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The Lightbulb Process

Motivated by a study in the pharmaceutical industry on the
effects of dermal patches designed to activate targeted
receptors. An active receptor will become inactive, and an
inactive one active, if it receives a dose of medicine released
from the dermal patch.
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The Lightbulb Process

Motivated by a study in the pharmaceutical industry on the
effects of dermal patches designed to activate targeted
receptors. An active receptor will become inactive, and an
inactive one active, if it receives a dose of medicine released
from the dermal patch.

In the lightbulb process of Rao, Rao and Zhang, on days
r = 1, . . . , n, out of n lightbulbs, all initially off, exactly r
bulbs, selected uniformly and independent of the past, have
their status changed from off to on, or vice versa.
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The Lightbulb Process

The random variable of interest is X, the number of bulbs
on at the terminal time n.
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The Lightbulb Process

The random variable of interest is X, the number of bulbs
on at the terminal time n.

Rao, Rao and Zhang found expressions for the mean and
variance of X, and recursions for the exact distribution as a
function of n.
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The Lightbulb Process

The random variable of interest is X, the number of bulbs
on at the terminal time n.

Rao, Rao and Zhang found expressions for the mean and
variance of X, and recursions for the exact distribution as a
function of n.

Their histograms indicated that X is asymptotically
normal, but left the question open. ‘Out of the box’ central
limit theorems seem to not apply easily to this process.
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Mean and Variance

For s = 1, . . . , n, let

λn,1,s = 1− 2s

n
and λn,2,s = 1− 4s

n
+

4s(s− 1)

n(n− 1)
,

and λn,b,s =
∏n
r=1 λn,b,sr . Then with switch pattern

s = (s1, . . . , sn),

EXs =
n

2
(1− λn,1,s)

and

Var(Xs) =
n

4
(1− λn,2,s) +

n2

4
(λn,2,s − λ 2

n,1,s).
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Berry Esseen Theorem for Lightbulb

Theorem 1 Let X be the number of bulbs on at the
terminal time n, an even integer, and µ = n/2 and
σ2 = Var(X). Then

sup
z∈R

∣∣∣∣P (X − µσ
≤ z
)
− P (Z ≤ z)

∣∣∣∣ ≤ n

2σ2
Ψ0+1.64

n

σ3
+

2

σ

where Z is standard normal and

Ψ0 ≤
1

2
√
n

+
1

2n
+ e−n/2 for n ≥ 6.

Yields a bound of order O(n−1/2) as n→∞.
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Composition Markov chains of multinomial
type

Considered by Zhou and Lange, such chains in general are
based on a d× d Markov transition matrix P which
describes the transition of a single particle in a system of n
identical particles, a subset of which is selected uniformly to
undergo transition at each time step according to P .

Very complete spectral decompositions of such chains may
be available; this decomposition becomes essential to the
calculation of the Berry Esseen bound for this problem.

Ehrenfest chains, Hoare-Rahman chains, Kimura’s model
for DNA base-pair substitution.
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Size Bias Coupling

Let X be nonnegative with finite mean µ. Recall Xs has
the X-sized biased distribution if

E[Xf(X)] = µE[f(Xs)]

for all smooth f .

If X =
∑n
i=1Xi is the sum of exchangeable indicators,

then one may form Xs by picking i uniformly and summing
the variables having distribution

L(Xi
1, . . . , X

i
n) = L(X1, . . . , Xn|Xi = 1)
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Size biased Coupling

With W = (X − µ)/σ, and W s = (Xs − µ)/σ,

E (h(W )− Eh(Z))

= E (f ′(W )−Wf(W ))

= E
(
f ′(W )− µ

σ
(f(W s)− f(W ))

)
= E

(
f ′(W )(1− µ

σ
(W s −W ))

−µ
σ

∫ W s−W

0

(f ′(W + t)− f ′(W ))dt

)
.

When monotone W s ≥W .
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Concentration Inequality

Size bias version of exchangeable pair concentration
inequality of Shao and Su (2005).

