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Stein’s Method

Stein’s method is a powerful technique for obtaining bounds
of optimal rates in distributional approximations.

Works for many target distributions: Normal, Poisson, . . .

Works in the presence of dependence.

Applications include: molecular sequence analysis,
permutation tests, statistical physics . . .

Some applications of the method require a coupling of Yn to a
Y ′n possessing certain inconvenient properties, e.g.
boundedness.
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The Nutshell
For the normal approximation of Yn, situations where bounded
couplings exist are the lucky ones.

Some unbounded couplings can be handled by showing that a
certain configuration Vn reduced from the one that gives Yn,
conditioned on Jn, is the same as the original problem on a slightly
smaller scale:

Lθ(Vn|Jn) = Lψn,θ
(Yn−Ln)

Based on ideas from Bolthausen (1985) for the Combinatorial
Central Limit Theorem, A ∈ Rn×n, π ∈ Sn,

Y =
n∑

i=1

ai ,π(i)
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Examples: Graph and Occupancy Model

Erdős-Rényi graph: Let Yn be the number of degree d vertices in
the random graph with n vertices, where for each distinct pair of
vertices u, v the indicators E{u,v} of the existence of an edge
between u and v are independent Bernoulli random variables with
success probability θ/(n − 1).

Occupancy: Let Yn be the number of bins having d balls when
distributing n balls over m urns. Species counting problem, and
author attribution literature: how many words did Shakespeare
know?

In both cases, Yn is the sum of (globally) dependent variables.
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The Nutshell

Removing a randomly chosen vertex I from the Erdős-Rényi
random graph leaves a graph of the same type on a vertex set one
size smaller.

Removing a randomly chosen bin in the uniform occupancy
problem leaves a uniform occupancy problem with one fewer urn,
and a Binomial number fewer of balls.
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Stein Equation for Normal

The random variable Z is N (0, 1) if and only if

E [Zf (Z )] = E [f ′(Z )]

for all absolutely continuous functions f for which these
expectations exist.
If W has a distribution close to N (0, 1) then

E [f ′(W )−Wf (W )] will be close to zero.

Stein equation for test function h,

f ′(w)− wf (w) = h(w)− Eh(Z ).
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Stein Equation

Given h, solve for f in

f ′(w)− wf (w) = h(w)− Eh(Z ).

Substitute W for w and take expectation to yield

E [f ′(W )−Wf (W )] = Eh(W )− Eh(Z ).

Note expectation on the left involves only one random variable.
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Coupling

To handle the term E [Wf (W )]:

1. Exchangeable pairs

2. Size Bias coupling

3. Zero Bias Coupling

4. G coupling
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Size Bias Coupling

For a nonnegative random variable Y with finite, nonzero mean µ,
we say that Y s has the Y -size bias distribution if

E [Yf (Y )] = µE [f (Y s)]

for all functions f for which these expectations exist.

When Y =
∑n

i=1 Xi , a sum of nonnegative random variables, we
may construct Y s by choosing a summand proportional to its
mean, i.e. P(I = i) = EXi/µ, replacing XI by X s

I , and adjusting
the remaining variables to have their conditional distribution given
the new value.

If X is a non-trivial Bernoulli random variable, X s = 1.
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Distances

Distance d(L(W ),L(Z )) obtained by Stein’s method depends on
class of functions to which test function h belongs.

1. Wasserstein distance

d1(L(W ),L(Z )) =

∫ ∞
−∞
|F (x)− G (x)|dx ,

consider h Lipschitz, satisfying |h(y)− h(x)| ≤ |y − x |.
2. Kolmogorov distance

d∞(L(W ),L(Z )) = sup
z∈R
|F (x)− G (x)|,

consider h(x) = 1(x ≤ z) indicator functions.
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f ′(w)− wf (w) = h(w)− Eh(Z )

Wasserstein d1 distance easier to handle than Kolmogorov d∞. For
instance, for d1 we have

|f ′(w)− f ′(w + t)| ≤ t||f ′′|| and ||f ′′|| ≤ 2||h′||.

For d∞ test functions the solution f does not posses two
derivatives, and h must be smoothed. Bothausen’s inequality:

|f ′(w)− f ′(w + t)| ≤ |t|
(

1 + |w |+ 1

λ

∫ 1

0
1[z,z+λ](w + ut)du

)
where λ > 0 is amount of smoothing performed on
h(w) = 1(w ≤ z).

