
Zero Biasing and the Diamond
Lattice

Larry Goldstein

http://math.usc.edu/∼larry

1



The Diamond Lattice: Three Scales

Properties (e.g. conductance) at level 2 depend on
properties at level 1, . . .

X2 = F (X1), X1 = F (X0) . . .
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Hierarchical Models

Xn+1 = F (Xn) where Xn = (Xn,1, . . . , Xn,k)T

with Xn,i independent, each with distribution Xn.

Conditions on F , due to Shneiberg, Li and Rogers, and
Wehr, imply the weak law (here assumed)

Xn →p c,

and by Woo and Wehr which imply

Wn →d N (0, 1), for Wn =
Xn − EXn√

Var(Xn)
.
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Classical Central Limit Theorem as
Hierarchical Model

Taking F to give the average

F (x1, x2) =
x1 + x2

2

gives in distribution

Xn =
X0,1 + · · ·+ X0,2n

2n
.

At stage n there are N = 2n variables, would expect a
bound to the normal Z of the form

d(Wn, Z) ≤ Cγn where γn = N−1/2 = (1/
√

2)n.
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Averaging Functions

We say F is (strictly) averaging

1. mini xi ≤ F (x) ≤ maxi xi, and strictly when
mini xi < maxi xi.

2. F (x) ≤ F (y) whenever xi ≤ yi, and strictly when
xj < yj for some j.

Say F is scaled averaging when F (x)/F (1k) is averaging,
where 1k = (1, . . . , 1).
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Diamond Lattice Conductivity Function

Parallel and series resistor combination rules

L1(x1, x2) = x1 + x2, L−1(x1, x2) = (x−1
1 + x−1

2 )−1

gives the weighted wi > 0 diamond lattice conductivity
function

F (x) =
(

1
w1x1

+
1

w2x2

)−1

+
(

1
w3x3

+
1

w4x4

)−1

,

a scaled strictly averaging function.
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Approximate Linear Recursion

Write Xn+1 = F (Xn) as a linear recursion with (‘small’)
perturbation Rn,

Xn+1 = αn ·Xn + Rn, n ≥ 0,

where cn = EXn, αn = F ′(cn), cn = (cn, . . . , cn)T ∈ Rk,
and F ′ the gradient of F .

Rule out trivial cases such as F (x1, x2) = x1; when
α = F ′(c) at limiting c is not a multiple of a standard basis
vector, then λ = ||α|| < 1 when F is averaging.
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Stein’s Method for Normal

Z ∼ N (0, σ2) if and only if σ2Ef ′(Z) = EZf(Z).

For EW = 0, EW 2 = σ2, if E[σ2f ′(W )−Wf(W )] is
close to zero for enough f , then W should be close to Z in
distribution. Given a test function h, let Nh = Eh(Z/σ),
and solve for f in the Stein equation

σ2f ′(w)− wf(w) = h(w/σ)−Nh.

Now evaluate expectation of RHS by expectation of LHS.
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Zero Bias Transformation

Goldstein and Reinert 1997: For W a mean zero variance
σ2 random variable, there exists W ∗ such that for all
smooth f ,

EWf(W ) = σ2Ef ′(W ∗).

From Stein’s characterization,

EZf(Z) = σ2Ef ′(Z) if and only if Z ∼ N (0, σ2).

Hence:

W ∗ =d W if and only if W ∼ N (0, σ2).
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Zero Bias and Proximity to Normal

W ∗ =d W if and only W ∼ N (0, σ2), that is, the mean
zero normal is the unique fixed point of the zero bias
transformation.

∴ If W ∗ is close to W , W is close to being a fixed point,
and therefore close to normal.
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Size Bias Transformation

For X ∈ {0, 1, 2, . . .} with EX = µ < ∞, consider the size
biased distribution

P (Xs = k) =
kP (X = k)

µ
.

Appears in sampling, generates the waiting time paradox.

The distribution is also characterized by

EXf(X) = µEf(Xs) all f,

and can be applied to any X ≥ 0 with finite mean µ.
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Zero and Size Bias

For W ≥ 0 with µ = EW , we say W s has the W -size bias
distribution if for all f ,

EWf(W ) = µEf(W s).

