The Inductive Method, Unbounded Couplings and Stein's Method

Jay Bartoff, Larry Goldstein
University of Southern California
[arxiv:1005.4390] [arxiv:1202.0909]

$$
\text { July } 11^{\text {th }}, 2012
$$

Stein's Method

Stein's method is a powerful technique for obtaining bounds of optimal rates in distributional approximations.

Stein's Method

Stein's method is a powerful technique for obtaining bounds of optimal rates in distributional approximations.
Works for many target distributions: Normal, Poisson, ...

Applications include: molecular sequence analysis, permutation tests, statistical physics

Stein's Method

Stein's method is a powerful technique for obtaining bounds of optimal rates in distributional approximations.
Works for many target distributions: Normal, Poisson, ...
Works in the presence of dependence.
Applications include: molecular sequence analysis
permutation tests, statistical physics

Stein's Method

Stein's method is a powerful technique for obtaining bounds of optimal rates in distributional approximations.

Works for many target distributions: Normal, Poisson, ...
Works in the presence of dependence.
Applications include: molecular sequence analysis, permutation tests, statistical physics ...

Stein's Method

Stein's method is a powerful technique for obtaining bounds of optimal rates in distributional approximations.
Works for many target distributions: Normal, Poisson, ...
Works in the presence of dependence.
Applications include: molecular sequence analysis, permutation tests, statistical physics...
Some applications of the method require a coupling of Y_{n} to a Y_{n}^{\prime} possessing certain inconvenient properties, e.g. boundedness.

The Nutshell

For the normal approximation of Y_{n}, situations where bounded couplings exist are the lucky ones.

The Nutshell

For the normal approximation of Y_{n}, situations where bounded couplings exist are the lucky ones.

Some unbounded couplings can be handled by showing that a certain configuration V_{n} reduced from the one that gives Y_{n}, conditioned on J_{n}, is the same as the original problem on a slightly smaller scale:

$$
\mathcal{L}_{\theta}\left(V_{n} \mid J_{n}\right)=\mathcal{L}_{\psi_{n, \theta}}\left(Y_{n-L_{n}}\right)
$$

The Nutshell

For the normal approximation of Y_{n}, situations where bounded couplings exist are the lucky ones.

Some unbounded couplings can be handled by showing that a certain configuration V_{n} reduced from the one that gives Y_{n}, conditioned on J_{n}, is the same as the original problem on a slightly smaller scale:

$$
\mathcal{L}_{\theta}\left(V_{n} \mid J_{n}\right)=\mathcal{L}_{\psi_{n, \theta}}\left(Y_{n-L_{n}}\right)
$$

Based on ideas from Bolthausen (1985) for the Combinatorial Central Limit Theorem, $A \in \mathbb{R}^{n \times n}, \pi \in \mathcal{S}_{n}$,

$$
Y=\sum_{i=1}^{n} a_{i, \pi(i)}
$$

Examples: Graph and Occupancy Model

Erdős-Rényi graph: Let Y_{n} be the number of degree d vertices in the random graph with n vertices, where for each distinct pair of vertices u, v the indicators $E_{\{u, v\}}$ of the existence of an edge between u and v are independent Bernoulli random variables with success probability $\theta /(n-1)$.

Examples: Graph and Occupancy Model

Erdős-Rényi graph: Let Y_{n} be the number of degree d vertices in the random graph with n vertices, where for each distinct pair of vertices u, v the indicators $E_{\{u, v\}}$ of the existence of an edge between u and v are independent Bernoulli random variables with success probability $\theta /(n-1)$.

Occupancy: Let Y_{n} be the number of bins having d balls when distributing n balls over m urns. Species counting problem, and author attribution literature: how many words did Shakespeare know?

Examples: Graph and Occupancy Model

Erdős-Rényi graph: Let Y_{n} be the number of degree d vertices in the random graph with n vertices, where for each distinct pair of vertices u, v the indicators $E_{\{u, v\}}$ of the existence of an edge between u and v are independent Bernoulli random variables with success probability $\theta /(n-1)$.

Occupancy: Let Y_{n} be the number of bins having d balls when distributing n balls over m urns. Species counting problem, and author attribution literature: how many words did Shakespeare know?

In both cases, Y_{n} is the sum of (globally) dependent variables.

The Nutshell

Removing a randomly chosen vertex I from the Erdős-Rényi random graph leaves a graph of the same type on a vertex set one size smaller.