Term in integral yields probability of small interval, not of
‘moment’ type, but easy to bound when coupling is bounded.
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Unbounded Coupling: Erdős-Rényi Graph Gn

To size bias the number Yn of vertices of degree d in Gn, select a
vertex, say I , uniformly, and add or subtract edges uniformly, as
needed so that I has degree d . The number Y s

n of degree d
vertices in the graph so formed has the Yn-size biased distribution.

The coupling of Yn and Y s
n is not bounded. It is possible that the

chosen vertex I had many edges, and all but d of them were then
removed in order for I to attain degree d .

Vn: Removing I and all its incident edges leaves an Erdős-Rényi
random graph on n − 1 vertices.

Jn:The vertex I and its degree D(I ) are independent of the reduced
graph, yet

|Y s
n − Yn| ≤ 1 + |d − D(I )|.
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Unbounded Coupling: Multinomial Occupancy Mn

Similarly, form a configuration where a randomly selected urn I
contains exactly d balls by removing or adding balls uniformly from
all other urns. This coupling has the same unboundedness property
as the previous.

Inductive step: Removing urn I and it contents of M(I ) balls
leaves occupancy problem with n −M(I ) balls and m − 1 urns.

The multinomial occupancy problem is substantially more difficult
than graph degree. The number of balls in the one, unlike the
number of edges in the other, must remain fixed: compare
removing a vertex connected to all other vertices, and removing an
urn containing all balls.

Also has a substantially more difficult ‘variance calculation.’
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Inductive Step: Main Idea

Conditioning on Jn leaves smaller problem; need that the bound
Kn on |Y s

n − Yn| is function of Jn.

Can take expectation by first conditioning. Conditional expectation
pulls past bound Kn, conditional expectation of term with Wn,
standardized value of Yn, can be expressed by distance to normal
for smaller problem.

E

(
Kn

∫ Kn/σn

−Kn/σn

∫ 1

0
1[z,z+λ](Wn + ut)dudt

)
.

Obtain recursion for bound to normality.
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Graph Degree and Occupancy: L∞ History

Graph Degree: Kordecki (1990) case d = 0, Neammanee and
Suntadkarn (2009) (within ε) .

Occupancy: Englund (1981) d = 0, Penrose (2009) d = 1.

Chen and Rollin (2010) (quite general situations), within poly log.

Inductive method: Applied for the graph and occupancy situations
obtains the correct rate for all d ∈ {0, 1, . . . , }.
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Cast of Main Characters: Occupancy

1. Yn: How many of the m urns contain d balls when n balls are
uniformly distributed.

2. Y s
n : Number of m urns with d balls after adding or removing

balls from urn In, randomly selected, so that it has occupancy
d .

3. Jn: Identity In of selected urn and its occupancy Mn(In).

4. Kn: Bound 1 + |Mn(In)− d | the absolute number |Y s
n − Yn|

of urns whose occupancy is affected by adding or removing
balls when forming Y s

n .

5. Vn: Number of urns other than In with occupancy d .

Lm(Vn|Jn) = Lm−1(Yn−Mn(In))
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Further Directions

Presently only the size bias coupling is handled. The inductive
method can also be used for exchangeable pairs, and the more
general G -coupling framework of Chen and Roellin, as well as with
the zero bias coupling.

Should yield results on counts more general than number of urns
with exactly d balls, eg. numbers of urns with more than d balls,
or number of balls in excess of d summed over all urns.

Also can be applied to more general statistics on the Erdős-Rényi
graph.
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Further Directions

Presently only the size bias coupling is handled. The inductive
method can also be used for exchangeable pairs, and the more
general G -coupling framework of Chen and Roellin, as well as with
the zero bias coupling.

Should yield results on counts more general than number of urns
with exactly d balls, eg. numbers of urns with more than d balls,
or number of balls in excess of d summed over all urns.

Also can be applied to more general statistics on the Erdős-Rényi
graph.
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Further Directions

Presently only the size bias coupling is handled. The inductive
method can also be used for exchangeable pairs, and the more
general G -coupling framework of Chen and Roellin, as well as with
the zero bias coupling.

Should yield results on counts more general than number of urns
with exactly d balls, eg. numbers of urns with more than d balls,
or number of balls in excess of d summed over all urns.

Also can be applied to more general statistics on the Erdős-Rényi
graph.
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