Zero Biasing and the Diamond Lattice

Larry Goldstein

http://math.usc.edu/ ~larry

The Diamond Lattice: Three Scales

Properties (e.g. conductance) at level 2 depend on properties at level $1, \ldots$

$$
X_{2}=F\left(\mathbf{X}_{1}\right), \quad X_{1}=F\left(\mathbf{X}_{0}\right) \ldots
$$

Hierarchical Models

$$
X_{n+1}=F\left(\mathbf{X}_{n}\right) \quad \text { where } \quad \mathbf{X}_{n}=\left(X_{n, 1}, \ldots, X_{n, k}\right)^{\top}
$$

with $X_{n, i}$ independent, each with distribution X_{n}.
Conditions on F, due to Shneiberg, Li and Rogers, and Wehr, imply the weak law (here assumed)

$$
X_{n} \rightarrow_{p} c
$$

and by Woo and Wehr which imply

$$
W_{n} \rightarrow{ }_{d} \mathcal{N}(0,1), \quad \text { for } \quad W_{n}=\frac{X_{n}-E X_{n}}{\sqrt{\operatorname{Var}\left(X_{n}\right)}} .
$$

Classical Central Limit Theorem as Hierarchical Model

Taking F to give the average

$$
F\left(x_{1}, x_{2}\right)=\frac{x_{1}+x_{2}}{2}
$$

gives in distribution

$$
X_{n}=\frac{X_{0,1}+\cdots+X_{0,2^{n}}}{2^{n}}
$$

At stage n there are $N=2^{n}$ variables, would expect a bound to the normal Z of the form

$$
d\left(W_{n}, Z\right) \leq C \gamma^{n} \quad \text { where } \quad \gamma^{n}=N^{-1 / 2}=(1 / \sqrt{2})^{n}
$$

Averaging Functions

We say F is (strictly) averaging

1. $\min _{i} x_{i} \leq F(\mathbf{x}) \leq \max _{i} x_{i}$, and strictly when $\min _{i} x_{i}<\max _{i} x_{i}$.
2. $F(\mathbf{x}) \leq F(\mathbf{y})$ whenever $x_{i} \leq y_{i}$, and strictly when $x_{j}<y_{j}$ for some j.

Say F is scaled averaging when $F(\mathbf{x}) / F\left(\mathbf{1}_{k}\right)$ is averaging, where $\mathbf{1}_{k}=(1, \ldots, 1)$.

Diamond Lattice Conductivity Function

Parallel and series resistor combination rules

$$
L_{1}\left(x_{1}, x_{2}\right)=x_{1}+x_{2}, \quad L_{-1}\left(x_{1}, x_{2}\right)=\left(x_{1}^{-1}+x_{2}^{-1}\right)^{-1}
$$

gives the weighted $w_{i}>0$ diamond lattice conductivity function

$$
F(\mathbf{x})=\left(\frac{1}{w_{1} x_{1}}+\frac{1}{w_{2} x_{2}}\right)^{-1}+\left(\frac{1}{w_{3} x_{3}}+\frac{1}{w_{4} x_{4}}\right)^{-1}
$$

a scaled strictly averaging function.

Approximate Linear Recursion

Write $X_{n+1}=F\left(\mathbf{X}_{n}\right)$ as a linear recursion with ('small') perturbation R_{n},

$$
X_{n+1}=\boldsymbol{\alpha}_{n} \cdot \mathbf{X}_{n}+R_{n}, \quad n \geq 0
$$

where $c_{n}=E X_{n}, \boldsymbol{\alpha}_{n}=F^{\prime}\left(\mathbf{c}_{n}\right), \mathbf{c}_{n}=\left(c_{n}, \ldots, c_{n}\right)^{\top} \in \mathbb{R}^{k}$, and F^{\prime} the gradient of F.

Rule out trivial cases such as $F\left(x_{1}, x_{2}\right)=x_{1}$; when $\boldsymbol{\alpha}=F^{\prime}(\mathbf{c})$ at limiting c is not a multiple of a standard basis vector, then $\lambda=\|\boldsymbol{\alpha}\|<1$ when F is averaging.

Stein's Method for Normal

$$
Z \sim \mathcal{N}\left(0, \sigma^{2}\right) \quad \text { if and only if } \quad \sigma^{2} E f^{\prime}(Z)=E Z f(Z)
$$

For $E W=0, E W^{2}=\sigma^{2}$, if $E\left[\sigma^{2} f^{\prime}(W)-W f(W)\right]$ is close to zero for enough f, then W should be close to Z in distribution. Given a test function h, let $N h=E h(Z / \sigma)$, and solve for f in the Stein equation

$$
\sigma^{2} f^{\prime}(w)-w f(w)=h(w / \sigma)-N h
$$

Now evaluate expectation of RHS by expectation of LHS.

