right\}} \mathbf{1}_{\{z \leq W \leq z+a\}} \leq a .
$$

Monotone Size Biased Coupled Pair

Theorem 2 Let X be a nonnegative random variable with mean μ and variance σ^{2}, both finite and positive, and let X^{s} be given on the same space as X, with the X size biased distribution, satisfying $X \leq X^{s} \leq X+B$ for some $B>0$. Then with $W=(X-\mu) / \sigma$, we have

$$
\sup _{z \in \mathbb{R}}|P(W \leq z)-P(Z \leq z)| \leq \frac{\mu}{\sigma^{2}} \Psi+0.82 \frac{\delta^{2} \mu}{\sigma}+\delta
$$

where

$$
\Psi=\sqrt{\operatorname{Var}\left(E\left(X^{s}-X \mid X\right)\right)} \quad \text { and } \quad \delta=B / \sigma .
$$

Size biased coupling: Lightbulb

The number of bulbs on at time n is

$$
X=\sum_{k=1}^{n} X_{k}
$$

where X_{k} is the indicator that bulb k is on. Need to select bulb at random, and turn it on if not already, keeping correct conditional distribution, and without greatly affecting the status of the other bulbs.

Size biased coupling: Lightbulb

The number of bulbs on at time n is

$$
X=\sum_{k=1}^{n} X_{k}
$$

where X_{k} is the indicator that bulb k is on. Need to select bulb at random, and turn it on if not already, keeping correct conditional distribution, and without greatly affecting the status of the other bulbs.

With $X_{r k}$ the switch variable of bulb k at time r, we have

$$
X_{k}=\left(\sum_{r=0}^{n} X_{r k}\right) \bmod 2
$$

Size biased coupling: Lightbulb

Let $n=2 m$ and $\mathbf{X}=\left\{X_{r k}, r, k=1, \ldots, n\right\}$. For given bulb i, if $X_{i}=1$ then set $\mathbf{X}^{i}=\mathbf{X}$.

Otherwise $J^{i} \sim \mathcal{U}\left\{j: X_{n / 2, j}=1-X_{n / 2, i}\right\}$, independent of $\left\{X_{r k}: r \neq n / 2, k=1, \ldots, n\right\}$. Let \mathbf{X}^{i} have components

$$
X_{r k}^{i}=\left\{\begin{array}{cl}
X_{r k} & r \neq n / 2 \\
X_{n / 2, k} & r=n / 2, k \notin\left\{i, J^{i}\right\} \\
X_{n / 2, J^{i}} & r=n / 2, k=i \\
X_{n / 2, i} & r=n / 2, k=J^{i} .
\end{array}\right.
$$

Size biased coupling: Lightbulb

In words, if $X_{i}=0$ then uniformly select a j whose switch variable $X_{n / 2, j}$ at stage $n / 2$ is opposite to $X_{n / 2, i}$, and interchange.

Size biased coupling: Lightbulb

In words, if $X_{i}=0$ then uniformly select a j whose switch variable $X_{n / 2, j}$ at stage $n / 2$ is opposite to $X_{n / 2, i}$, and interchange.

If I is the uniformly chosen index, and J the index of the bulb with opposite status at stage $n / 2$, then

$$
X^{s}-X=21_{\left\{X_{I}=0, X_{J}=0\right\}} .
$$

The coupling is monotone and bounded.

Conditional Variance Calculation, $n=2 m$

With \mathcal{F} the σ-algebra generated by the switch variables \mathbf{X},

$$
E\left(X^{s}-X \mid \mathcal{F}\right)=\frac{4}{n^{2}} \sum_{i \neq j} \mathbf{1}_{\left\{X_{i}=0, X_{j}=0, X_{n / 2, i}=0, X_{n / 2, j}=1\right\}} .
$$

Conditional Variance Calculation, $n=2 m$

With \mathcal{F} the σ-algebra generated by the switch variables \mathbf{X},
$E\left(X^{s}-X \mid \mathcal{F}\right)=\frac{4}{n^{2}} \sum_{i \neq j} \mathbf{1}_{\left\{X_{i}=0, X_{j}=0, X_{n / 2, i}=0, X_{n / 2, j}=1\right\}}$.
The variance calculation requires the computation of (four) joint probabilities such as $g_{2,2, n,(1, \ldots, n), n / 2},\left(g_{\alpha, \beta, n, \mathbf{s}, l}\right)$

$$
\begin{aligned}
& P\left(X_{i_{1}}=0, X_{j_{1}}=0, X_{i_{2}}=0, X_{j_{2}}=0\right. \\
& \left.X_{n / 2, i_{1}}=0, X_{n / 2, j_{1}}=1, X_{n / 2, i_{2}}=0, X_{n / 2, j_{2}}=1\right)
\end{aligned}
$$

Conditioning on switches at stage $n / 2$ they later become 'initial conditions.'

Spectral Decomposition

For a given subset of b of the n bulbs, the eigenvalues of one, and multiple steps of the chain are given by
$\lambda_{n, b, s}=\sum_{t=0}^{b}\binom{b}{t}(-2)^{t} \frac{(s)_{t}}{(n)_{t}} \quad$ and $\quad \lambda_{n, b, \mathbf{s}}=\prod_{r=1}^{k} \lambda_{n, b, s_{r}}$,
where $(n)_{k}=n(n-1) \cdots(n-k+1)$ denotes the falling factorial, and the empty product is 1 .