Removing a randomly chosen bin in the uniform occupancy nrohlem leaves a uniform occunancy nrohlem with one fewer urn and a Binomial number fewer of balls.

The Nutshell

Removing a randomly chosen vertex I from the Erdős-Rényi random graph leaves a graph of the same type on a vertex set one size smaller.

Removing a randomly chosen bin in the uniform occupancy problem leaves a uniform occupancy problem with one fewer urn, and a Binomial number fewer of balls.

Stein Equation for Normal

The random variable Z is $\mathcal{N}(0,1)$ if and only if

$$
E[Z f(Z)]=E\left[f^{\prime}(Z)\right]
$$

for all absolutely continuous functions f for which these expectations exist.

Stein Equation for Normal

The random variable Z is $\mathcal{N}(0,1)$ if and only if

$$
E[Z f(Z)]=E\left[f^{\prime}(Z)\right]
$$

for all absolutely continuous functions f for which these expectations exist.
If W has a distribution close to $\mathcal{N}(0,1)$ then

$$
E\left[f^{\prime}(W)-W f(W)\right] \text { will be close to zero. }
$$

Stein Equation for Normal

The random variable Z is $\mathcal{N}(0,1)$ if and only if

$$
E[Z f(Z)]=E\left[f^{\prime}(Z)\right]
$$

for all absolutely continuous functions f for which these expectations exist.
If W has a distribution close to $\mathcal{N}(0,1)$ then

$$
E\left[f^{\prime}(W)-W f(W)\right] \text { will be close to zero. }
$$

Stein equation for test function h,

$$
f^{\prime}(w)-w f(w)=h(w)-E h(Z)
$$

Stein Equation

Given h, solve for f in

$$
f^{\prime}(w)-w f(w)=h(w)-E h(Z)
$$

Substitute W for w and take expectation to yield

Note expectation on the left involves only one random variable.

Stein Equation

Given h, solve for f in

$$
f^{\prime}(w)-w f(w)=h(w)-E h(Z)
$$

Substitute W for w and take expectation to yield

$$
E\left[f^{\prime}(W)-W f(W)\right]=E h(W)-E h(Z)
$$

Note expectation on the left involves only one random variable.

Stein Equation

Given h, solve for f in

$$
f^{\prime}(w)-w f(w)=h(w)-E h(Z)
$$

Substitute W for w and take expectation to yield

$$
E\left[f^{\prime}(W)-W f(W)\right]=E h(W)-E h(Z)
$$

Note expectation on the left involves only one random variable.

Coupling

To handle the term $E[W f(W)]$:

Coupling

To handle the term $E[W f(W)]$:

1. Exchangeable pairs

Coupling

To handle the term $E[W f(W)]$:

1. Exchangeable pairs
2. Size Bias coupling

Coupling

To handle the term $E[W f(W)]$:

1. Exchangeable pairs
2. Size Bias coupling
3. Zero Bias Coupling

Coupling

To handle the term $E[W f(W)]$:

1. Exchangeable pairs
2. Size Bias coupling
3. Zero Bias Coupling
4. G coupling

Size Bias Coupling

For a nonnegative random variable Y with finite, nonzero mean μ, we say that Y^{s} has the Y-size bias distribution if

$$
E[Y f(Y)]=\mu E\left[f\left(Y^{s}\right)\right]
$$

for all functions f for which these expectations exist.

Size Bias Coupling

For a nonnegative random variable Y with finite, nonzero mean μ, we say that Y^{s} has the Y-size bias distribution if

$$
E[Y f(Y)]=\mu E\left[f\left(Y^{s}\right)\right]
$$

for all functions f for which these expectations exist.
When $Y=\sum_{i=1}^{n} X_{i}$, a sum of nonnegative random variables, we may construct Y^{s} by choosing a summand proportional to its mean, i.e. $P(I=i)=E X_{i} / \mu$, replacing X_{I} by X_{I}^{s}, and adjusting the remaining variables to have their conditional distribution given the new value.

Size Bias Coupling

For a nonnegative random variable Y with finite, nonzero mean μ, we say that Y^{s} has the Y-size bias distribution if

$$
E[Y f(Y)]=\mu E\left[f\left(Y^{s}\right)\right]
$$

for all functions f for which these expectations exist.
When $Y=\sum_{i=1}^{n} X_{i}$, a sum of nonnegative random variables, we may construct Y^{s} by choosing a summand proportional to its mean, i.e. $P(I=i)=E X_{i} / \mu$, replacing X_{I} by X_{I}^{s}, and adjusting the remaining variables to have their conditional distribution given the new value.

