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Abstract

Given F : [a, b]k → [a, b] and a non-constant X0 with P (X0 ∈ [a, b]) = 1, define
the hierarchical sequence of random variables {Xn}n≥0 by Xn+1 = F (Xn,1, . . . , Xn,k),
where Xn,i are i.i.d. as Xn. Such sequences arise from hierarchical structures which
have been extensively studied in the physics literature to model, for example, the
conductivity of a random medium. Under an averaging and smoothness condition
on non-trivial F , a upper bound of the form Cγn for 0 < γ < 1, is obtained on the
Wasserstein distance between the standardized distribution of Xn and the normal. The
results apply, for instance, to random resistor networks, and introducing the notion of
strict averaging, to hierarchical sequences generated by certain compositions. As an
illustration, upper bounds on the rate of convergence to the normal are derived for
the hierarchical sequence generated by the weighted diamond lattice which is shown to
exhibit a full range of convergence rate behavior.

1 Introduction

Let k ≥ 2 be an integer, D ⊂ R, X0 a non-constant random variable with P (X0 ∈ D) = 1,
and F : Dk → D a given function. We consider the accuracy of the normal approximation
for the sequence of hierarchical random variables Xn, where

Xn+1 = F (Xn), n ≥ 0, (1)

and Xn = (Xn,1, . . . , Xn,k)
T with Xn,i independent, each with distribution Xn.

Hierarchical variables have been considered extensively in the physics literature (see [5]
and the references therein), in particular to model conductivity of random medium. The
diamond lattice in particular has been considered in [3] and [7]. The figure shows the
progression of the diamond lattice from large to small scale. At the large scale (a), the system
displays some conductivity along the bond between its top and bottom nodes. Inspection
on a finer scale reveals the bond is actually comprised of four smaller bonds, each similar to
(a), connected as shown in (b). Further inspection of each of the four bonds in (b) reveals
them to be constructed in a self-similar way from bonds at an even smaller level, giving the
successive diagram (c), and so on.

0AMS 2000 subject classifications. Primary 60F05, 82D30, 60G18
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The Diamond Lattice

(a) (b) (c)

We assume each bond has a fixed conductivity characteristic w ≥ 0 such that when a com-
ponent with conductivity x ≥ 0 is present along the bond the net conductivity of the bond
is wx. For the diamond lattice as in (b), we associate conductivities w = (w1, w2, w3, w4)

T,
numbering from the top node and proceeding counter-clockwise. If x0 = (x0,1, x0,2, x0,3, x0,4)

T

are the conductances of four elements each as in (a) which are present along the bonds in
(b), then applying the resistor circuit parallel and series combination rules, the conductivity
between the top and bottom nodes in (b) is x1 = F (x0), where

F (x) =

(
1

w1x1

+
1

w2x2

)−1

+

(
1

w3x3

+
1

w4x4

)−1

. (2)

The network in (c) is constructed from four diamond structures similar to (b), and endowing
each with the same fixed conductivity characteristics w, with x1 = (x1,1, x1,2, x1,3, x1,4)

T and
each x1,i determined in the same manner as x1, the conductance between the top and bottom
nodes in (c) is x2 = F (x1), and so forth.

In general, a function F : Dk → D and a distribution on X0 such that P (X0 ∈ D) = 1
determines a sequence of distributions through Xn+1 = F (Xn) where Xn = (Xn,1, . . . , Xn,k)

T

with Xn,i independent, each with distribution Xn. Conditions on F which imply the weak
law

Xn →p c (3)

have been considered by various authors. Shneiberg [8] proves that (3) holds if D = [a, b] and
F is continuous, monotonically increasing, positively homogeneous, convex and satisfies the
normalization condition F (1k) = 1 where 1k is the vector of all ones in Rk. Li and Rogers
in [5] provide rather weak conditions under which (3) holds for closed D ⊂ (−∞,∞). See
also [11] and [12], and [4] for an extension of the model to random F and applications of
hierarchical structures to computer science.

