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The Diamond Lattice: Three Scales

Properties (e.g. conductance) at level 2 depend on
properties at level 1, ...

X, =F(Xy), Xi=F(Xp)...



Xnt1 =F(X,,) where X, =(Xp1,.-- 7X,L7;€)T

with X, ; independent, each with distribution X,,.

Conditions on F', due to Shneiberg, Li and Rogers, and
Wehr, imply the weak law (here assumed)

Xn —p G
and by Woo and Wehr which imply

X, — EX,
W, —a N(0,1), for W, =0 _——=n
Var(X,,)



Classical Central Limit Theorem as
Hierarchical Model

Taking F' to give the average

xr1 + T2

F(Q?l,.’EQ) = B

gives in distribution

Xo,1+ -+ Xoon

X, = o

At stage n there are N = 2" variables, would expect a
bound to the normal Z of the form

dW,,Z) < Cy™ where ~" = N"12=(1/V/2)".



We say F is (strictly) averaging
1. min; z; < F(x) < max; x;, and strictly when
min; r; < max; x;.
2. F(x) < F(y) whenever z; < y;, and strictly when

x; < yj; for some j.

Say F is scaled averaging when F(x)/F(1;) is averaging,
where 1, = (1,...,1).



O

Parallel and series resistor combination rules

Lyi(z1,m2) = 21 + 22, L_q(z1,22) = (27" +25")7"

gives the weighted w; > 0 diamond lattice conductivity
function

1 1\ 1 I
F(x) = < + > + ( + — ) )
w11 i) w3x3 WaT4

a scaled strictly averaging function.




Write X, 11 = F(X,,) as a linear recursion with (‘small’)
perturbation R,,,

Xn+1:an'Xn+Rn7 n > 0,

where ¢, = EX,,, a, = F'(cy,), ¢ = (Cny ..., )T € RE,
and F” the gradient of F.

Rule out trivial cases such as F(x1,x2) = x1; when
a = F’(c) at limiting ¢ is not a multiple of a standard basis
vector, then A = ||a|| < 1 when F'is averaging.



Z ~N(0,0%) ifand only if o?Ef'(Z)=EZf(Z).

For EW =0, EW? = o2, if E[o?f' (W) - Wf(W)] is
close to zero for enough f, then W should be close to Z in
distribution. Given a test function h, let Nh = Fh(Z/0),
and solve for f in the Stein equation

o?f'(w) —wf(w) = h(w/o) — Nh.

Now evaluate expectation of RHS by expectation of LHS.



Goldstein and Reinert 1997: For W a mean zero variance
o2 random variable, there exists W* such that for all
smooth f,

EWf(W) = d’Ef'(W*).

From Stein’s characterization,
EZf(Z)=c*Ef(Z) ifandonlyif Z~ N(0,0%).
Hence:

W* =4 W if and only if W ~ N(0,0?).



W* =4 W if and only W ~ N(0,0?), that is, the mean
zero normal is the unique fixed point of the zero bias
transformation.

o A W is close to W, W is close to being a fixed point,
and therefore close to normal.



For X €{0,1,2,...} with EX = u < 0o, consider the size
biased distribution

Appears in sampling, generates the waiting time paradox.

The distribution is also characterized by
EXf(X) = uBf(X®) all f,

and can be applied to any X > 0 with finite mean p.



For W > 0 with p = EW, we say W* has the W-size bias
distribution if for all f,

EW (W) = uEf(W*).
Zero biasing is the same, with variance replacing mean, and
f/ replacing f:

EWf(W)=d’Ef'(W*).



If X1,...,X, are non-negative independent variables with
finite means 1, ..., iy, then with W = X7 + - + X,

We=W - X;+ X7,
where
B —
E;‘L:1 K H
The sum is size biased by replacing one summand, chosen
with probability proportional to its expectation, by an

independent variable having that summand'’s size biased
distribution.

P(I=i) =



pEf(W?) = pEf(W - X1+ Xj)

- s\ M
= W) EfW X+ X7

=1

- Zquf > X+ X7)

t#£i

= ZEXf > X+ X))

t#1

= ZEXJ(W
i=1

— EWFW)



Zero and Size Biasing an Independent Sum

To zero (size) bias a sum

of mean zero (non-negative) independent variables, pick
one proportional to its variance (mean) and replace with
biased version.



If W is the sum of comparable, independent, mean zero
variables then W* differs from W by only one summand.
Hence W* is close to W, so W is nearly a fixed point of
the zero bias transformation, and hence close to normal.



With
L={g:R—=R:[gy) —g(=)] < |y —z[}
define

d(Y, X) = sup |E[g(Y) — g(X)]].

Dual form, minimal L; distance, achieved for R valued
variables

d(Y,X) = inf E[Y — X|,

where infimum is over all pairs with given marginals.