If X is a non-trivial Bernoulli random variable, $X^{s}=1$.

Distances

Distance $d(\mathcal{L}(W), \mathcal{L}(Z))$ obtained by Stein's method depends on class of functions to which test function h belongs.

Distances

Distance $d(\mathcal{L}(W), \mathcal{L}(Z))$ obtained by Stein's method depends on class of functions to which test function h belongs.

1. Wasserstein distance

$$
d_{1}(\mathcal{L}(W), \mathcal{L}(Z))=\int_{-\infty}^{\infty}|F(x)-G(x)| d x
$$

consider h Lipschitz, satisfying $|h(y)-h(x)| \leq|y-x|$.
consider $h(x)=\mathbf{1}(x \leq z)$ indicator functions.

Distances

Distance $d(\mathcal{L}(W), \mathcal{L}(Z))$ obtained by Stein's method depends on class of functions to which test function h belongs.

1. Wasserstein distance

$$
d_{1}(\mathcal{L}(W), \mathcal{L}(Z))=\int_{-\infty}^{\infty}|F(x)-G(x)| d x
$$

consider h Lipschitz, satisfying $|h(y)-h(x)| \leq|y-x|$.
2. Kolmogorov distance

$$
d_{\infty}(\mathcal{L}(W), \mathcal{L}(Z))=\sup _{z \in \mathbb{R}}|F(x)-G(x)|
$$

consider $h(x)=\mathbf{1}(x \leq z)$ indicator functions.

$$
f^{\prime}(w)-w f(w)=h(w)-E h(Z)
$$

Wasserstein d_{1} distance easier to handle than Kolmogorov d_{∞}. For instance, for d_{1} we have

$$
\left|f^{\prime}(w)-f^{\prime}(w+t)\right| \leq t| | f^{\prime \prime} \| \quad \text { and } \quad\left\|f^{\prime \prime}\right\| \leq 2 \mid\left\|h^{\prime}\right\| .
$$

$$
f^{\prime}(w)-w f(w)=h(w)-E h(Z)
$$

Wasserstein d_{1} distance easier to handle than Kolmogorov d_{∞}. For instance, for d_{1} we have

$$
\left|f^{\prime}(w)-f^{\prime}(w+t)\right| \leq t| | f^{\prime \prime} \| \quad \text { and } \quad\left\|f^{\prime \prime}\right\| \leq 2\left\|h^{\prime}\right\| .
$$

For d_{∞} test functions the solution f does not posses two derivatives, and h must be smoothed. Bothausen's inequality:
$\left|f^{\prime}(w)-f^{\prime}(w+t)\right| \leq|t|\left(1+|w|+\frac{1}{\lambda} \int_{0}^{1} 1_{[z, z+\lambda]}(w+u t) d u\right)$
where $\lambda>0$ is amount of smoothing performed on $h(w)=\mathbf{1}(w \leq z)$.

$$
f^{\prime}(w)-w f(w)=h(w)-E h(Z)
$$

Wasserstein d_{1} distance easier to handle than Kolmogorov d_{∞}. For instance, for d_{1} we have

$$
\left|f^{\prime}(w)-f^{\prime}(w+t)\right| \leq t| | f^{\prime \prime} \| \quad \text { and } \quad\left\|f^{\prime \prime}\right\| \leq 2\left\|h^{\prime}\right\| .
$$

For d_{∞} test functions the solution f does not posses two derivatives, and h must be smoothed. Bothausen's inequality:
$\left|f^{\prime}(w)-f^{\prime}(w+t)\right| \leq|t|\left(1+|w|+\frac{1}{\lambda} \int_{0}^{1} 1_{[z, z+\lambda]}(w+u t) d u\right)$
where $\lambda>0$ is amount of smoothing performed on $h(w)=\mathbf{1}(w \leq z)$.
Term in integral yields probability of small interval, not of 'moment' type, but easy to bound when coupling is bounded.

Unbounded Coupling: Erdős-Rényi Graph G_{n}

To size bias the number Y_{n} of vertices of degree d in G_{n}, select a vertex, say I, uniformly, and add or subtract edges uniformly, as needed so that I has degree d. The number Y_{n}^{s} of degree d vertices in the graph so formed has the Y_{n}-size biased distribution.