Lemma 1 Let X be a nonnegative random variable with
mean µ and variance σ2, both finite and positive, and let
Xs be given on the same space as X, having the X size
biased distribution and satisfying Xs ≥ X. Then with
W = (X − µ)/σ and W s = (Xs − µ)/σ,
for any z ∈ R and a ≥ 0,

µ

σ
E(W s −W )1{W s−W≤a}1{z≤W≤z+a} ≤ a.
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Monotone Size Biased Coupled Pair

Theorem 2 Let X be a nonnegative random variable with
mean µ and variance σ2, both finite and positive, and let
Xs be given on the same space as X, with the X size
biased distribution, satisfying X ≤ Xs ≤ X +B for some
B > 0. Then with W = (X − µ)/σ, we have

sup
z∈R
|P (W ≤ z)− P (Z ≤ z)| ≤ µ

σ2
Ψ + 0.82

δ2µ

σ
+ δ,

where

Ψ =
√

Var(E(Xs −X|X)) and δ = B/σ.
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Size biased coupling: Lightbulb

The number of bulbs on at time n is

X =

n∑
k=1

Xk,

where Xk is the indicator that bulb k is on. Need to select
bulb at random, and turn it on if not already, keeping
correct conditional distribution, and without greatly
affecting the status of the other bulbs.
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Size biased coupling: Lightbulb

The number of bulbs on at time n is

X =

n∑
k=1

Xk,

where Xk is the indicator that bulb k is on. Need to select
bulb at random, and turn it on if not already, keeping
correct conditional distribution, and without greatly
affecting the status of the other bulbs.

With Xrk the switch variable of bulb k at time r, we have

Xk =

(
n∑
r=0

Xrk

)
mod 2.

15



Size biased coupling: Lightbulb

Let n = 2m and X = {Xrk, r, k = 1, . . . , n}. For given
bulb i, if Xi = 1 then set Xi = X.

Otherwise J i ∼ U{j : Xn/2,j = 1−Xn/2,i}, independent
of {Xrk : r 6= n/2, k = 1, . . . , n}. Let Xi have components

Xi
rk =


Xrk r 6= n/2
Xn/2,k r = n/2, k 6∈ {i, J i}
Xn/2,Ji r = n/2, k = i
Xn/2,i r = n/2, k = J i.
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Size biased coupling: Lightbulb

In words, if Xi = 0 then uniformly select a j whose switch
variable Xn/2,j at stage n/2 is opposite to Xn/2,i, and
interchange.
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Size biased coupling: Lightbulb

In words, if Xi = 0 then uniformly select a j whose switch
variable Xn/2,j at stage n/2 is opposite to Xn/2,i, and
interchange.

If I is the uniformly chosen index, and J the index of the
bulb with opposite status at stage n/2, then

Xs −X = 21{XI=0,XJ=0}.

The coupling is monotone and bounded.

18



Conditional Variance Calculation, n = 2m

With F the σ-algebra generated by the switch variables X,

E

(
Xs −X

∣∣∣∣ F) =
4

n2

∑
i 6=j

1{Xi=0,Xj=0,Xn/2,i=0,Xn/2,j=1}.
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Conditional Variance Calculation, n = 2m

With F the σ-algebra generated by the switch variables X,

E

(
Xs −X

∣∣∣∣ F) =
4

n2

∑
i 6=j

1{Xi=0,Xj=0,Xn/2,i=0,Xn/2,j=1}.

The variance calculation requires the computation of (four)
joint probabilities such as g2,2,n,(1,...,n),n/2,(gα,β,n,s,l)

P (Xi1 = 0, Xj1 = 0, Xi2 = 0, Xj2 = 0,

Xn/2,i1 = 0, Xn/2,j1 = 1, Xn/2,i2 = 0, Xn/2,j2 = 1).

