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Abstract

The efficiency of the maximum pseudolikelihood estimator and a number of im-
proved estimators for the case-cohort sampling design in the proportional hazards re-
gression model is studied. The asymptotic information for estimating the parametric
regression parameter is calculated based on the effective score, which can be obtained
by determining the component of the parametric score orthogonal to the space gener-
ated by the infinite dimensional nuisance parameter. The asymptotic distributions of
the maximum pseudolikelihood and some related estimators for the case-cohort design
in an i.i.d. setting show that these estimators are generally inefficient. Simple guide-
lines are provided to determine in which instances such estimators are close enough to
efficient for practical purposes.
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1 Introduction

Cox’s proportional hazards regression model (Cox 1972) is often used to quantify the effects
of prognostic factors on survival. One common choice of hazard function used in the Cox
model, for an individual having covariate Z(t) at time t, is

λ(t|Z) = λ0(t) exp{θ0Z(t)}, t ≥ 0 (1)

where θ0 ∈ R is an unknown parameter of interest to be estimated, and λ0(t) is a baseline
hazard function, common to all subjects in the cohort. More modeling flexibility is obtained
by leaving the baseline hazard function λ0(t) unspecified, as we may only know that the
hazard function is, say, monotone, but be otherwise unaware of it having any particular
functional form. In this form, the Cox model is semi-parametric, as it is determined by the
real valued parameter θ0, and the function λ0.

We consider a cohort of n individuals, R = {1, 2, . . . , n}, with Zi(t) denoting the value of
the covariate of individual i at time t. Suppose that t1 < t2 < · · · are the ordered failure
times, and that ij is the index of the failure at time tj. Let Rj be the risk set at time tj,
that is, the set consisting of all individuals who are still at risk at time tj, and the failed
individual ij. Estimates of θ0 are often based on first choosing a sample Sj ⊂ Rj according
to some rule, and then maximizing the function

L(θ) =
∏
tj

{
exp{θZij(tj)}∑
l∈Sj

exp{θZl(tj)}
}. (2)

One advantage of an estimator of this form is that it can be computed without making as-
sumptions on the baseline hazard function λ0, the censoring mechanism, or the distribution
of the covariates.

When information is available on the entire cohort, the choice Sj = Rj is possible and yields

the maximum partial likelihood estimator, or MPLE, which we denote by θ̂. When the co-
hort is large or the collection of covariate information is costly or difficult, sampling schemes
for which covariate information need be collected on only a small subset Sj of Rj are clearly
desirable. In this paper we address the question of the efficiency of certain estimators for
the case-cohort sampling design.

In the case-cohort design, following Self and Prentice (1988), the sampled risk set Sj at
failure time tj is chosen to be R̃j, consisting of all individuals included in a simple random
sample R̃ at time t = 0 who are still at risk at time tj; that is, R̃j = R̃ ∩ Rj. We term the
estimator obtained by maximizing (2) with Sj = R̃j the SP88 estimator, and denote it θ̃. In
this paper, we consider a slight variation on the model in Self and Prentice (1988) and take
R̃ to be a random sample of R selected by i.i.d. inclusion indicators. We mention in Section
3, that by the same technique as that used in Self and Prentice (1988), under mild moment
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conditions in our i.i.d. setting, the estimator θ̃ is asymptotically equivalent to the maximum
pseudolikelihood estimator specified in Prentice (1986), where S̃j = R̃j ∪ {ij}. Therefore
we henceforth consider θ̃ and the maximum pseudolikelihood estimator of Prentice (1986)
asymptotically interchangeable.

Chen and Lo (1999) proposed to improve the SP88 estimator by incorporating information
from all cases rather than only those cases included in the random sample. If covariates
are time dependent then use of such an estimator may require additional data collection,
but when the covariates are time fixed then the inclusion of case information at all times
previous to the failure of the case carries no burden. Chen and Lo (1999) showed that these
estimators, referred to here as the CL99 estimators, generally perform somewhat better than
the SP88 estimator (see also Table 1 below). In this paper, we consider the CL99 estimators
under the independent sampling model described above.

In Theorem 1 of Section 1, we present a formula which shows, under the null θ0 = 0,
how close asymptotically the SP88 estimator and the CL99 estimators are to efficiency, as
compared to an information bound over a set of ‘reasonable’ estimators based on the same
data. In particular, in Section 5 we show that for a simple model with exponential failure
time and uniform censoring over the time interval [0,1], the efficiencies of the SP88 and CL99
estimators are

eSP = [1 +
2(1− p)

p
J1(d)][1 + (1− p)J2(d)],

eCL = [1− (1− p)

p
J2(d)][1 + (1− p)J2(d)],

where J1(d) and J2(d) are given by

J1(d) = 2− d log(1− d)/(d + log(1− d)), (3)

J2(d) = 2− (2d log(1− d) + (1− d) log2(1− d))/(d + log(1− d)); (4)

here p is the sampling fraction and d is probability of disease before time 1. In particular,
in the case of small disease probability d, the formulas show that the SP88 and the CL99
estimators are close to efficient when the sampling fraction is at least 10 or 30 percent. In
these cases, even an ‘optimal’ estimator could not improve these estimators significantly. In
other cases, for example, when p is very small, the formulas show that both SP88 estimator
and CL99 estimators are not efficient, and hence there may exist other, perhaps more com-
plicated estimators, that may perform better given the same data.

The question of the efficiency of estimators that use sampled data is real one, as the need
for sampling arises often in practice. For example, in a study to explore the relationship
between particulate exposures and esophagus cancer in a certain aircraft manufacturing firm
with 14,067 employees (see Garabrant et al., 1988), computing the MPLE using the full
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cohort where Sj = Rj would require the collection of a great deal of information. For each
individual, such information could include the date and age at entry into and exit from the
cohort, mortality status, the date and cause of death if dead, and exposure status. Such
detailed exposure and job histories would be expensive or impossible to collect for the entire
cohort. Furthermore, if the disease is rare, there is only a diminishing amount of information
obtained by adding more controls to the risk set.

There are a number of sampling designs employed in epidemiological cohort studies, includ-
ing case-cohort (Prentice (1986)), nested case-control (Thomas (1977), Liddel, McDonald
and Thomas (1977), Breslow, Lubin, Marek and Langholz (1983), Whitemore and MacMil-
lan (1983), Boice et al. (1987)), counter-matching (Langholz and Borgan (1995)) and its
derivatives such as counter-matching with additional randomly sampled controls. All these
schemes involves selecting, according to some rule, a sampled risk set Sj. These schemes
offer a substantial reduction of the work and expense of data collection as compared to what
is required when working under the full cohort model.

Naturally, there is some information loss inherent in any sampling scheme, the extent of
which can be determined by computing the asymptotic relative efficiency of the estimator
under sampling to that under full cohort information. But additionally, under any sampling
scheme, the question arises as to whether estimators obtained by maximizing (2) are using
the available data in the most efficient manner. In a regular parametric model, the Cramer-
Rao lower bound provides the answer to such questions in terms of a variance lower bound
for estimators of the unknown parameter. Under regularity it is well known that the maxi-
mum likelihood estimator achieves this lower bound and so is asymptotically efficient. But
the partial likelihood L(θ) is not a likelihood in the usual sense since, for instance, the terms
in the product (2) are not independent, and any information over intervals between failures
is neglected. However, tools for calculating theoretical lower bounds for semi-parametric
models, as developed by LeCam (1979), and Hájek (1970), may be applied. In the case of
full cohort information, it was shown that the maximum partial likelihood estimator achieves
a theoretical asymptotic variance lower bound (cf. Begun et al. (1983), and Greenwood and
Wefelmeyer (1990)).