Unbounded Coupling: Erdős-Rényi Graph G_{n}

To size bias the number Y_{n} of vertices of degree d in G_{n}, select a vertex, say I, uniformly, and add or subtract edges uniformly, as needed so that I has degree d. The number Y_{n}^{s} of degree d vertices in the graph so formed has the Y_{n}-size biased distribution.

The coupling of Y_{n} and Y_{n}^{s} is not bounded. It is possible that the chosen vertex I had many edges, and all but d of them were then removed in order for I to attain degree d.

Unbounded Coupling: Erdős-Rényi Graph G_{n}

To size bias the number Y_{n} of vertices of degree d in G_{n}, select a vertex, say I, uniformly, and add or subtract edges uniformly, as needed so that I has degree d. The number Y_{n}^{s} of degree d vertices in the graph so formed has the Y_{n}-size biased distribution.

The coupling of Y_{n} and Y_{n}^{s} is not bounded. It is possible that the chosen vertex I had many edges, and all but d of them were then removed in order for I to attain degree d.
V_{n} : Removing I and all its incident edges leaves an Erdős-Rényi random graph on $n-1$ vertices.

Unbounded Coupling: Erdős-Rényi Graph G_{n}

To size bias the number Y_{n} of vertices of degree d in G_{n}, select a vertex, say I, uniformly, and add or subtract edges uniformly, as needed so that I has degree d. The number Y_{n}^{s} of degree d vertices in the graph so formed has the Y_{n}-size biased distribution.

The coupling of Y_{n} and Y_{n}^{s} is not bounded. It is possible that the chosen vertex I had many edges, and all but d of them were then removed in order for I to attain degree d.
V_{n} : Removing I and all its incident edges leaves an Erdős-Rényi random graph on $n-1$ vertices.
J_{n} :The vertex I and its degree $D(I)$ are independent of the reduced graph, yet

$$
\left|Y_{n}^{s}-Y_{n}\right| \leq 1+|d-D(I)| .
$$

Unbounded Coupling: Multinomial Occupancy \mathbf{M}_{n}

Similarly, form a configuration where a randomly selected urn I contains exactly d balls by removing or adding balls uniformly from all other urns. This coupling has the same unboundedness property as the previous.

Unbounded Coupling: Multinomial Occupancy \mathbf{M}_{n}

Similarly, form a configuration where a randomly selected urn I contains exactly d balls by removing or adding balls uniformly from all other urns. This coupling has the same unboundedness property as the previous.

Inductive step: Removing urn I and it contents of $M(I)$ balls leaves occupancy problem with $n-M(I)$ balls and $m-1$ urns.

Unbounded Coupling: Multinomial Occupancy \mathbf{M}_{n}

Similarly, form a configuration where a randomly selected urn I contains exactly d balls by removing or adding balls uniformly from all other urns. This coupling has the same unboundedness property as the previous.

Inductive step: Removing urn I and it contents of $M(I)$ balls leaves occupancy problem with $n-M(I)$ balls and $m-1$ urns.

The multinomial occupancy problem is substantially more difficult than graph degree. The number of balls in the one, unlike the number of edges in the other, must remain fixed: compare removing a vertex connected to all other vertices, and removing an urn containing all balls.

Unbounded Coupling: Multinomial Occupancy \mathbf{M}_{n}

Similarly, form a configuration where a randomly selected urn I contains exactly d balls by removing or adding balls uniformly from all other urns. This coupling has the same unboundedness property as the previous.

Inductive step: Removing urn I and it contents of $M(I)$ balls leaves occupancy problem with $n-M(I)$ balls and $m-1$ urns.

The multinomial occupancy problem is substantially more difficult than graph degree. The number of balls in the one, unlike the number of edges in the other, must remain fixed: compare removing a vertex connected to all other vertices, and removing an urn containing all balls.

Also has a substantially more difficult 'variance calculation.'

Inductive Step: Main Idea

Conditioning on J_{n} leaves smaller problem; need that the bound K_{n} on $\left|Y_{n}^{s}-Y_{n}\right|$ is function of J_{n}.

Can take expectation by first conditioning. Conditional expectation pulls past bound K_{n}, conditional expectation of term with W_{n}, standardized value of Y_{n}, can be expressed by distance to normal for smaller problem

Inductive Step: Main Idea

Conditioning on J_{n} leaves smaller problem; need that the bound K_{n} on $\left|Y_{n}^{s}-Y_{n}\right|$ is function of J_{n}.

