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Local Maxima of Finite Graphs

Let G = (V, E) be a finite graph, and for v ∈ V let Nv be
the set of neighbors of v,

Nv = {w : {w, v} ∈ E}.

Let Uv, v ∈ V be iid with any continuous distribution. Let
Xv be the indicator that v ∈ V is a local maximum, that is,
that

Uv > Uw for all w ∈ Nv.

Describe the distribution of the total number of local
maxima

W =
∑
v∈V

Xv.
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Combinatorial Central Limit Theorem

For {aij}1≤i,j≤n an array of numbers and π a random
permutation of {1, . . . , n}, find the distribution of

W =
n∑

i=1

ai,π(i).

When π is uniform over Sn, ei = 1(1 ≤ i ≤ k) and

aij = diej

then W is the sum of the characteristics di in a simple
random sample of size k from a population of size n.
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Size Biasing

For X ∈ {0, 1, 2, . . .} with EX = µ < ∞, consider the size
biased distribution

P (Xs = k) =
kP (X = k)

µ
.

Appears in sampling, generates the waiting time paradox.

The distribution is also characterized by

EXf(X) = µEf(Xs) all f,

and can be applied to any X ≥ 0 with finite mean µ.
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Size Bias Coupling

If X1, . . . , Xn are non-negative independent variables with
finite means µ1, . . . , µn, then with W = X1 + · · ·+ Xn,

W s = W −XI + Xs
I ,

where
P (I = i) =

µi∑n
j=1 µj

=
µi

µ
.

The sum is size biased by replacing one summand, chosen
with probability proportional to its expectation, by an
independent variable having that summand’s size biased
distribution.
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Coupling

µEf(W s) = µEf(W −XI + Xs
I )

= µ
n∑

i=1

Ef(W −Xi + Xs
i )

µi

µ

=
n∑

i=1

µiEf(
∑
t6=i

Xt + Xs
i )

=
n∑

i=1

EXif(
∑
t6=i

Xt + Xi)

=
n∑

i=1

EXif(W )

= EWf(W )
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Stein’s Method for Normal

Characterization of the Normal:

Z ∼ N (0, σ2)

if and only if

EZf(Z) = σ2Ef ′(Z) for all f .

For EW = 0, EW 2 = σ2, if

E[Wf(W )− σ2f ′(W )]

is close to zero for many functions f , then W should be
close in distribution to Z.
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Stein Differential Equation

Given a test function h, let Nh = Eh(Z/σ), solve for f in

σ2f ′(w)− wf(w) = h(w/σ)−Nh,

and evaluate expectation of RHS by expectation of LHS.
Bounds for σ2 = 1,

||f ′′|| ≤ 2||h′||.

Note the appearance of the term wf(w) both in this Stein
equation, and also in the characterization of the size bias
distribution.
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Zero Bias Transformation

Goldstein and Reinert 1997: For W a mean zero variance
σ2 random variable, there exists W ∗ such that for all
absolutely continuous f with E|Wf(W )| < ∞,

EWf(W ) = σ2Ef ′(W ∗).

From Stein’s characterization,

EZf(Z) = σ2Ef ′(Z) if and only if Z ∼ N (0, σ2).

Hence:

W ∗ =d W if and only if W ∼ N (0, σ2).
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Zero and Size Biasing

To zero (size) bias a sum

W =
n∑

i=1

Xi

of mean zero (non-negative) independent variables, pick
one proportional to its variance (mean) and replace with
biased version. Size biasing applied to normal in Goldstein
and Rinott, 1996. Zero biasing?
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Easy Smooth Function Zero Bias CLT

Take X1, . . . , Xn iid mean zero, variance 1, let

W =
1√
n

n∑
i=1

Xi having variance 1.

Given h, solve for f , and write

Eh(W )−Nh = E [f ′(W )−Wf(W )]
= E [f ′(W )− f ′(W ∗)]
≤ ||f ′′||E|W −W ∗|

≤ 2||h′||√
n

E|XI −X∗
I |.
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Berry Esseen Bounds

Bounds over collection of non smooth (e.g.indicator)
functions H;

δ = sup
h∈H

|Eh(W )− Eh(Z)|.

1. The functions h ∈ H are uniformly bounded in absolute
value by a constant (can take to be 1 without loss of
generality).

2. For any real numbers c and d and for any h(x) ∈ H, the
function h(cx + d) ∈ H.
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Functions H

3. For any ε > 0 and any h ∈ H, the functions

h+
ε (x) = sup

|y|≤ε

h(x + y), h−ε (x) = inf
|y|≤ε

h(x + y)

are in H, and ∫
h̃(x; ε)φ(x)ds ≤ aε

for some constant a which depends only on the class H,
where

h̃ε(x) = h+
ε (x)− h−ε (x),

and φ is the standard normal density.
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Classical Berry Esseen

The collection of indicators of all half lines, and indicators
of all intervals, for example, each form classes H which
satisfy 1,2 and 3 with a =

√
2/π and a = 2

√
2/π

respectively (see Bolthausen, Goetze, Rinott-Rotar).
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Smoothing Lemma

Define the t-smoothed version of h,

ht(x) =
∫

h(x + ty)φ(y)dy

and the t smoothed bound

δt = sup{|Eht(W )−Nht| : h ∈ H}.