Zero biasing is the same, with variance replacing mean, and
f ′ replacing f :

EWf(W ) = σ2Ef ′(W ∗).
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Size Bias Coupling

If X1, . . . , Xn are non-negative independent variables with
finite means µ1, . . . , µn, then with W = X1 + · · ·+ Xn,

W s = W −XI + Xs
I ,

where
P (I = i) =

µi∑n
j=1 µj

=
µi

µ
.

The sum is size biased by replacing one summand, chosen
with probability proportional to its expectation, by an
independent variable having that summand’s size biased
distribution.
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Coupling

µEf(W s) = µEf(W −XI + Xs
I )

= µ
n∑

i=1

Ef(W −Xi + Xs
i )

µi

µ

=
n∑

i=1

µiEf(
∑
t6=i

Xt + Xs
i )

=
n∑

i=1

EXif(
∑
t6=i

Xt + Xi)

=
n∑

i=1

EXif(W )

= EWf(W )
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Zero and Size Biasing an Independent Sum

To zero (size) bias a sum

W =
k∑

i=1

Xi

of mean zero (non-negative) independent variables, pick
one proportional to its variance (mean) and replace with
biased version.
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Zero Bias Proof of CLT

If W is the sum of comparable, independent, mean zero
variables then W ∗ differs from W by only one summand.
Hence W ∗ is close to W , so W is nearly a fixed point of
the zero bias transformation, and hence close to normal.
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Wasserstein distance d

With

L = {g : R → R : |g(y)− g(x)| ≤ |y − x|}

define

d(Y, X) = sup
g∈L

|E[g(Y )− g(X)]|.

Dual form, minimal L1 distance, achieved for R valued
variables

d(Y,X) = inf E|Y −X|,

where infimum is over all pairs with given marginals.
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Zero Bias and distance d

Lemma 1 Let W be a mean zero, finite variance random
variable, and let W ∗ have the W -zero bias distribution.
Then with d the Wasserstein distance, and Z a normal
variable with the same variance as W ,

d(W,Z) ≤ 2d(W,W ∗).

Take σ2 = 1. For ||h′|| ≤ 1, ||f ′′|| ≤ 2,

|Eh(W )−Nh| = |E[f ′(W )−Wf(W )]|
= |[Ef ′(W )− Ef ′(W ∗)]|
≤ ||f ′′||E|W −W ∗|
≤ 2d(W,W ∗).
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Contraction Mapping in d

Lemma 2 For α ∈ Rk with λ = ||α|| 6= 0, let

Y =
k∑

i=1

αi

λ
Wi,

where Wi are mean zero, variance one, independent
random variables distributed as W . Then

d(Y, Y ∗) ≤ ϕ d(W,W ∗),

and ϕ =
∑

i |αi|3/(
∑

i α2
i )

3/2 < 1 if and only if α is not a
scalar multiple of a standard basis vector.
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Contraction by Coupling

With P (I = i) =
α2

i

λ2
, |Y − Y ∗| = |αI |

λ
|WI −W ∗

I |.

Since Wi =d W , we may take (Wi,W
∗
i ) =d (W,W ∗)

E|Y − Y ∗| =
k∑

i=1

|αi|3

λ3
E|Wi −W ∗

i | = ϕE|W −W ∗|.

Choosing the pair W,W ∗ to achieve the infimum, we obtain

d(Y, Y ∗) ≤ E|Y − Y ∗| = ϕE|W −W ∗| = ϕ d(W,W ∗).
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The Classical CLT and d

Take Wi iid mean zero variance σ2 and

Y = n−1/2
n∑

i=1

Wi.

Setting αi = n−1/2 gives ϕ = n−1/2, and

d(Y, Z) ≤ 2d(Y, Y ∗) ≤ 2n−1/2d(W,W ∗) → 0

as n →∞, proof of the CLT with a bound in d and
constant depending on E|W ∗ −W | = ||W ∗ −W ||1.
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Linear Iteration

Normalizing Xn+1 = αn ·Xn, with λn = ||αn|| and
σ2

n = Var(Xn) we have

Wn+1 =
k∑

i=1

αn,i

λn
Wn,i with Wn =

Xn − cn

σn
.