Conditioning on switches at stage n/2 they later become
‘initial conditions.’
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Spectral Decomposition

For a given subset of b of the n bulbs, the eigenvalues of
one, and multiple steps of the chain are given by

λn,b,s =

b∑
t=0

(
b

t

)
(−2)t

(s)t
(n)t

and λn,b,s =

k∏
r=1

λn,b,sr ,

where (n)k = n(n− 1) · · · (n− k + 1) denotes the falling
factorial, and the empty product is 1.
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Spectrum of Composition Markov Chains of
Multinomial Type

In the case of the lightbulb chain there are d = 2 states and
the transition matrix P of a single bulb is given by

P =

[
0 1
1 0

]
.

With b ∈ {0, 1, . . . , n} let Pn,b,s be the 2b × 2b transition
matrix of a subset of size b of the n total lightbulbs when s
of the n bulbs are selected uniformly to be switched.
Letting Pn,0,s = 1 for all n and s, and I2 the 2× 2 identity
matrix, for n ≥ 1 the matrix Pn,b,s is given recursively by

Pn,b,s =
s

n
(P ⊗ Pn−1,b−1,s−1) + (1− s

n
) (I2 ⊗ Pn−1,b−1,s) .
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Spectral Decomposition

Transition matrices are simultaneously diagonalizable by

Pn,b,s = ⊗bT−1Γn,b,s ⊗b T,

where Γn,b,s = diag(λn,a1,s, . . . , λn,a2b ,s), e.g.,

a1 = (0, 1), a2 = (0, 1, 1, 2) and a3 = (0, 1, 1, 2, 1, 2, 2, 3),

and

T =
1√
2

[
1 1
−1 1

]
.
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Spectral Decomposition

For calculation of g2,2,n,(1,...,n),n/2,

P (Xi1 = 0, Xj1 = 0, Xi2 = 0, Xj2 = 0,

Xn/2,i1 = 0, Xn/2,j1 = 1, Xn/2,i2 = 0, Xn/2,j2 = 1),

spectral decomposition yields

g2,2,n,s,l =
1

16
(1− 2λn,2,sl + λn,4,sl)

(sl)2(n− sl)2
(n)4

,

where

sl = (s1, . . . , sl−1, sl+1, . . . , sn).
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Spectral Decomposition

Now turning to λn,4,s, for n ≥ 4 consider the fourth degree
polynomial

f4(x) = 1− 8x

n
+

24(x)2
(n)2

− 32(x)3
(n)3

+
16(x)4
(n)4

, 0 ≤ x ≤ n.

It can be checked that the four roots of f4(x) are given by

x1± =
n±

√√
2
√

3n2 − 9n+ 8 + 3n− 4

2
,

with 0 < x1− < x2− < x2+ < x1+ < n where

x2± =
n±

√
−
√

2
√

3n2 − 9n+ 8 + 3n− 4

2
,
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Need Bounds to compute Conditional
Variance

|f4(x)| ≤
{ 6

(n−3)2 for x ∈ [x1−, x1+]

f22 (x) for x 6∈ [x1−, x1+], x ∈ [0, n].

where

f2(x) = 1− 4x

n
+

4(x)2
(n)2

, 0 ≤ x ≤ n.
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λn,4,s

|λn,4,s| =
bx1−c∏
s=0

|λn,4,s|
∏
s∈u
|λn,4,s|

n∏
s=dx1+e

|λn,4,s|

Obtain

|λn,4,s| ≤
1

2
e−n for n ≥ 6,

for s = (1, 2, . . . , n/2− 1, n/2 + 1, . . . , n).
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Berry Esseen Theorem for Lightbulb

Theorem 1 Let X be the number of bulbs on at the
terminal time n, an even integer, and µ = n/2 and
σ2 = Var(X). Then

sup
z∈R

∣∣∣∣P (X − µσ
≤ z
)
− P (Z ≤ z)

∣∣∣∣ ≤ n

2σ2
Ψ0+1.64

n

σ3
+

2

σ

where Z is standard normal, and

Ψ0 ≤
1

2
√
n

+
1

2n
+ e−n/2 for n ≥ 6.

Yields a bound of order O(n−1/2) as n→∞.
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Stein’s Method for the Lightbulb Process

I hope that the talk was clear and illuminating
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To Louis:

Thank you for all your hard work, and Happy Birthday!
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