Lemma 1 For W a random variable on R and H a class of
measurable functions satisfying properties 1,2, and 3,

δ ≤ 2.8δt + 4.7at.
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Size Bias Theorem

Theorem 1 Let W ≥ 0 be a mean µ, variance σ2 random
variable and suppose |W s −W | ≤ B for some B. Then

δ ≤ aA +
µ

σ

(
(19 + 30a)A2 + 4A3

)
+

23∆µ

σ2
,

where

∆ =
√

Var(E(W s −W |W ))

and A = B/σ.
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Classical Berry Esseen

For indicators of all half lines, and indicators of all intervals,
using a =

√
2/π and a = 2

√
2/π, we have respectively

δ ≤ 0.8A +
µ

σ

(
43A2 + 4A3

)
+

23∆µ

σ2

and

δ ≤ 1.6A +
µ

σ

(
67A2 + 4A3

)
+

23∆µ

σ2
.

Gives (correct) order σ−1.
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Zero Bias Theorem

Theorem 2 Let W be a mean zero, variance σ2 random
variable. If

|W ∗ −W | ≤ 3B

then

δ ≤ A (37 + 12A + 60a) ,

for A = 3B/σ. For indicators of all half lines, and the
indicators of all intervals, using a =

√
2/π and

a = 2
√

2/π, we have respectively

δ ≤ A (85 + 12A) and δ ≤ A (133 + 12A) .
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Size Bias Construction, Dependent Variables

Pick a summand with probability proportional to its
expectation, replace with one from that summands size bias
distribution, and adjust other variables to have correct
conditional distribution given the new value of the selected
variable.

Though we apply here to the local maxima problem, having
local dependence, the construction can also be used in
cases of global dependence.
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Local Maxima on Graphs

For bounded degree graphs, we can couple such that
|W −W s| is bounded. For example, Baldi, Rinott and
Stein, consider hypercube V = {0, 1}d, for which we find,
for say half lines,

δ ≤ 0.8A +
µ

σ

(
43A2 + 4A3

)
+

23∆µ

σ2

with
µ = EY, σ2 = Var(Y ), A = (d + 1)/σ

and

∆ ≤ 2−d/2(d + 1)

√(
d

3

)
+

(
d

2

)
+ d + 1.
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Zero Bias by Square Bias Interpolation

If (W ′,W ′′) ∼ dF (w′, w′′) are exchangeable with

E(W ′′|W ′) = (1− λ)W ′

then taking (W †,W ‡) according to

dG(w†, w‡) =
(w† − w‡)2dF (w†, w‡)

E(W ′ −W ′′)2

and U ∼ U [0, 1], we have

W ∗ = UW † + (1− U)W ‡.
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Combinatorial CLT

W =
n∑

i=1

ai,π(i),

Uniform π, von Bahr, Bothausen. Non uniform, Kolchin
single cycle n1 is special case where permutation
distribution depends only on cycle type

1c12c2 · · ·ncn where
∑n

j=1 jcj = n.

To construct exchangeable pair W ′,W ′′ with distribution
W use exchangeable pair π′, π′′.
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Exchangeable Pair of Permutations

When distribution depends on cycle type, given π′,
construct π′′ by taking indices I 6= J uniformly and
independently of π, and let π′ be given by the interchange
of I with J in the cycle representation of π. If in the cycle
representation of π we have

· · ·π−1(I) → I → π(I) · · · and · · ·π−1(J) → J → π(J) · · ·

then in the cycle representation of π′ we put

· · ·π−1(I) → J → π(I) · · · and · · ·π−1(J) → I → π(J) · · ·
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Square Bias and Interpolate

Generate W †,W ‡ proportional to (W ′ −W ′′)2 and set

W ∗ = UW † + (1− U)W ‡.

Then, even though the dependence is global,

|W ∗ −W | ≤ 14C where C = maxij |aij |.
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Dependent CLT and δ

Combinatorial Central Limit Theorem:

Y =
n∑

i=1

ai,π(i)

for an array of real numbers {ai,j}n
i,j=1 and a random

permutation π ∈ Sn. For permutation distributions
constant over cycle type with no fixed points and
ai,j = aj,i,

δ ≤ A (85 + 12A)

where A = 42C/σ with σ2 = Var(Y ) and C = maxi,j |ai,j |.
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Directions

Applications: Geometric Functionals, e.g. edge length of
nearest neighbor graphs.

Extension: Multivariate Versions
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