In this paper, we provide an analysis to determine the efficiencies, defined in reference to a
theoretical lower bound, of the SP88 estimator and the CL99 estimators for the i.i.d. case-
cohort design. In Section 2, after presenting the i.i.d. case-cohort design model formally, we
derive the information and variance lower bounds in the null case, θ0 = 0, when there is no
relation between exposure and disease. These results give a bound on the performance of
any reasonable estimator based on the same data as that available to these estimators.

In Sections 3 and 4, we derive the asymptotic distributions of the SP88 estimator and the
CL99 estimators using a counting process and martingale theory approach under another
set of conditions. All these analysis are based on the techniques in Self and Prentice (1988).
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For the purposes of comparing the computed lower bounds to the actual variance achieved by
the SP88 and the CL99 estimators in Section 5, models satisfying the conditions in Sections
2, 3 and 4 are considered, and such a comparison is carried out explicitly under the null
θ0 = 0, assuming exponential failure times and uniform censoring on [0,1], independent of
covariates. Theorems 5 and 6 show that the SP88 estimator θ̃ (or equivalently, the maxi-
mum pseudolikelihood estimator of Prentice, 1986) and the CL99 estimators are generally
inefficient. The asymptotic variances of these estimators along with the asymptotic lower
bounds are tabulated for certain subcohort sampling fractions and disease probabilities in
Table 1. It turns out that for small disease probabilities, the maximum pseudolikelihood
estimator and the CL99 estimators generally perform well if the sampled risk set is of an
appropriate size. Some concluding remarks are given in Section 6.

2 Information and Asymptotic Variance Lower Bounds

The case-cohort sampling design as originally proposed (Prentice (1986)) requires the collec-
tion of covariate histories on the subjects who develop the disease of interest, and on a control
set selected by a simple random sample of the entire cohort at the start of the study. We
will consider the related model where the control set is selected using independent Bernoulli
random variables. We obtain the lower bound on the information for this setup by closely
following the treatment of Begun et al. (1983), referred to as BHHW in what follows.

We now specify the model of this section more formally. The variable Z denotes covariate
value, Y censoring time, X0 the failure time and B the indicator of inclusion into the sam-
pled risk set.

Condition 2.1 The covariate Z is time independent and has density h(z) with respect to
Lebesgue measure ν in R;

Each individual is observed up to the time when either the individual fails, or is censored;
the distribution of the failure time may depend on the covariate Z.

Condition 2.2 (Independent censoring). Given Z = z, the failure time X0 has density
function g(t|z) with respect to Lebesgue measure ν. Moreover, the censoring time Y has
density function c(t) with respect to Lebesgue measure ν, independent of both the covariate
Z and the failure time X0. Neither h(z) nor c(t) involves θ or λ.

Some independence between the failure and censoring times is necessary since it would clearly
be impossible to obtain meaningful survival data if, for example, individuals were withdrawn
from the study when they appeared to be at high risk for failure.
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With failure occuring according to the intensity (1), we let G(t|z) denote the cumulative
distribution function of X0 when Z = z, and let Ḡ(t|z) = 1 − G(t|z); note that the de-
pendence of these quantities on θ0 and λ0 is surpressed. The distribution function G(t|z)
and density function g(t|z) are connected to the hazard function λ(t|z) given in (1) through
the relation λ(t|z) = g(t|z)/Ḡ(t|z); therefore, Ḡ(t|z) = (Ḡ(t))exp(θ0z). Note that for θ0 = 0
we have λ(t|z) = λ0(t) = g(t)/Ḡ(t). Further, let C(t) denote the cumulative distribution
function of the censoring time Y and let C̄(t) = 1− C(t).

In what follows, θ ∈ R1 is a real-valued parameter and g is an element of G, a fixed subset
of the set of all densities with respect to Lebesgue measure ν on R+ = [0,∞).

We also assume

Condition 2.3 E{Z2eθZ} is bounded uniformly in a neighborhood of the true value θ0.

For each individual i there is an associated time Ti = min(X0
i , Yi) of withdrawal from the

study, and the indicator ∆i = 1(Ti = X0
i ) that the withdrawal was due to failure. To build

the case cohort sampling mechanism into our model, we introduce the sampling indicator B
that specifies whether an individual is included in the sample taken at time 0, where

Condition 2.4 The indicator B is a Bernoulli random variable with success probability p.

Finally, we operate under an i.i.d. cohort model:

Condition 2.5 The variables Zi, Yi, X
0
i , Bi over individuals in the cohort are i.i.d. copies of

Z, Y,X0 and B.

In the case cohort framework, information is only available on failed individuals, i.e., those
with ∆i = 1, and those selected to be in the sampled risk set, i.e., those with Bi = 1. We
summarize the data for each member of the cohort by the i.i.d. vectors Xi = (Ti, ∆i, Bi, Zi).

With ν Lebesgue measure on R, and τ counting measure on {0, 1}, the vectors Xi =
(Ti, ∆i, Bi, Zi), which take values in the space

X = R+ × {0, 1} × {0, 1} ×R, (5)

have density f(x) = f(x; θ, g), with respect to the product measure µ = ν× τ × τ × ν, given
by

f(x) =


g(t|z)C̄(t)h(z) ∆ = 1
pc(t)Ḡ(t|z)h(z) ∆ = 0, B = 1

(1− p)
(∫∞
−∞

∫∞
0 c(t)Ḡ(t|z)h(z)dν(t)dν(z)

)
ϕ(x) ∆ = 0, B = 0

(6)

where x = (t, ∆, B, z), and ϕ(x) is an arbitrary density function. The density ϕ(x) does not
depend on either θ or λ since the risk subjects who do not fail and are not included in the
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sampled cohort do not provide any information for θ or λ. The density g is the ‘nuisance
parameter’ which prevents the parametric estimation of θ.

To interpret the density function f(x) above, consider for example f(t, 0, 1, z), the ‘prob-
ability’ that there is an event at time t for an individual with ∆ = 0, sampling indicator
B = 1 and covariate Z = z. Since ∆ = 0 the individual is censored. The covariate value
z occurs with density h(z), and given this covariate value, censoring occurs at time t with
density c(t). In addition, being censored at time t means that the failure time is greater than
t, an event of probability Ḡ(t|z). Lastly, such an individual is included in the sample with
probability p. Multiplying these factors gives the density for such individuals. The other
factors can be understood similarly.

We closely follow BHHW to develop our asymptotic lower bound. Let L2(µ) = L2(X , µ)
and L2(ν) = L2(R+, ν) denote the usual L2-spaces of square integrable functions and let
< ·, · >µ (‖ · ‖µ) and < ·, · >ν (‖ · ‖ν) denote the usual inner products (and norms) in L2(µ)
and L2(ν) respectively. To compute the effective information for θ in the presence of the
unknown function g, we need to parametrize G locally by a subspace B of L2(ν), where each
β ∈ B is a possible “direction” in which to approach g. Explicitly, for g ∈ G and β ∈ L2(ν),
let C(g, β) denote the collection of all sequences of densities {gn} ⊂ G such that

‖ n
1
2 (g

1
2
n − g

1
2 )− β ‖ν→ 0 (7)

as n → ∞. Note that (7) implies that β is orthogonal to g1/2 since ‖ g1/2
n ‖ν=‖ g1/2 ‖ν= 1

for all n ≥ 1.

As mentioned in BHHW, for the stability of the model we need to restrict attention to those
sequences {gn} ∈ C(g, β) in which each gn is absolutely continuous with respect to g. Doing
so implies that the support of the associated β is contained in that of g. Therefore, for every
g ∈ G, let

B ≡ {β ∈ L2(ν) :‖ n
1
2 (g

1
2
n − g

1
2 )− β ‖ν→ 0 as n →∞ for some {gn} ⊂ G

and gn absolutely continuous with respect to g}, (8)

and

C0(g, β) ≡ {gn ∈ G; (7) holds with gn absolutely continuous with respect to g },

i.e. C0(g, β) is C(g, β) if the support of β is contained in the support of g. Furthermore, we
let C0(g) be the union of all C0(g, β) over β ∈ B.