Spectrum of Composition Markov Chains of Multinomial Type

In the case of the lightbulb chain there are $d=2$ states and the transition matrix P of a single bulb is given by

$$
P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

With $b \in\{0,1, \ldots, n\}$ let $P_{n, b, s}$ be the $2^{b} \times 2^{b}$ transition matrix of a subset of size b of the n total lightbulbs when s of the n bulbs are selected uniformly to be switched. Letting $P_{n, 0, s}=1$ for all n and s, and I_{2} the 2×2 identity matrix, for $n \geq 1$ the matrix $P_{n, b, s}$ is given recursively by $P_{n, b, s}=\frac{s}{n}\left(P \otimes P_{n-1, b-1, s-1}\right)+\left(1-\frac{s}{n}\right)\left(I_{2} \otimes P_{n-1, b-1, s}\right)$.

Spectral Decomposition

Transition matrices are simultaneously diagonalizable by

$$
P_{n, b, s}=\otimes^{b} T^{-1} \Gamma_{n, b, s} \otimes^{b} T,
$$

where $\Gamma_{n, b, s}=\operatorname{diag}\left(\lambda_{n, a_{1}, s}, \ldots, \lambda_{n, a_{2^{b}, s}}\right)$, e.g.,

$$
\mathbf{a}_{1}=(0,1), \quad \mathbf{a}_{2}=(0,1,1,2) \quad \text { and } \quad \mathbf{a}_{3}=(0,1,1,2,1,2,2,3),
$$

and

$$
T=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right] .
$$

Spectral Decomposition

For calculation of $g_{2,2, n,(1, \ldots, n), n / 2}$,

$$
\begin{aligned}
& P\left(X_{i_{1}}=0, X_{j_{1}}=0, X_{i_{2}}=0, X_{j_{2}}=0\right. \\
& \left.X_{n / 2, i_{1}}=0, X_{n / 2, j_{1}}=1, X_{n / 2, i_{2}}=0, X_{n / 2, j_{2}}=1\right)
\end{aligned}
$$

spectral decomposition yields

$$
g_{2,2, n, \mathbf{s}, l}=\frac{1}{16}\left(1-2 \lambda_{n, 2, \mathbf{s}_{l}}+\lambda_{n, 4, \mathbf{s}_{l}}\right) \frac{\left(s_{l}\right)_{2}\left(n-s_{l}\right)_{2}}{(n)_{4}}
$$

where

$$
\mathbf{s}_{l}=\left(s_{1}, \ldots, s_{l-1}, s_{l+1}, \ldots, s_{n}\right)
$$

Spectral Decomposition

Now turning to $\lambda_{n, 4, \mathbf{s}}$, for $n \geq 4$ consider the fourth degree polynomial
$f_{4}(x)=1-\frac{8 x}{n}+\frac{24(x)_{2}}{(n)_{2}}-\frac{32(x)_{3}}{(n)_{3}}+\frac{16(x)_{4}}{(n)_{4}}, \quad 0 \leq x \leq n$.
It can be checked that the four roots of $f_{4}(x)$ are given by

$$
x_{1 \pm}=\frac{n \pm \sqrt{\sqrt{2} \sqrt{3 n^{2}-9 n+8}+3 n-4}}{2}
$$

with $0<x_{1-}<x_{2-}<x_{2+}<x_{1+}<n$ where

$$
x_{2 \pm}=\frac{n \pm \sqrt{-\sqrt{2} \sqrt{3 n^{2}-9 n+8}+3 n-4}}{2}
$$

$$
f_{4}(x)
$$

Need Bounds to compute Conditional Variance

$$
\left|f_{4}(x)\right| \leq\left\{\begin{array}{cl}
\frac{6}{(n-3)^{2}} & \text { for } x \in\left[x_{1-}, x_{1+}\right] \\
f_{2}^{2}(x) & \text { for } x \notin\left[x_{1-}, x_{1+}\right], x \in[0, n]
\end{array}\right.
$$

where

$$
f_{2}(x)=1-\frac{4 x}{n}+\frac{4(x)_{2}}{(n)_{2}}, \quad 0 \leq x \leq n .
$$

$$
\lambda_{n, 4, \mathrm{~s}}
$$

$$
\left|\lambda_{n, 4, \mathbf{s}}\right|=\prod_{s=0}^{\left\lfloor x_{1-}\right\rfloor}\left|\lambda_{n, 4, s}\right| \prod_{s \in \mathbf{u}}\left|\lambda_{n, 4, s}\right| \prod_{s=\left\lceil x_{1+}\right\rceil}^{n}\left|\lambda_{n, 4, s}\right|
$$

Obtain

$$
\left|\lambda_{n, 4, \mathbf{s}}\right| \leq \frac{1}{2} e^{-n} \quad \text { for } n \geq 6
$$

for $s=(1,2, \ldots, n / 2-1, n / 2+1, \ldots, n)$.

Berry Esseen Theorem for Lightbulb

Theorem 1 Let X be the number of bulbs on at the terminal time n, an even integer, and $\mu=n / 2$ and $\sigma^{2}=\operatorname{Var}(X)$. Then
$\sup _{z \in \mathbb{R}}\left|P\left(\frac{X-\mu}{\sigma} \leq z\right)-P(Z \leq z)\right| \leq \frac{n}{2 \sigma^{2}} \Psi_{0}+1.64 \frac{n}{\sigma^{3}}+\frac{2}{\sigma}$
where Z is standard normal, and

$$
\Psi_{0} \leq \frac{1}{2 \sqrt{n}}+\frac{1}{2 n}+e^{-n / 2} \quad \text { for } n \geq 6
$$

Yields a bound of order $O\left(n^{-1 / 2}\right)$ as $n \rightarrow \infty$.

Stein's Method for the Lightbulb Process

I hope that the talk was clear and illuminating

To Louis:

Thank you for all your hard work, and Happy Birthday