Lemma 1 Let W be a mean zero, finite variance random
variable, and let W* have the W -zero bias distribution.
Then with d the Wasserstein distance, and Z a normal
variable with the same variance as W,

AW, Z) < 2d(W, W™).

Take 02 = 1. For ||P/|| < 1, ||f"]| < 2,

|[ER(W) — Nh| [E[f'(W) =W W]

= |[Eff(W)-Ef (W)
LI EW — W
24(W, ™).



Lemma 2 For a € R* with A = ||a|| # 0, let
Ly
Y=> W,
2

where W; are mean zero, variance one, independent
random variables distributed as W . Then

d(Y,Y”") < od(W,W"),

and o =, |ai?/(3; a2)3/2 < 1 if and only if e is not a
scalar multiple of a standard basis vector.



Q
=

\041\

With P(I =)= Y — v = Swy —wr).

ﬁa
Since W; =4 W, we may take (W;, W) =4 (W, W*)

ElY — Y|—Z|

Choosing the pair W, W* to achieve the infimum, we obtain

il =eEW —Wr|.

dY,Y*) < E|Y = Y*| = E[W — W*| = o d(W, W*).



Take W; iid mean zero variance 2 and
n
—1/2
Y =n"123 "W
i=1

1/2 and

Setting a; = n~ /2 gives ¢ =n~
d(Y,Z) < 2d(Y,Y*) < 20" YV2d(W,W*) — 0

as n — oo, proof of the CLT with a bound in d and
constant depending on E|W* — W| = ||IW* — W||;.



Normalizing X,,+1 = o, - X,,, with A, = ||, || and
02 = Var(X,,) we have

k
Qi . X, — ¢,
W= )\”"Wm with W, = %

Iterated contraction gives

n—1

AWy, Z) < 2d(W,,, W) < 2 (H <pi> d(Wo, W¢).
=0



Let X,,41 = o, - X, + Ry, where X, is a vector of iid
variables distributed as X,,, EX,, = ¢,, Var(X,,) = 02, and
An = ||lan]] # 0. Set

2

Xn — Cp

On

Y, = Z )\me where W,, =

i=1

and, measuring the discrepancy from linearity,

1
Bn = E|Wpni1 — Y| + §E\Wg+1 -Y3.



Theorem 1 For Xn-i-l = Q- Xn + Rn, if there exist
(3,¢) € (0,1)? such that

lim sup ﬂ—z < oo and limsupy, = @,

n—oo n—oo

then with v = 3 when ¢ < (3, and for any v € (p, 1) when
B < ¢, there exists C' such that

AW, Z) < Cy™.

Now apply Theorem 1 to sequences generated using
averaging functions F.



Theorem 2 Let Xy be a non constant random variable
with P(Xg € [a,b]) =1 and X,,11 = F(X,,) with

F : [a,b)* — [a,b], twice continuously differentiable.
Suppose F is averaging and that X,, —, ¢, with o = F'(c)
not a scalar multiple of a standard basis vector. Then with
Z a standard normal variable, for all v € (¢, 1) there exists
C such that

k 13
d(W,,Z) < Cy™ where = M,
(Ximy lag[?)3/2
is a positive number strictly less than 1. The value ¢
achieves a minimum of 1/+/k if and only if the components
of a are equal.



Under simple non-triviality conditions, if Fy, F1, ..., F are
scaled, strictly averaging and Fj is (positively)
homogeneous, then

Fl(X) = FO(FI(X1)7 . 'aFk(Xk))

is a scaled strictly averaging function.

Hence, the diamond lattice conductivity function is again
scaled strictly averaging when replacing the Ly and L_; in
the parallel and series combination rules

Li(z1,22) =21+ 22 and  L_q(z1,22) = (27" +a5) 7!

by, say Lo and L_o, respectively.



Y

Define the ‘side equally weighted network’ to be the one
with w = (w,w,2 —w,2 — w)' for w € (1,2); such
weights are positive and satisfy F(w) = 1.

For w = 1 all weights are equal, and we have o = 47114,
and hence ¢ achieves its minimum value 1/2 = 1/\/E
corresponding to the rate N—1/2+¢,

For 1 <w < 2 we have 1/2 < ¢ < 1/y/2, the case w | 2
corresponding to the least favorable rate for the side equally
weighted network of N—1/4+€,



With only the restriction that the weights are positive and
satisfy F'(w) = 1 consider for t > 0,

w=(1+1/t,s5t,1/t)7 where
s=[1-1/t+t)H =@ +1/t)7
When t =1 we have s =1 and ¢ = 11\/5/27.
As t — 00, a tends to the vector (1,0,0,0), so ¢ — 1.

Since 11\/5/27 < 1/\/5 ~ takes on all values in the range
(1/2,1), corresponding to N~ for any 6 € (0,1/2).



Some Further Directions

1. Dependent Variables
2. Kolmogorov Distance

3. Random Networks