Similarly, let Θ(θ, h) denote all sequences {θn}n≥1 such that

| n
1
2 (θn − θ)− h |→ 0, as n →∞, (9)
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and Θ(θ) =
⋃

h∈R1 Θ(θ, h). Given (θn, gn)n≥1 ∈ Θ(θ) × C0(g) let fn ≡ f(·; θn, gn) denote the
corresponding sequence of densities.

In order to apply the results of BHHW, we require the following result.

Proposition 1 The set B is a subspace of L2(ν).

Proof: Definition (8) implies that

B = {β ∈ L2; β ⊥ g1/2, support(β) ⊂ support(g)}, (10)

and the proposition follows. 2

Before we introduce our main result, we need the following definition.

Definition 2.1: We say that an estimator θ̂n of θ is regular at (θ, g) if for every sequence
{fn}n≥1, fn ≡ f(·; θn, gn) with (θn, gn)n≥1 ∈ Θ(θ) × C0(g) the distribution of n1/2(θ̂n − θn)
(under fn) converges weakly to a law which depends on f (and hence θ and g) but not on
the particular sequence (θn, gn).

This is a type of stability property on an estimator and it is implied by uniform weak con-
vergence of n1/2(θ̂n − θn) (under fn) to a law which might depend on f in neighborhoods of
g and θ; for more details see BHHW.

Now we present the main results for this section, the proofs of the theorems are deferred to
the end of this section.

Theorem 1 Consider a cohort R with n individuals and assume Conditions 2.1 through 2.5
are satisfied. Suppose that θ̂n is any regular estimator of θ based on the case-cohort design
with i.i.d. sampling such that, under θ0 = 0, its limit law is L = L(f). Then L may be
represented as the convolution of a N(0, 1/I∗) distribution with L1 = L1(f), a distribution
depending only on f = f(·; θ0, g), where

I∗ = var(Z)
∫ ∞
0

(1 + 2(1− p) log Ḡ(t) + (1− p) log2 Ḡ(t))C̄(t)dG(t) (11)

for C̄(t) = 1− C(t) and Ḡ(t) = 1−G(t). 2

To present our asymptotic minimax result, we make the following

Definition 2.2: We say l : R1 → R+ is a loss function if it is subconvex, that is, if
{x : l(x) ≤ y} is closed, convex, and symmetric for every y ≥ 0, and satisfies∫ ∞

−∞
l(z)φ(sz)dz < ∞ (12)
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for all s > 0, where φ denotes the standard normal density function. 2

Theorem 2 Consider a cohort R with n individuals and assume Conditions 2.1 through 2.5
are satisfied. Let l(x) be a loss function and F(f) be given by (16) below. Then under θ0 = 0
and with Bn(c) ≡ {fn ∈ F(f) : n1/2 ‖ f 1/2

n − f 1/2 ‖µ≤ c},

lim
c→∞

lim
n→∞

inf
θ̂n

sup
fn∈Bn(c)

Efnl(n1/2(θ̂n − θn)) ≥ El(Z∗)

where Z∗ ∼ N(0, 1/I∗) for I∗ given by (11) in Theorem 1. If l(x) = x2, then we say that
1/I∗ is the asymptotic lower bound for the variance of any regular estimator when θ0 = 0. 2

Here the infimum over estimators θ̂n is taken over the class of “generalized procedures,” the
class of randomized (Markov kernel) procedures, as in BHHW.

The following proposition is required for the computation of the asymptotic information for
regular estimators of θ, and hence for the proofs of Theorems 1 and 2.

Proposition 2 Suppose (θ, g) ∈ R1×G. If {(θn, gn)}n≥1 ∈ Θ(θ, h)×C0(g, β) for h ∈ R1, β ∈
L2(ν), and fn ≡ f(·; θn, gn) and f ≡ f(·; θ, g), then under θ0 = 0, we have

‖ n
1
2 (f

1
2
n − f

1
2 )− α ‖µ→ 0 as n →∞ (13)

with α ∈ L2(µ) given by

α = hρ + Aβ, (14)

and ρ ∈ L2(µ) and A : L2(ν) → L2(µ) are given by

ρ(t, 1, B, z) =
1

2
z(1 + log Ḡ(t))f

1
2 (t, 1, B, z),

Aβ(t, 1, B, z) = (Rβ(t) +

∫∞
t βg

1
2 dν

Ḡ(t)
)f

1
2 (t, 1, B, z),

ρ(t, 0, 1, z) =
1

2
z log Ḡ(t)f

1
2 (t, 0, 1, z),

Aβ(t, 0, 1, z) = (

∫∞
t βg

1
2 dν

Ḡ(t)
)f

1
2 (t, 0, 1, z),

for B = 0 or 1, and

Rβ(t) = β(t)g−
1
2 (t)−

∫∞
t βg

1
2 dν

Ḡ(t)
. (15)
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Proof: For θ0 = 0, the verification of (13) and the determination of α, ρ and A parallel
computations in Section 6 of BHHW for the full cohort case, and Lemma 1 of Begun and
Wellner (1982) for the two-sample case without censoring. 2

From now on we will focus on the case of true value θ0 = 0. Let H ≡ { α ∈ L2(µ) : α =
hρ + Aβ for some h ∈ R1, β ∈ B }. Note that by Proposition 1, H is a subspace of L2(µ)
since it is the image of a subspace (of R1 × L2(ν)) under a bounded linear transformation.
For α ∈ H, we let F(f, α) denote the collection of all sequences {fn } such that (13) holds
for the given α and let

F(f) ≡
⋃

α∈H

F(f, α). (16)

To obtain the effective information for θ in the presence of the unknown function g, we
orthogonally project ρ onto the nuisance space {Aβ : β ∈ B} to yield the “effective score”
for θ, ρ − Aβ∗, where Aβ∗, the orthogonal projection, is such that β∗ satisfies the “normal
equation”

A∗Aβ∗ = A∗ρ, (17)

where A∗ is the adjoint operator of A. The effective asymptotic information then equals

I∗(θ) = 4 ‖ ρ− Aβ∗ ‖2
µ . (18)

We are now ready for the proofs of the Theorems.

Proofs of Theorem 1 and Theorem 2: Our proofs parallel those of Theorem 3.1 and Theorem
3.2 of BHHW. We have verified the subspace condition of BHHW in Proposition 1, and
the conclusion of Proposition 2.1 of BHHW in Proposition 2. Therefore, it remains only to
compute I∗.

First, following the notations in Proposition 2, we compute β∗(t), the solution of “normal
equation” (17), and so the orthogonal projection Aβ∗(x). This is a technically challenging
part of the computation. Note that with classical functional analysis theory (cf. Luenberger
(1969)), we have

A∗Aβ(t) = p[Rβ(t)
M0(t)

Ḡ(t)
−
∫ t

0
Rβ(s)

M0(s)

Ḡ(s)

dG

Ḡ
]g1/2(t)

+[(1− p)β(t)g−1/2(t)
M0(t)

Ḡ(t)
]g1/2(t), (19)

A∗ρ(t) =
1

2
g

1
2 (t)[

M1(t)

Ḡ(t)
+ (1− p)

log Ḡ(t)

Ḡ(t)
M1(t)− p

∫ t

0

M1(s)

Ḡ(s)

dG

Ḡ
], (20)

where

Mi(t) = E{Zi1(T > t)} =
∫ ∞
−∞

ziC̄(t)Ḡ(t|z)h(z)dν(z). (21)
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Now notice that, with θ0 = 0 and the independence of Y and Z, we have

M1(t) = M0(t)E(Z), M0(t) = Ḡ(t)C̄(t). (22)

Therefore, the normal equation (17) is simplified as

p[Rβ(t)C̄(t)−
∫ t

0
Rβ(s)C̄(s)

dG

Ḡ
] + (1− p)β(t)g−1/2(t)C̄(t)