Iterated contraction gives

d(Wn, Z) ≤ 2d(Wn,W ∗
n) ≤ 2

(
n−1∏
i=0

ϕi

)
d(W0,W

∗
0 ).
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Non-linear Iteration

Let Xn+1 = αn ·Xn + Rn, where Xn is a vector of iid
variables distributed as Xn, EXn = cn, Var(Xn) = σ2

n, and
λn = ||αn|| 6= 0. Set

Yn =
k∑

i=1

αn,i

λn
Wn,i where Wn =

Xn − cn

σn

and, measuring the discrepancy from linearity,

βn = E|Wn+1 − Yn|+
1
2
E|W 3

n+1 − Y 3
n |.
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Theorem 1 For Xn+1 = αn ·Xn + Rn, if there exist
(β, ϕ) ∈ (0, 1)2 such that

lim sup
n→∞

βn

βn
< ∞ and lim sup

n→∞
ϕn = ϕ,

then with γ = β when ϕ < β, and for any γ ∈ (ϕ, 1) when
β ≤ ϕ, there exists C such that

d(Wn, Z) ≤ Cγn.

Now apply Theorem 1 to sequences generated using
averaging functions F .
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Theorem 2 Let X0 be a non constant random variable
with P (X0 ∈ [a, b]) = 1 and Xn+1 = F (Xn) with
F : [a, b]k → [a, b], twice continuously differentiable.
Suppose F is averaging and that Xn →p c, with α = F ′(c)
not a scalar multiple of a standard basis vector. Then with
Z a standard normal variable, for all γ ∈ (ϕ, 1) there exists
C such that

d(Wn, Z) ≤ Cγn where ϕ =
∑k

i=1 |αi|3

(
∑k

i=1 |αi|2)3/2
,

is a positive number strictly less than 1. The value ϕ
achieves a minimum of 1/

√
k if and only if the components

of α are equal.
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Averaging by Composition

Under simple non-triviality conditions, if F0, F1, . . . , Fk are
scaled, strictly averaging and F0 is (positively)
homogeneous, then

F1(x) = F0(F1(x1), . . . , Fk(xk))

is a scaled strictly averaging function.

Hence, the diamond lattice conductivity function is again
scaled strictly averaging when replacing the L1 and L−1 in
the parallel and series combination rules

L1(x1, x2) = x1 + x2 and L−1(x1, x2) = (x−1
1 + x−1

2 )−1

by, say L2 and L−2, respectively.
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Fast Rates for the Diamond Lattice

Define the ‘side equally weighted network’ to be the one
with w = (w,w, 2− w, 2− w)T for w ∈ (1, 2); such
weights are positive and satisfy F (w) = 1.

For w = 1 all weights are equal, and we have α = 4−114,
and hence ϕ achieves its minimum value 1/2 = 1/

√
k

corresponding to the rate N−1/2+ε.

For 1 ≤ w < 2 we have 1/2 ≤ ϕ < 1/
√

2, the case w ↑ 2
corresponding to the least favorable rate for the side equally
weighted network of N−1/4+ε.
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Slow Rates for the Diamond Lattice

With only the restriction that the weights are positive and
satisfy F (w) = 1 consider for t > 0,

w = (1 + 1/t, s, t, 1/t)T where

s = [(1− (1/t + t)−1)−1 − (1 + 1/t)−1]−1.

When t = 1 we have s = 1 and ϕ = 11
√

2/27.

As t →∞, α tends to the vector (1, 0, 0, 0), so ϕ → 1.

Since 11
√

2/27 < 1/
√

2, γ takes on all values in the range
(1/2, 1), corresponding to N−θ for any θ ∈ (0, 1/2).
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Some Further Directions

1. Dependent Variables

2. Kolmogorov Distance

3. Random Networks
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