Letting X0 have mean c and variance σ2, the classical central limit theorem can be set
in the framework of hierarchical sequences by letting

F (x1, x2) =
1

2
(x1 + x2), (4)
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which gives in distribution

Xn =
X0,1 + · · ·+ X0,2n

2n
.

Hence, Xn →p c, and since Xn is the average of N = 2n i.i.d. variables with finite variance,

Wn = 2n/2

(
Xn − c

σ

)
→d N (0, 1).

Under some higher order moment conditions one would expect a bound on the Wasserstein
distance d between Wn and the standard normal N to decay at rate N−1/2, that is, with
γ = 1/

√
2,

d(Wn,N ) ≤ Cγn. (5)

The function (4), and (2) with F (14) = 1, are examples of averaging functions, that is,
functions F : Dk → D which satisfy the following three properties on their domain:

1. mini xi ≤ F (x) ≤ maxi xi.

2. F (x) ≤ F (y) whenever xi ≤ yi.

3. For all x < y and for any two distinct indices i1 6= i2, there exists xi ∈ {x, y}, i =
1, . . . , k such that xi1 = x, xi2 = y and x < F (x) < y.

We note that the function F (x) = mini xi satisfies the first two properties but not the third,
and gives rise to non-normal limiting behavior. We will call F (x) a scaled averaging function
if F (x)/F (1k) is averaging.

Normal limits in [13] are proved for the sequences Xn determined by the recursion (1)
when the function F (x) is averaging by showing that such recursions can be treated as the
approximate linear recursion around the mean cn = EXn with small perturbation Zn,

Xn+1 = αn ·Xn + Zn, n ≥ 0, (6)

where αn = F ′(cn), cn = (cn, . . . , cn)T ∈ Rk, and F ′ the gradient of F . In Section 3 we
prove Theorem 3.1, which gives the exponential bound (5) for the distance to the normal for
sequences generated by the approximate linear recursion (6) under moment Conditions 3.1
and 3.2, which guarantee that Zn is small relative to Xn.

In Section 4 we prove Theorem 1.1 which shows that the normal convergence of the
hierarchical sequence Xn holds with the exponential bound (5) under mild conditions, and
specifies γ in an explicit range. Theorem 1.1 is proved by invoking Theorem 3.1 after showing
that the required moment conditions are satisfied for averaging functions. In particular, the
higher order moment Condition 3.2 used to prove the upper bound (5) is satisfied under the
same averaging assumption on F used in [13] to guarantee Condition 3.1 for convergence to
the normal. The condition in Theorem 1.1 that the gradient α = F ′(c) of F at the limiting
value c not be a scalar multiple of a standard basis vector rules out trivial cases such as
F (x1, x2) = x1, for which normal limits are not valid.

Theorem 1.1 Let X0 be a non constant random variable with P (X0 ∈ [a, b]) = 1 and
Xn given by (1) with F : [a, b]k → [a, b], twice continuously differentiable. Suppose F is
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averaging, or scaled averaging and homogeneous, and that Xn →p c, with α = F ′(c) not a

scalar multiple of a standard basis vector. Then with Wn = (Xn − cn)/
√

Var(Xn) and N a
standard normal variable, for all γ ∈ (ϕ, 1) there exists C such that

d(Wn,N ) ≤ Cγn,

where

ϕ =

∑k
i=1 |αi|3

(
∑k

i=1 |αi|2)3/2
, (7)

a positive number strictly less than 1. The value ϕ achieves a minimum of 1/
√

k if and only
if the components of α are equal.

At stage n there are N = kn variables, so achieving the rate γn for γ to just within its
minimum value 1/

√
k corresponds to the rate N−1/2+ε for every ε > 0. On the other hand,

when α is close to a standard basis vector, ϕ is close to 1, and the rate γn is slow. This is
anticipated, as for the hierarchical sequence generated using the function, say F (x1, x2) =
(1− ε)x1 + εx2 for small ε > 0, convergence to the normal will be slow.