=
E(Z)

2
[p(C̄(t)−

∫ t

0
C̄(s)

dG

Ḡ
) + (1− p)(1 + log Ḡ(t))C̄(t)]. (23)

Let β∗(t) = E(Z)
2

(1 + log Ḡ(t))g
1
2 (t). It is not too hard to see that (ρ − Aβ∗) ⊥ Aβ for any

β ∈ B after simple and straightforward calculations. Therefore, the orthogonal projection
Aβ∗(x) of ρ(x) onto the closed space {Aβ : β ∈ B} of L2(ν) with θ0 = 0 is given by

Aβ∗(t, 1, B, z) =
E(Z)

2
(1 + log Ḡ(t))f

1
2 (t, 1, B, z), (24)

Aβ∗(t, 0, 1, z) =
E(Z)

2
log Ḡ(t)f

1
2 (t, 0, 1, z), (25)

for B = 0 or 1. Therefore, with (24), (25) and (22) above, it is easy to get (11) after tedious
but straightforward computations. Theorem 2 now follows by a direct application of Theo-
rem 3.2 of BHHW with I∗ given by (11). 2

3 The SP88 Estimator under Independent Sampling

To evaluate the properties of the SP88 estimator for the case-cohort design, we introduce a
counting process and martingale framework. This framework and the subsequent analysis in
this section parallels the treatment of Self and Prentice (1988). Let (Ω,F , P ) be a complete
probability space and {Ft}t∈[0,1] a right continuous, nondecreasing family of sub-σ-algebras
of F with F0 containing all P null subsets of F . We suppose that {Ft} includes failure time
and covariate histories up to time t, and censoring histories to t+ for all subjects in a cohort
R = {1, 2 . . . , n}. To the ith individual, i ∈ R, we associate the triple (Ni(t), Yi(t), Zi(t)),
which are independent replicates of (N(t), Y (t), Z(t)), where Ni(t) =

∑
j≥1 1(tj ≤ t, ij = i) is

the counting process, counting the number of times individual i observed to fail in (0, t], Yi(t)
is the censoring process so that Yi(t) = 1 if the ith subject is observed at time t, and Yi(t) = 0
otherwise, and Zi(t) is the (possibly) time dependent covariate process corresponding to ith

subject. We also assume Ni(1) < ∞ a.s. for every i. Note that Ni can only jump when
Yi(t) = 1.

Corresponding to each counting process Ni(t), define the intensity process

λi(t) = Yi(t)λ0(t) exp(θ0Zi(t)) (26)
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determining the rate at which individual i is observed to fail at time t, given the cohort
history Ft− up to just before time t.

Recalling the notation introduced in Section 1, the maximum partial likelihood estimator θ̂
and the SP88 estimator θ̃ are obtained by maximizing L of (2) for Sj = Rj and Sj = R̃j,

respectively. Equivalently, in the counting process setting, θ̂ and θ̃ are the respective solutions
of the estimating equations

Ul(θ, 1) = 0, l = 0, 1,

where

Ul(θ, t) ≡
n∑

i=1

∫ t

0
[Zi(w)− El(θ, w)]dNi(w), l = 0, 1,

E0(θ, w) ≡ S(1)(θ, w)

S(0)(θ, w)
, E1(θ, w) ≡ S̃(1)(θ, w)

S̃(0)(θ, w)
, (27)

and for j = 0, 1,

S(j)(θ, w) ≡ (1/n)
∑
l∈R

Yl(w)Zj
l (w)eθZl(w), S̃(j)(θ, w) ≡ (1/ñ)

∑
l∈R̃

Yl(w)Zj
l (w)eθZl(w). (28)

We assume the following conditions.

Condition 3.1 (Finite interval condition):
∫ 1
0 λ0(t)dt < ∞;

Condition 3.2 There exists a neighborhood N0 of the true value θ0 such that

E{ sup
t∈[0,1],θ∈N0

Y (t) | Z(t) |2 exp{θZ(t)}} < ∞;

Condition 3.3 P{Y (t) = 1,∀t ∈ [0, 1]} > 0;
Condition 3.4 Σ =

∫ 1
0 v(θ0, t)s

(0)(θ0, t)λ0(t)dt > 0, where s(0), s(1) and s(2) are defined by
s(j)(θ, t) ≡ E{Y (t)Zj(t)eθZ(t)}, and v(θ, t) ≡ s(2)(θ, t)/s(0)(θ, t) − e2(θ, t), where e(θ, t) ≡
s(1)(θ, t)/s(0)(θ, t);
Condition 3.5 (Stability of subcohort averages) The sequence of distributions of n1/2{E1(θ0, t)−
E0(θ0, t)} is tight on the space D = D[0, 1] of left-continuous functions with right-hand limits
equipped with Skorohod topology, where E0 and E1 are defined by (27).

Theorem 3 Under Conditions 3.1-3.5, as n →∞,

1. (Consistency of θ̃) θ̃
P→ θ0, the true value of θ, and

13



2. (Asymptotic normality of θ̃)

n1/2(θ̃ − θ0)
d→ N (0, Σ−1(1 +

1− p

p
Σ−1Γ)), (29)

where

Γ = 2
∫ 1

0

∫ t

0
E{Y (u)Y (w)(Z(u)− e(u))(Z(w)− e(w))eθ(Z(w)+Z(u))}

dΛ0(u)dΛ0(w) (30)

Σ =
∫ 1

0
E{Y (t)(Z(t)− e(t))2eθZ(t)}dΛ0(t), (31)

for Λ0(t) =
∫ t
0 λ0(w)dw the cumulative hazard function, and

e(t) = e(θ0, t) = s(1)(θ0, t)/s
(0)(θ0, t) 2

The proof of the theorem requires some preliminary Lemmas.

Lemma 1 Let I1, I2, · · · , In be i.i.d. Bernoulli random variables with success probability
0 < p < 1 and ñ =

∑n
i=1 Ii. From a population of n items labeled with deterministic values

f1, f2, · · · , fn, let Ȳ denote the sample average, i.e. Ȳ = ñ−1∑n
i=1 Iifi, and let f̄ = n−1∑n

i=1 fi

be the population average. If

n−1
n∑

i=1

(fi − f̄)2 → σ2
f > 0 and

fn − f̄√
n

→ 0 (32)

as n →∞, then

n1/2(Ȳ − f̄)
d→ N (0, σ2

f (1− p)/p).

Proof: Let Zi = Ii(fi − f̄) and let Sn =
∑n

i=1 Zi =
∑n

i=1 Ii(fi − f̄), then EZi = p(fi − f̄),
ESn = 0 and s2

n = var(Sn) = p(1− p)
∑n

i=1(fi − f̄)2. We first demonstrate that

n−1/2Sn√
p(1− p)n−1

∑n
i=1(fi − f̄)2

=
Sn − ESn√

var(Sn)

d→ N (0, 1). (33)

By the Central Limit Theorem for independent but non-identically distributed random vari-
ables (cf. Chapter 2 in Durrett (1991)), and then Chow and Teicher (1997), pp. 314 to
replace εsn by εsi in the Lindeberg condition, it suffices to show

1

s2
n

n∑
i=1

E{|Zi − E(Zi)|21(|Zi − E(Zi)| > εsi)} → 0. (34)

From (32) we know that there exists n0 > 0 such that |fi − f̄ | < εsi for all i > n0. In
addition, |Zi − E(Zi)| = |(Ii − p)(fi − f̄)| < |fi − f̄ |. Therefore, the summation in (34)
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consists of at most n0 terms, and division by sn → ∞ yields the desired limit. Hence, (33)

holds and therefore n−1/2Sn
d→ N (0, p(1− p)σ2

f ). Lastly, note that

n1/2(Ȳ − f̄) =
n−1/2∑n

i=1 Ii(fi − f̄)

n−1
∑n

i=1 Ii

=
n−1/2Sn

n−1
∑n

i=1 Ii

and ñn−1 = n−1∑n
i=1 Ii

P→ p ∈ (0, 1). The Lemma follows by Slustky’s theorem. 2

Proposition 3 Let Xn = (X1n, X2n, · · · , Xnn) and In = (I1n, I2n, · · · , Inn) be independent
random sequences such that

1. I1n, I2n, · · · , Inn are i.i.d. Bernoulli random variables with success probability p ∈ (0, 1),
and ñ = I1n + · · ·+ Inn.