Zero Bias Transformation

Goldstein and Reinert 1997: For W a mean zero variance σ^{2} random variable, there exists W^{*} such that for all smooth f,

$$
E W f(W)=\sigma^{2} E f^{\prime}\left(W^{*}\right)
$$

From Stein's characterization,

$$
E Z f(Z)=\sigma^{2} E f^{\prime}(Z) \quad \text { if and only if } \quad Z \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Hence:

$$
W^{*}={ }_{d} W \quad \text { if and only if } \quad W \sim \mathcal{N}\left(0, \sigma^{2}\right) .
$$

Zero Bias and Proximity to Normal

$W^{*}={ }_{d} W$ if and only $W \sim \mathcal{N}\left(0, \sigma^{2}\right)$, that is, the mean zero normal is the unique fixed point of the zero bias transformation.
\therefore If W^{*} is close to W, W is close to being a fixed point, and therefore close to normal.

Size Bias Transformation

For $X \in\{0,1,2, \ldots\}$ with $E X=\mu<\infty$, consider the size biased distribution

$$
P\left(X^{s}=k\right)=\frac{k P(X=k)}{\mu} .
$$

Appears in sampling, generates the waiting time paradox.
The distribution is also characterized by

$$
E X f(X)=\mu E f\left(X^{s}\right) \quad \text { all } f
$$

and can be applied to any $X \geq 0$ with finite mean μ.

Zero and Size Bias

For $W \geq 0$ with $\mu=E W$, we say W^{s} has the W-size bias distribution if for all f,

$$
E W f(W)=\mu E f\left(W^{s}\right)
$$

Zero biasing is the same, with variance replacing mean, and f^{\prime} replacing f :

$$
E W f(W)=\sigma^{2} E f^{\prime}\left(W^{*}\right)
$$

Size Bias Coupling

If X_{1}, \ldots, X_{n} are non-negative independent variables with finite means μ_{1}, \ldots, μ_{n}, then with $W=X_{1}+\cdots+X_{n}$,

$$
W^{s}=W-X_{I}+X_{I}^{s}
$$

where

$$
P(I=i)=\frac{\mu_{i}}{\sum_{j=1}^{n} \mu_{j}}=\frac{\mu_{i}}{\mu} .
$$

The sum is size biased by replacing one summand, chosen with probability proportional to its expectation, by an independent variable having that summand's size biased distribution.

Coupling

$$
\begin{aligned}
\mu E f\left(W^{s}\right) & =\mu E f\left(W-X_{I}+X_{I}^{s}\right) \\
& =\mu \sum_{i=1}^{n} E f\left(W-X_{i}+X_{i}^{s}\right) \frac{\mu_{i}}{\mu} \\
& =\sum_{i=1}^{n} \mu_{i} E f\left(\sum_{t \neq i} X_{t}+X_{i}^{s}\right) \\
& =\sum_{i=1}^{n} E X_{i} f\left(\sum_{t \neq i} X_{t}+X_{i}\right) \\
& =\sum_{i=1}^{n} E X_{i} f(W) \\
& =E W f(W)
\end{aligned}
$$

Zero and Size Biasing an Independent Sum

To zero (size) bias a sum

$$
W=\sum_{i=1}^{k} X_{i}
$$

of mean zero (non-negative) independent variables, pick one proportional to its variance (mean) and replace with biased version.

Zero Bias Proof of CLT

If W is the sum of comparable, independent, mean zero variables then W^{*} differs from W by only one summand. Hence W^{*} is close to W, so W is nearly a fixed point of the zero bias transformation, and hence close to normal.

Wasserstein distance d

With

$$
\mathcal{L}=\{g: \mathbb{R} \rightarrow \mathbb{R}:|g(y)-g(x)| \leq|y-x|\}
$$

define

$$
d(Y, X)=\sup _{g \in \mathcal{L}}|E[g(Y)-g(X)]| .
$$

Dual form, minimal L_{1} distance, achieved for \mathbf{R} valued variables

$$
d(Y, X)=\inf E|Y-X|
$$

where infimum is over all pairs with given marginals.