Can take expectation by first conditioning. Conditional expectation pulls past bound K_{n}, conditional expectation of term with W_{n}, standardized value of Y_{n}, can be expressed by distance to normal for smaller problem.

$$
E\left(K_{n} \int_{-K_{n} / \sigma_{n}}^{K_{n} / \sigma_{n}} \int_{0}^{1} \mathbf{1}_{[z, z+\lambda]}\left(W_{n}+u t\right) d u d t\right)
$$

Obtain recursion for bound to normality.

Inductive Step: Main Idea

Conditioning on J_{n} leaves smaller problem; need that the bound K_{n} on $\left|Y_{n}^{s}-Y_{n}\right|$ is function of J_{n}.

Can take expectation by first conditioning. Conditional expectation pulls past bound K_{n}, conditional expectation of term with W_{n}, standardized value of Y_{n}, can be expressed by distance to normal for smaller problem.

$$
E\left(K_{n} \int_{-K_{n} / \sigma_{n}}^{K_{n} / \sigma_{n}} \int_{0}^{1} \mathbf{1}_{[z, z+\lambda]}\left(W_{n}+u t\right) d u d t\right) .
$$

Obtain recursion for bound to normality.

Graph Degree and Occupancy: L^{∞} History

Graph Degree: Kordecki (1990) case $d=0$, Neammanee and Suntadkarn (2009) (within ϵ).

Graph Degree and Occupancy: L^{∞} History

Graph Degree: Kordecki (1990) case $d=0$, Neammanee and Suntadkarn (2009) (within ϵ).

Occupancy: Englund (1981) $d=0$, Penrose (2009) $d=1$.

Graph Degree and Occupancy: L^{∞} History

Graph Degree: Kordecki (1990) case $d=0$, Neammanee and Suntadkarn (2009) (within ϵ).

Occupancy: Englund (1981) $d=0$, Penrose (2009) $d=1$.
Chen and Rollin (2010) (quite general situations), within poly log.

Graph Degree and Occupancy: L^{∞} History

Graph Degree: Kordecki (1990) case $d=0$, Neammanee and Suntadkarn (2009) (within ϵ).

Occupancy: Englund (1981) $d=0$, Penrose (2009) $d=1$.
Chen and Rollin (2010) (quite general situations), within poly log.
Inductive method: Applied for the graph and occupancy situations obtains the correct rate for all $d \in\{0,1, \ldots$,$\} .$

Cast of Main Characters: Occupancy

1. Y_{n} : How many of the m urns contain d balls when n balls are uniformly distributed.
2. Y_{n}^{s} : Number of m urns with d balls after adding or removing balls from urn I_{n}, randomly selected, so that it has occupancy d.
3. J_{n} : Identity I_{n} of selected urn and its occupancy $M_{n}\left(I_{n}\right)$.
4. K_{n} : Bound $1+\left|M_{n}\left(I_{n}\right)-d\right|$ the absolute number $\left|Y_{n}^{s}-Y_{n}\right|$ of urns whose occupancy is affected by adding or removing balls when forming Y_{n}^{s}.
5. V_{n} : Number of urns other than I_{n} with occupancy d.

$$
\mathcal{L}_{m}\left(V_{n} \mid J_{n}\right)=\mathcal{L}_{m-1}\left(Y_{n-M_{n}\left(I_{n}\right)}\right)
$$

Further Directions

Presently only the size bias coupling is handled. The inductive method can also be used for exchangeable pairs, and the more general G-coupling framework of Chen and Roellin, as well as with the zero bias coupling.

Further Directions

Presently only the size bias coupling is handled. The inductive method can also be used for exchangeable pairs, and the more general G-coupling framework of Chen and Roellin, as well as with the zero bias coupling.

Should yield results on counts more general than number of urns with exactly d balls, eg. numbers of urns with more than d balls, or number of balls in excess of d summed over all urns.

Further Directions

Presently only the size bias coupling is handled. The inductive method can also be used for exchangeable pairs, and the more general G-coupling framework of Chen and Roellin, as well as with the zero bias coupling.

Should yield results on counts more general than number of urns with exactly d balls, eg. numbers of urns with more than d balls, or number of balls in excess of d summed over all urns.

Also can be applied to more general statistics on the Erdős-Rényi graph.