2. For some scalar functions fin(Xn) of Xn, and for σf > 0, with

f̄n(Xn) = n−1
n∑

i=1

fin(Xn) and S2
fn = n−1

n∑
i=1

[fin(Xn)− f̄n(Xn)]2,

we have

S2
fn

P→ σ2
f > 0 and

fnn(Xn)− f̄n(Xn)√
n

P→ 0. (35)

3. The scalar functions gn(Xn) of Xn converges in distribution to a Gaussian random
variable with mean zero and variance σ2

g .

Then for hn(Xn, In) = n
1
2 [ñ−1∑n

i=1 Iinfin(Xn)− f̄n(Xn)], we have that (gn(Xn), hn(Xn, In))
converges in distribution to a bivariate normal random variable with mean zero and covari-
ance matrix given by (

σ2
g 0
0 1−p

p
σ2

f

)
.

Note the proposition above is almost the same as Proposition 1 in Self and Prentice (1988)
except the second convergence in (35). However, the independent sampling assumption
makes the proof much simpler.

Proof of Proposition 3: Let

an(Xn) = |S2
fn − σ2

f |+ |fnn(Xn)− f̄n(Xn)√
n

|,

and (gn, hn) denote (gn(Xn), hn(Xn, In)). The sequence an converges to zero in probability
by hypotheses. The vector (gn, hn) converges in distribution to (g, h) if and only if every
subsequence nk has a further subsequence nkj

such that convergence in distribution to (g, h)
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occurs along the further subsequence. Let nk be any subsequence. Clearly ank
converges to

zero in probability. But since every sequence converging in probability has a further subse-
quence converging almost surely, there exists a further subsequence of nk, say nkj

, such that
an evaluated along nkj

converges to zero a.s.. Hence, it suffices to show that (gn, hn) eval-
uated along nkj

has the claimed limiting distribution. For notational simplicity, we relabel
(gn, hn) evaluated along nkj

as (gn, hn), and hence, under the relabeling, P(A) = 1 where
A = {limn→∞ an = 0}.

Let
Φg(w) = Φ(w/σg) and Φf (v) = Φ(v/(

√
(1− p)/p σf )).

Write

P{gn ≤ w, hn ≤ v} = E{1(A)1(gn ≤ w, hn ≤ v)} = E{1(gn ≤ w)1(A)P[hn ≤ v|Xn]}.

Lemma 1 gives that 1(A)P[hn ≤ v|Xn] → 1(A)Φf (v) a.s.. Hence

|P{gn ≤ w, hn ≤ v} − Φg(w)Φf (v)|
≤ |E{1(gn ≤ w) (1(A)P[hn ≤ v|Xn]− 1(A)Φf (v))}|+ Φf (v)|E{1(gn ≤ w)− Φg(w)}|
≤ E|1(A)P[hn ≤ v|Xn]− 1(A)Φf (v)|+ |P{gn ≤ w} − Φg(w)| → 0.

2

Proof of Theorem 3: The consistency of θ̃ follows easily by the same argument as Lemma
3.1 in Self and Prentice (1988) with i.i.d. case considered in Andersen and Gill (1982). To
derive the asymptotic distribution of θ̃, we reason the same as the proofs of Theorems 3.1 and
3.2 of Self and Prentice (1988) but with the independent sampling scheme. Therefore, it is
enough to verify (35) in Proposition 3, where Xin represents {Yi(u), Ni(u), Zi(u); 0 ≤ u ≤ 1},
and fin(Xn) represents a linear combination of Yi(t)e

θ0Zi(t) and Yi(t)Zi(t)e
θ0Zi(t). Notice that

for the fixed time t, fin(Xn), i = 1, 2, · · · , n are actually independent replicates of f(X), a
linear combination of the processes Y (t)eθ0Z(t) and Y (t)Z(t)eθ0Z(t), evaluated at the same
time point t.

Because of the i.i.d. cohort assumption, n−1/2f̄n(Xn) = n−1/2n−1∑n
i=1 fin(Xn) converges to

0 a.s. by Condition 3.2 and the law of large numbers. In addition, for ε > 0,

P(|fnn(Xn)√
n

| > ε) = P(|f(X)| > n1/2ε) ≤ E|f(X)|
n1/2ε

.

Therefore, fnn(Xn)/
√

n converges to 0 in probability, again, by Condition 3.2. Lastly, the
first part of (35) is trivial because of the i.i.d. assumption of the full cohort and the indepen-
dence of the sampling. Hence our result follows with the easy simplification from Theorem
3.2 in Self and Prentice (1988) due to the independent sampling and exponential risk func-
tion. 2
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Finally we mention the asymptotic equivalence of the maximum pesudolikelihood estimator
in Prentice (1986) and the SP88 estimator θ̃ under our i.i.d. sampling model. Using the
same proof as in Section 4 of Self and Prentice (1988), under the condition

Condition 3.6: E{supt∈[0,1] Y (t)|Z(t)|2 exp{2θ0Z(t)}} < ∞;

we have

Proposition 4 Under Conditions 3.1 - 3.5 and 3.6 above, θ̃ and the maximum pseudolike-
lihood estimator under the i.i.d. sampling are asymptotically equivalent, i.e. both have the
same asymptotic distribution. 2

4 The CL99 Estimators under Independent Sampling

In this section, we apply the same techniques as those used in Section 3 to derive the
asymptotic properties of the CL99 estimators under independent sampling. Following the
notation from previous sections and Chen and Lo (1999), we define

W =
∫ 1

0
(Z(t)− e(t))eθZ(t)1(T ≥ t)dΛ0(t), α = P(∆ = 1),

(36)

V1 = var(W |∆ = 1), V0 = var(W |∆ = 0), K0 = E(W |∆ = 0).

It is seen that Γ = var(W ) = αV1 + (1 − α)V0 + (1 − α)/αK2
0 , where Γ is given by (30)

of Theorem 3 in Section 3. Recall that R and R̃ denote the set of all individuals in the
cohort with size of n and subcohort with size of ñ, respectively. We let n1(ñ1) and n0(ñ0) be
the respective numbers of the cases and controls in the cohort (subcohort). We further let
R1, R̃1 and R0, R̃0 to denote, respectively, the index sets of all cases and all controls in R, R̃.

From Chen and Lo (1999), the CL99 estimators, θ̃l, l = 2, 3, respectively, are the solutions
of the estimating equation

Ul(θ, 1) = 0, l = 2, 3, (37)

where

Ul(θ, t) ≡
n∑

i=1

∫ t

0
[Zi(w)− El(θ, w)]dNi(w), l = 2, 3,

E2(θ, w) ≡
{ñ1/(ñn1)}

∑
j∈R1 Yj(w)Zj(w)eθZj(w) + (1/ñ)

∑
j∈R̃0 Yj(w)Zj(w)eθZj(w)

{ñ1/(ñn1)}
∑

j∈R1 Yj(w)eθZj(w) + (1/ñ)
∑

j∈R̃0 Yj(w)eθZj(w)
, and

E3(θ, w) ≡
(1/n)

∑
j∈R1 Yj(w)Zj(w)eθZj(w) + {n0/(nñ0)}

∑
j∈R̃0 Yj(w)Zj(w)eθZj(w)

(1/n)
∑

j∈R1 Yj(w)eθZj(w) + {n0/(nñ0)}
∑

j∈R̃0 Yj(w)eθZj(w)
.
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We consider θ̃2 and θ̃3, the two most practically useful estimators discussed in Chen and
Lo (1999). Since it is claimed in that paper that θ̃3 is better than θ̃2 we will focus on the
asymptotic properties of θ̃3 and only briefly comment on θ̃2.