Zero Bias and distance d

Lemma 1 Let W be a mean zero, finite variance random variable, and let W^{*} have the W-zero bias distribution. Then with d the Wasserstein distance, and Z a normal variable with the same variance as W,

$$
d(W, Z) \leq 2 d\left(W, W^{*}\right)
$$

Take $\sigma^{2}=1$. For $\left\|h^{\prime}\right\| \leq 1,\left\|f^{\prime \prime}\right\| \leq 2$,

$$
\begin{aligned}
|E h(W)-N h| & =\left|E\left[f^{\prime}(W)-W f(W)\right]\right| \\
& =\left|\left[E f^{\prime}(W)-E f^{\prime}\left(W^{*}\right)\right]\right| \\
& \leq \| f^{\prime \prime}| | E\left|W-W^{*}\right| \\
& \leq 2 d\left(W, W^{*}\right) .
\end{aligned}
$$

Contraction Mapping in d

Lemma 2 For $\boldsymbol{\alpha} \in \mathbb{R}^{k}$ with $\lambda=\|\boldsymbol{\alpha}\| \neq 0$, let

$$
Y=\sum_{i=1}^{k} \frac{\alpha_{i}}{\lambda} W_{i}
$$

where W_{i} are mean zero, variance one, independent random variables distributed as W. Then

$$
d\left(Y, Y^{*}\right) \leq \varphi d\left(W, W^{*}\right)
$$

and $\varphi=\sum_{i}\left|\alpha_{i}\right|^{3} /\left(\sum_{i} \alpha_{i}^{2}\right)^{3 / 2}<1$ if and only if $\boldsymbol{\alpha}$ is not a scalar multiple of a standard basis vector.

Contraction by Coupling

With $\quad P(I=i)=\frac{\alpha_{i}^{2}}{\lambda^{2}}, \quad\left|Y-Y^{*}\right|=\frac{\left|\alpha_{I}\right|}{\lambda}\left|W_{I}-W_{I}^{*}\right|$.
Since $W_{i}={ }_{d} W$, we may take $\left(W_{i}, W_{i}^{*}\right)={ }_{d}\left(W, W^{*}\right)$

$$
E\left|Y-Y^{*}\right|=\sum_{i=1}^{k} \frac{\left|\alpha_{i}\right|^{3}}{\lambda^{3}} E\left|W_{i}-W_{i}^{*}\right|=\varphi E\left|W-W^{*}\right| .
$$

Choosing the pair W, W^{*} to achieve the infimum, we obtain

$$
d\left(Y, Y^{*}\right) \leq E\left|Y-Y^{*}\right|=\varphi E\left|W-W^{*}\right|=\varphi d\left(W, W^{*}\right) .
$$

The Classical CLT and d

Take W_{i} iid mean zero variance σ^{2} and

$$
Y=n^{-1 / 2} \sum_{i=1}^{n} W_{i} .
$$

Setting $\alpha_{i}=n^{-1 / 2}$ gives $\varphi=n^{-1 / 2}$, and

$$
d(Y, Z) \leq 2 d\left(Y, Y^{*}\right) \leq 2 n^{-1 / 2} d\left(W, W^{*}\right) \rightarrow 0
$$

as $n \rightarrow \infty$, proof of the CLT with a bound in d and constant depending on $E\left|W^{*}-W\right|=\left\|W^{*}-W\right\|_{1}$.

Linear Iteration

Normalizing $X_{n+1}=\boldsymbol{\alpha}_{n} \cdot \mathbf{X}_{n}$, with $\lambda_{n}=\left\|\boldsymbol{\alpha}_{n}\right\|$ and $\sigma_{n}^{2}=\operatorname{Var}\left(X_{n}\right)$ we have

$$
W_{n+1}=\sum_{i=1}^{k} \frac{\alpha_{n, i}}{\lambda_{n}} W_{n, i} \quad \text { with } \quad W_{n}=\frac{X_{n}-c_{n}}{\sigma_{n}}
$$

Iterated contraction gives

$$
d\left(W_{n}, Z\right) \leq 2 d\left(W_{n}, W_{n}^{*}\right) \leq 2\left(\prod_{i=0}^{n-1} \varphi_{i}\right) d\left(W_{0}, W_{0}^{*}\right)
$$

Non-linear Iteration

Let $X_{n+1}=\boldsymbol{\alpha}_{n} \cdot \mathbf{X}_{n}+R_{n}$, where \mathbf{X}_{n} is a vector of iid variables distributed as $X_{n}, E X_{n}=c_{n}, \operatorname{Var}\left(X_{n}\right)=\sigma_{n}^{2}$, and $\lambda_{n}=\left\|\boldsymbol{\alpha}_{n}\right\| \neq 0$. Set

$$
Y_{n}=\sum_{i=1}^{k} \frac{\alpha_{n, i}}{\lambda_{n}} W_{n, i} \quad \text { where } \quad W_{n}=\frac{X_{n}-c_{n}}{\sigma_{n}}
$$

and, measuring the discrepancy from linearity,

$$
\beta_{n}=E\left|W_{n+1}-Y_{n}\right|+\frac{1}{2} E\left|W_{n+1}^{3}-Y_{n}^{3}\right| .
$$

Theorem 1 For $X_{n+1}=\boldsymbol{\alpha}_{n} \cdot \mathbf{X}_{n}+R_{n}$, if there exist $(\beta, \varphi) \in(0,1)^{2}$ such that

$$
\limsup _{n \rightarrow \infty} \frac{\beta_{n}}{\beta^{n}}<\infty \quad \text { and } \quad \limsup _{n \rightarrow \infty} \varphi_{n}=\varphi
$$

then with $\gamma=\beta$ when $\varphi<\beta$, and for any $\gamma \in(\varphi, 1)$ when $\beta \leq \varphi$, there exists C such that

$$
d\left(W_{n}, Z\right) \leq C \gamma^{n} .
$$

Now apply Theorem 1 to sequences generated using averaging functions F.

Theorem 2 Let X_{0} be a non constant random variable with $P\left(X_{0} \in[a, b]\right)=1$ and $X_{n+1}=F\left(\mathbf{X}_{n}\right)$ with $F:[a, b]^{k} \rightarrow[a, b]$, twice continuously differentiable. Suppose F is averaging and that $X_{n} \rightarrow_{p} c$, with $\boldsymbol{\alpha}=F^{\prime}(\mathbf{c})$ not a scalar multiple of a standard basis vector. Then with Z a standard normal variable, for all $\gamma \in(\varphi, 1)$ there exists C such that

$$
d\left(W_{n}, Z\right) \leq C \gamma^{n} \quad \text { where } \quad \varphi=\frac{\sum_{i=1}^{k}\left|\alpha_{i}\right|^{3}}{\left(\sum_{i=1}^{k}\left|\alpha_{i}\right|^{2}\right)^{3 / 2}}
$$

is a positive number strictly less than 1. The value φ achieves a minimum of $1 / \sqrt{k}$ if and only if the components of $\boldsymbol{\alpha}$ are equal.

Averaging by Composition

Under simple non-triviality conditions, if $F_{0}, F_{1}, \ldots, F_{k}$ are scaled, strictly averaging and F_{0} is (positively) homogeneous, then

$$
F_{\mathbf{1}}(\mathbf{x})=F_{0}\left(F_{1}\left(\mathbf{x}_{1}\right), \ldots, F_{k}\left(\mathbf{x}_{k}\right)\right)
$$

is a scaled strictly averaging function.
Hence, the diamond lattice conductivity function is again scaled strictly averaging when replacing the L_{1} and L_{-1} in the parallel and series combination rules
$L_{1}\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \quad$ and $\quad L_{-1}\left(x_{1}, x_{2}\right)=\left(x_{1}^{-1}+x_{2}^{-1}\right)^{-1}$
by, say L_{2} and L_{-2}, respectively.

Fast Rates for the Diamond Lattice

Define the 'side equally weighted network' to be the one with $\mathbf{w}=(w, w, 2-w, 2-w)^{\top}$ for $w \in(1,2)$; such weights are positive and satisfy $F(\mathbf{w})=1$.

For $w=1$ all weights are equal, and we have $\boldsymbol{\alpha}=4^{-1} \mathbf{1}_{4}$, and hence φ achieves its minimum value $1 / 2=1 / \sqrt{k}$ corresponding to the rate $N^{-1 / 2+\epsilon}$.

For $1 \leq w<2$ we have $1 / 2 \leq \varphi<1 / \sqrt{2}$, the case $w \uparrow 2$ corresponding to the least favorable rate for the side equally weighted network of $N^{-1 / 4+\epsilon}$.

Slow Rates for the Diamond Lattice

With only the restriction that the weights are positive and satisfy $F(\mathbf{w})=1$ consider for $t>0$,

$$
\begin{gathered}
\mathbf{w}=(1+1 / t, s, t, 1 / t)^{\top} \quad \text { where } \\
s=\left[\left(1-(1 / t+t)^{-1}\right)^{-1}-(1+1 / t)^{-1}\right]^{-1} .
\end{gathered}
$$

When $t=1$ we have $s=1$ and $\varphi=11 \sqrt{2} / 27$.
As $t \rightarrow \infty, \boldsymbol{\alpha}$ tends to the vector $(1,0,0,0)$, so $\varphi \rightarrow 1$.
Since $11 \sqrt{2} / 27<1 / \sqrt{2}, \gamma$ takes on all values in the range $(1 / 2,1)$, corresponding to $N^{-\theta}$ for any $\theta \in(0,1 / 2)$.

Some Further Directions

1. Dependent Variables
2. Kolmogorov Distance
3. Random Networks