First, similar to Self and Prentice (1988), the score process n−1/2U3(θ0, t) can be simplified
as

n−1/2U3(θ0, t) =
n∑

i=1

∫ t

0
n−1/2[Zi(w)− E0(θ0, w)]dMi(w)−

∫ t

0
n−1/2{E3(θ0, w)− E0(θ0, w)}dΛ̄(w),

where Λ̄ = Λ1 + Λ2 + · · · + Λn and E0 is given by (27) in Section 3. Note that under the
independence and Conditions 3.1-3.4 in Section 3, the first term above, i.e., the score process
of the full-cohort case, converges to a continuous Gaussian process with limiting variance
function

∫ t
0 E{Y (u)(Z(u)− e(u))2eθ0Z(u)}dΛ0(u), which equals Σ at t = 1.

Regarding the second term above, we first assume the following tightness condition similar
to Condition 3.5 in Section 3.

Condition 4.6: The sequence of distributions of n1/2{E3(θ0, t) − E0(θ0, t)} is tight on the
space D = D[0, 1] of left-continuous functions with right-hand limits equipped with Skoro-
hod topology.

Under the independent sampling and Condition 4.6 above, one can show that the second
term converges to a Gaussian process independent of the first term, using similar techniques
in Self and Prentice (1988) and in Section 3 of this paper. Hence, it will be sufficient to
derive the limiting covariance process of

∫ t
0 n−1/2{E3(θ0, t)− E0(θ0, t)}dΛ̄(w).

The following theorem provides the asymptotic properties of θ̃3.

Theorem 4 Assume that Conditions 3.1-3.4 and 4.6 hold. With θ̃3 the solution of the
estimating equation (37) for l = 3, under independent Bernoulli sampling, θ̃3 is consistent
and asymptotically normal with asymptotic variance

σ2
3,Ber = Σ−1 +

1− p

p
Σ−1(1− α)V0Σ

−1, (38)

where Σ and Γ are given by (31) and (30) in Section 3, respectively, and V0 is defined in
(36). Here the subscript Ber stands for the independent Bernoulli sampling.
Proof: The proof of the consistency of θ̃3 is similar to that for SP88 estimator in Section 3
and so is omitted. To prove the normality, we apply the usual Taylor series expansion of
the score function U3(θ, 1) about θ0 evaluated at θ̃3, similar to the expansion in Theorem
3.2 of Self and Prentice (1988). In addition, n−1∂U3(θ, 1)/∂θ converges in probability to
Σ of (31) in a small neighborhood of the true value θ0. Therefore it is sufficient to derive
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the limiting distribution of the score statistics n−1/2U3(θ0, 1). Hence, as we mentioned ear-
lier, we only need to focus on the covariance function of the limiting Gaussian process of∫ t
0 n−1/2{E3(θ0, t)− E0(θ0, t)}dΛ̄(w) evaluated at time t = 1.

We introduce a convenient representation of E3(θ, t). For each j = 0, 1, we define

Š(j)(θ, t) ≡ (n1/n)Š
(j)
1 (θ, t) + (n0/n)Š

(j)
0 (θ, t) (39)

with

Š
(j)
0 (θ, t) ≡ (1/ñ0)

∑
l∈R̃j

Yl(t)Z
j
l (t)e

θZl(t), Š
(j)
1 (θ, t) ≡ (1/n1)

∑
l∈Rj

Yl(t)Z
j
l (t)e

θZl(t). (40)

Then

E3(θ, t) = Š(1)(θ, t)/Š(0)(θ, t).

In addition, we write S(j)(θ, t), j = 0, 1 of (28) in Section 3

S(j)(θ, t) = (n1/n)S
(j)
1 (θ, t) + (n0/n)S

(j)
0 (θ, t), (41)

where

S
(j)
0 (θ, t) ≡ (1/n0)

∑
l∈Rj

Yl(t)Z
j
l (t)e

θZl(t), S
(j)
1 (θ, t) ≡ (1/n1)

∑
l∈Rj

Yl(t)Z
j
l (t)e

θZl(t). (42)

By the law of large numbers and Condition 3.2, one can notice that E0(θ0, t) and Š(0)(θ0, t)
converge to e(t) = e(θ0, t) and s(0)(θ0, t) in probability. Therefore, from (39) and (41), and
applying the same calculation as in Self and Prentice (1988), we have

n1/2(E3(θ0, t)− E0(θ0, t))

= n1/2(Š(1)(θ0, t)/Š
(0)(θ0, t)− S(1)(θ0, t)/S

(0)(θ0, t))

= −n1/2{(Š(0)(θ0, t)− S(0)(θ0, t))e(t)− (Š(1)(θ0, t)− S(1)(θ0, t))}s(0)(θ0, t)
−1 + oP (1),

= −n1/2(n0/n){(Š(0)
0 (θ0, t)− S

(0)
0 (θ0, t))e(t)− (Š

(1)
0 (θ0, t)− S

(1)
0 (θ0, t))}s(0)(θ0, t)

−1 + oP (1)

= −(n
1/2
0 /n1/2)n

1/2
0 {(Š(0)

0 (θ0, t)− S
(0)
0 (θ0, t))e(t)− (Š

(1)
0 (θ0, t)− S

(1)
0 (θ0, t))}s(0)(θ0, t)

−1 + oP (1)

≡ η∗ + oP (1),

say. It is easily seen from the i.i.d. and independent sampling assumptions that ñ/n → p
and n1/n → α, in probability as n →∞. Furthermore, from Lemma 1 and Proposition 3 in
Section 3 and the idea similar to that in Self and Prentice (1988), one can show that, after
a straightforward but tedious computation, the covariance function of η∗ is given by

G(θ0, x, w) =
1− p

p
(1− α)× s(0)(θ0, x)−1s(0)(θ0, w)−1 ×

[h(1)(θ0, x, w) + h(0)(θ0, x, w)e(x)e(w)− h(2)(θ0, x, w)e(x)− h(2)(θ0, w, x)e(w)],
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where

h(0)(θ0, x, w) = E{1(T ≥ x)1(T ≥ w)eθ0Z(x)eθ0Z(w)|∆ = 0}
−E{1(T ≥ x)eθ0Z(x)|∆ = 0}E{1(T ≥ w)eθ0Z(w)|∆ = 0}.

h(1)(θ0, x, w) = E{1(T ≥ x)1(T ≥ w)Z(x)Z(w)eθ0Z(x)eθ0Z(w)|∆ = 0}
−E{1(T ≥ x)Z(x)eθ0Z(x)|∆ = 0}E{1(T ≥ w)Z(w)eθ0Z(w)|∆ = 0}.

h(2)(θ0, x, w) = E{1(T ≥ x)1(T ≥ w)Z(w)eθ0Z(x)eθ0Z(w)|∆ = 0}
−E{1(T ≥ x)eθ0Z(x)|∆ = 0}E{1(T ≥ w)Z(w)eθ0Z(w)|∆ = 0}.

The weak convergence of the process n1/2(E3(θ0, t) − E0(θ0, t)) is implied by the finite-
dimensional convergence of the process similar to that in Self and Prentice (1988) and the
tightness condition 4.6. Therefore,

∫ t
0 n−1/2{E3(θ0, t)−E0(θ0, t)}dΛ̄(w) converges to a Gaus-

sian process with limiting covariance function at time t = 1 given by

1− p

p
(1− α)

∫ 1

0

∫ 1

0
G(θ0, x, w)s(0)(θ0, x)s(0)(θ0, w)λ0(x)λ0(w)dxdw =

1− p

p
(1− α)V0. 2

The same idea can be applied to derive the asymptotic normality of θ̃2, the solution of esti-
mating equation (37) with l = 2.

Proposition 5 Under independent (Bernoulli) sampling, Conditions 3.1-3.4 and Condition
4.6 with the replacement of E3(θ0, t) by E2(θ0, t), θ̃2 is consistent and asymptotically normal
with asymptotic variance

σ2
2,Ber = Σ−1 +

1− p

p
Σ−1(1− α)V0Σ

−1 +
1

p
Σ−1(

1− α

α
K2

0)Σ−1. (43)

2

Remark: Although the value obtained here for σ2
3,Ber under the assumption of independent

sampling is the same as that obtained in Chen and Lo (1999) under simple random sampling
(SRS), the variance σ2

2,Ber under independent sampling is slightly larger than the variance
σ2

2,SRS given in Chen and Lo (1999) under SRS, the difference being Σ−1(1−α
α

K2
0)Σ−1. How-

ever, when the true value θ0 = 0,

σ2
2,Ber = σ2

3,Ber = Σ−1 +
1− p

p
Σ−1(1− α)V0Σ

−1

= Σ−1 +
1− p

p
Σ−1(Γ− αV1)Σ

−1 (44)

since K0 = 0.
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5 Estimator Efficiency for the Case-Cohort Sampling

Design

In this section, we consider a model where the asymptotic information, the asymptotic vari-
ance of the SP88 estimator θ̃, and the asymptotic variances of the CL99 estimators θ̃2 and
θ̃3 are given by (11), (29), (43) and (38), respectively. With these in hand, we are able to
compare how close the variances of the maximum pseudolikelihood estimator of Prentice
(1986) and the CL99 estimators come to the theoretical lower bound.

Throughout this section we will assume time-independent convariates, and focus on the case
of the true value θ0 = 0. In addition, we will compute the asymptotic efficiencies of the
maximum pseudolikelihood estimator of Prentice (1986) and the CL99 estimators under a
model, labeled Model A, which satisfies the following assumptions.

1. All subjects are followed from time t = 0 to either an exponential failure time with
parameter λ, or to censoring according to a uniform distribution over (0, 1).

2. The failure time and the censoring time are independent of covariates.

5.1 Efficiency of SP88 Estimator

Condition 2.3 in Section 2 is clearly stronger than Conditions 3.2 and 3.6. Therefore, the
following Corollary follows from Theorems 1, 3 and Proposition 4.

Corollary 1 Under Conditions 2.1 to 2.5, 3.1, 3.3, 3.4 and 3.5, the asymptotic information
lower bound when θ0 = 0 is given by (11), and the SP88 estimator θ̃ is a consistent estima-
tor of θ0 and has asymptotic distribution given by (29). Furthermore, θ̃ and the maximum
pseudolikelihood estimator of Prentice (1986) are asymptotically equivalent. 2

We now compare the asymptotic variance lower bound derived in Section 2 to the asymptotic
variance of the SP88 estimator θ̃ under Model A, where the assumptions of Corollary 1 are
assumed to hold. For this special case, we have

Corollary 2 1. The asymptotic variance of θ̃ in Model A when θ0 = 0 equals

σ̃2
Ber = Σ−1(1 +

2(1− p)

p
J1(d)), (45)

where J1(d) is given by (3), d = 1− exp{−λ} is the probability of failure prior to time
t = 1, and p is, again, the probability that a risk subject is added to the sampled cohort
at time 0. Here Σ = var(Z)[1 + d/ log(1− d)] is the variance of the maximum partial
likelihood estimator θ̂ for the full cohort case.
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2. The asymptotic information (11) for θ in Model A when θ0 = 0 equals

I∗ = Σ(1 + (1− p)J2(d)), (46)

here J2(d) is given by (4). Hence, the asymptotic variance lower bound is

V 2
B =

1

I∗
= Σ−1(

1

1 + (1− p)J2(d)
). (47)

Proof: From the assumptions, the first claim follows directly from Theorem 3 in Section 3 if
we let d = 1− exp{−λ}. The second part is a special case of Theorem 1 in Section 2 where
C̄(t) = (1− t) for 0 ≤ t < 1 and equals 0 if t ≥ 1. Therefore,

I∗ = var(Z)
∫ 1

0
(1 + 2(1− p) log Ḡ(t) + (1− p) log2 Ḡ(t))(1− t)dG(t). (48)

Note that G(t) = 1− exp{−λt} from assumption 1 for Model A; using this relation (48) can
be simplified to yield (46). 2

Now define eSP (d, p), the (asymptotic) efficiency of the SP88 estimator, as a function of
d ∈ (0, 1) and p ∈ (0, 1], to be the ratio of σ̃2

Ber to V 2
B, i.e.

eSP (d, p) =
σ̃2

Ber

V 2
B

= [1 +
2(1− p)

p
J1(d)][1 + (1− p)J2(d)], (49)

for J1(d) and J2(d) given by (3) and (4) respectively. We say the SP88 estimator θ̃ in the
case-cohort design is asymptotically efficient if eSP (d, p) = 1. Before we investigate the prop-
erties of the efficiency eSP (d, p), we present the following lemma for J1(d) and J2(d). The
proof of the lemma is simple and therefore is omitted.

Lemma 2 1. J1(d) ≥ 0 for d ≥ 0 and J1(d) = 0 if and only if d = 0. Moreover, J1(1) = 1
and J1(d) is a strictly increasing function of d for d > 0;

2. J2(d) < 0 for all d ∈ (0, 1). In addition, J2(0) = J2(1) = 0;

3. For every d > 0, J2(d) + 2J1(d) > 0 and 1 + J2(d) > 0. 2

For each fixed d ∈ (0, 1), let eSP
d (p) denote the efficiency (49) as a function of p only. Then

we have the following proposition for eSP
d (p).

Proposition 6 1. eSP
d (0) = ∞;

2. eSP
d (1) = 1;

3. eSP
d (p) is a strictly decreasing function for p ∈ (0, 1);
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4. eSP
d (p) > 1 for all d ∈ (0, 1) and p ∈ (0, 1).

Proof: Properties 1 and 2 are clear, and therefore 3 suffices to show 4. Thus we only need
to prove that with each fixed d ∈ (0, 1), deSP

d (p)/dp < 0 for p ∈ (0, 1). Fixing d ∈ (0, 1) and
taking the derivative of eSP

d (p) on p, we have

p2deSP
d (p)

dp
= 2p2J2(d)(J1(d)− 1

2
)− 2J1(d)(1 + J2(d)). (50)

Note that deSP
d (p)/dp < 0 if J1(d) − 1

2
≥ 0 for any p ∈ (0, 1) from Lemma 2. Now if

J1(d)− 1
2

< 0, (50) can be rewritten as

p2deSP
d (p)

dp
= −2(1− p2)J2(d)(J1(d)− 1

2
)− (J2(d) + 2J1(d)),

which is negative, again from Lemma 2. 2

Note that Property 2 above recovers the result in BHHW, that the MPLE is efficient when
data is collected on all cohort individuals.

From Proposition 6 and the asymptotic equivalence of the maximum pesudolikelihood esti-
mator with the SP88 estimator θ̃, we have

Theorem 5 The maximum pseudolikelihood estimator of Prentice (1986) in the case-cohort
design is inefficient. 2

5.2 Efficiency of CL99 Estimators

We apply the same technique as in the previous subsection to compute the asymptotic effi-
ciency of the CL99 estimator under our simplified model when the true value θ0 = 0.

First note that when θ0 = 0, all CL estimators have the common asymptotic variance σ2
3,Ber

given by (44).

Proposition 7 Under the same assumptions given in Theorem 4, Model A and θ0 = 0, the
asymptotic variance σ2

3,Ber of CL99 estimators simplifies to

σ2
3,Ber = Σ−1(1− 1− p

p
J2(d)), (51)

where J2(d) is given by (4) and d = P(X0 ≤ 1) = 1− e−λ.
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Proof. Note that under Model A with θ0 = 0, W defined in (36) can be simplified as follows.

W =
∫ 1

0
(Z − E(Z))1(T ≥ t)dΛ0(t)

= λT (Z − E(Z)).

Therefore, since K0 = 0 where K0 is defined by (36),

(1− α)V0 = E[W 21(∆ = 0)]

= λ2var(Z)E[T 21(X0 ≥ Y )]

= λ2var(Z)E[E(Y 21(X0 ≥ Y )|Y )]

= λ2var(Z)E[Y 2e−λY ], since X0, Y are independent.

Substituting λ = − log(1 − d) a simple calculation shows that (1 − α)V0/Σ = −J2(d). The
result follows. 2

For each fixed d ∈ (0, 1), let eCL
d (p) denote the relative efficiency of the CL99 estimators

when compared to the asymptotic lower bound given by Corollary 2, as a function of p only,
i.e.,

eCL
d (p) =

σ2
3,Ber

V 2
B

= [1− (1− p)

p
J2(d)][1 + (1− p)J2(d)], for fixed d ∈ (0, 1).

We have the following proposition for eCL
d (p).

Proposition 8 1. eCL
d (0) = ∞ and eCL

d (1) = 1;

2. eCL
d (p) is a strictly decreasing function for p ∈ (0, 1);

3. eCL
d (p) > 1 for all d ∈ (0, 1) and p ∈ (0, 1).

Proof. It is sufficient to prove 2. Simple calculation gives

p2deCL
d (p)

dp
= (1− p2)J2(d)(1 + J2(d)) < 0.

since J2(d) < 0 and (1 + J2(d)) > 0 from Lemma 2. 2

From Proposition 8 above, we have

Theorem 6 The estimators proposed by Chen and Lo (1999) in the case-cohort sampling
design are inefficient. 2
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5.3 Discussion

Although the maximum pseudolikelihood estimator of Prentice (1986) and the estimators of
Chen and Lo (1999) are technically inefficient for all p < 1, for practical purposes one wants
to find the distance between their asymptotic variances and the theoretical variance lower
bound. Table 1 gives the asymptotic variance σ̃2

Ber of the SP88 estimator θ̃, the common
asymptotic variance σ2

3,Ber of the CL99 estimators θ̃2 and θ̃3, and the asymptotic lower bound

V 2
B, each relative to the same asymptotic variance of MPLE θ̂, for various values of p ranging

from 0.001 to 0.5 and d = 0.001, 0.01, 0.1, 0.5 and 0.8.

One important feature we can see from the table is that when d is small, the SP88 estimator
and the CL99 estimators are nearly efficient for the case-cohort design with a sample of only
10% to 30% or so of the whole cohort. That is, given the information gathered in a case-
cohort design in this range of p, other estimators can only improve on the SP88 and the CL99
estimators by a small amount. We can also see from the Table how the SP88 estimator and
the CL99 estimators are far from efficient for small values of p; if these designs are necessary
then one should perhaps look for alternative methods of estimation.

A main point to take away from Table 1 is that p should be at least as high as d to obtain
reasonable efficiency. For example, if d = 0.5, and we sample only p = 0.1% of the whole
cohort, the asymptotic variances of both the SP88 estimator and the CL99 estimators are
far from the asymptotic lower bound. However, even though both estimators are far from
efficient, one can see how the CL99 estimators greatly improve the SP88 estimator in this
situation, with the CL99 estimator having 83.9% of the variance of the SP88 estimator in this
particular situation. Lastly, in many studies, the disease probability d is known in advance
approximately, and we see from the table how this information would be valuable in helping
us decide what fraction of the whole cohort to sample.

6 Concluding Remarks

This paper is devoted to the asymptotic efficiency of the maximum pseudolikelihood estima-
tor of Prentice (1986) and the estimators proposed in Chen and Lo (1999) for the case-cohort
sampling design in Cox’s regression model. It turns out that all estimators considered here
are inefficient. This conclusion is made based on the comparison of the asymptotic lower
bound and the asymptotic variances of estimators in the case of the true value θ0 = 0.

Although the calculation in this paper focuses on the null case when θ0 = 0, the technique
is valid in principle when θ0 6= 0 as well. However, when applying the technique a difficulty
arises when we attempt to compute the solution β∗(t) of the normal equation and obtain the
orthogonal projection Aβ∗(x) of ρ(x) onto the closed space {Aβ : β ∈ B} of L2(ν), as was
done in (24) and (25) when θ0 = 0. Following the same setup as given in Section 2, one can
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Table 1: Comparison of asymptotic variances of SP88 and CL99 estimators with
asymptotic lower bound

Disease Probability Sampling Fraction Variance (SP88) Variance (CL99) Lower Bound
d p σ̃2

Ber σ2
3,Ber V 2

B

0.001 0.001 1.666 1.666 1.001
0.005 1.133 1.133 1.001
0.010 1.066 1.066 1.001
0.050 1.013 1.013 1.001
0.100 1.006 1.006 1.001
0.300 1.002 1.002 1.000
0.500 1.001 1.001 1.000

0.010 0.001 7.682 7.666 1.007
0.005 2.331 2.328 1.007
0.010 1.662 1.661 1.007
0.050 1.127 1.127 1.006
0.100 1.060 1.060 1.006
0.300 1.016 1.016 1.005
0.500 1.007 1.007 1.003

0.100 0.001 69.947 68.150 1.072
0.005 14.734 14.376 1.072
0.010 7.833 7.654 1.071
0.050 2.311 2.277 1.068
0.100 1.621 1.605 1.064
0.300 1.161 1.157 1.049
0.500 1.069 1.067 1.035

0.500 0.001 411.889 345.606 1.526
0.005 82.849 69.645 1.523
0.010 41.719 35.150 1.519
0.050 8.815 7.554 1.487
0.100 4.702 4.105 1.450
0.300 1.960 1.805 1.318
0.500 1.411 1.345 1.208

0.800 0.001 818.837 541.781 2.178
0.005 163.912 108.723 2.167
0.010 82.047 54.591 2.155
0.050 16.554 11.285 2.059
0.100 8.368 5.872 1.950
0.300 2.910 2.263 1.610
0.500 1.819 1.541 1.371
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show that the normal equation to be solved in the general case when θ0 6= 0 is given by

Rβ(t)
M0(t)

Ḡ(t)
−
∫ t

0
Rβ(s)

M0(s)

Ḡ(s)

dG(s)

Ḡ(s)
− (1− p)

∫ t

0

∫∞
s βg1/2dν

Ḡ(s)

K0(s)

Ḡ(s)
ds

=
1

2
[
M1(t)

Ḡ(t)
−
∫ t

0

M1(s)

Ḡ(s)

dG(s)

Ḡ(s)
− (1− p)

∫ t

0

log Ḡ(s)

Ḡ(s)
K1(s)ds],

where Mi(t) = E[ZieθZ1(T > t)], Ki(s) = E[Zie2θZ1(T = s)1(∆ = 0)]. Unfortunately, the
solution to this equation, and therefore a variance lower bound for the case of non zero θ0 is
not as forthcoming as in the null case.

In conclusion, although the maximum pseudolikelihood estimator of Prentice (1986) and the
estimators of Chen and Lo (1999) are inefficient, they generally perform well in the case-
cohort design with a large enough sampling fraction and small disease probabilities. It is our
hope that our analysis of the asymptotic variance lower bound will provide better insight
into the case-cohort sampling design in general.

Acknowledgement: The authors are deeply thankful for the constructive comments and sug-
gestions from the editor and an anonymous referee which lead to a great improvement in the
presentation of our ideas.
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