In Section 5, Theorem 1.1 is applied to the hierarchical variables generated by the dia-
mond lattice conductivity function (2). In (47) the value ϕ determining the range of γ in
(5) for the rate of convergence to the normal is given as an explicit function of the weights
w; for the diamond lattice all rates N−θ for θ ∈ (0, 1/2) are exhibited. Interestingly, there
appears to be no such formula, simple or otherwise, for the limiting mean or variance of the
sequence Xn.

We prove our results using Stein’s method (see e.g. [9]) in conjunction with the zero
bias coupling of [1], derived from similar use of the size bias coupling in [2]. Let Z be a
mean zero, variance σ2 normal variate and Nh = Eh(Z/σ) for a test function h. Given
a mean c variance σ2 random variable X, Stein’s method, as typically applied, estimates
Eh((X − c)/σ)−Nh using the auxiliary function f which is the bounded solution to

h(w/σ)−Nh = σ2f ′(w)− wf(w). (8)

In [1] it is shown that for any mean zero variance σ2 random variable W there exists W ∗

such that for all absolutely continuous f for which EWf(W ) exists,

EWf(W ) = σ2Ef ′(W ∗), (9)

and that W is normal if and only if W =d W ∗. Hence, the distance from W to the normal
can be expressed in a distance d from W to W ∗. The variable W ∗ is termed the W -zero
biased distribution due to parallels with size biasing. In both size biasing and zero biasing,
a sum of independent variables is biased by choosing a summand at random and replacing it
with its biased version. In size biasing the variables must be non-negative, and one is chosen
with probability proportional to its expectation. In zero biasing the variables are mean zero,
and one is chosen with probability proportional to its variance. The coupling construction
for zero biasing just stated appears in [1] and is presented formally in Section 3; it provides
the key in the proof of Lemma 2.2. To see how the zero-bias coupling is used in the Stein
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equation, let f and h be related through (8). Evaluating (8) at a mean zero, variance σ2

variable W , taking expectation and using (9), we obtain

σ2[Ef ′(W )− Ef ′(W ∗)] = E[σ2f ′(W )−Wf(W )] = Eh(W/σ)−Nh. (10)

For d the Wasserstein distance (also known as the Dudley, Fortet-Mourier or Kantarovich
distance), Lemma 2.1 applies (10) to show the following strong connection between normal
approximation and the distance between the W and W ∗ distributions as measured by d.
With N a mean zero normal variable with the same variance as W ,

d(W,N ) ≤ 2d(W, W ∗). (11)

Hence, bounds on the distance between W and W ∗ can be used to bound the distance from
W to the normal.

We recall that with

L = {h : R → R : |h(y)− h(x)| ≤ |y − x|}, (12)

the Wasserstein distance d(Y,X) between variables Y and X on R is given by

d(Y,X) = sup
h∈L

|E(h(Y )− h(X))|,

or equivalently, with

F = {f : f absolutely continuous, f(0) = f ′(0) = 0, f ′ ∈ L} (13)

we have

d(Y,X) = sup
f∈F

|E(f ′(Y )− f ′(X))|. (14)

For f ∈ F , certain growth restrictions are implied on h of (8) for this f . In Theorem 3.1
these restrictions are used to compute a bound on d(Wn, W

∗
n), which in turn is used to bound

d(Wn,N ) by (11). This argument, where f is taken as given and then h determined in terms
of f by (8), is reversed from the way Stein’s method is typically applied, where h is the
function of interest and f has only an auxiliary role as the solution of (8) for the given h.

For the application of Theorem 1.1, it is necessary to verify the function F (x) in (1) is
averaging. Proposition 3 of [13] shows that the effective conductance of a resistor network is
an averaging function of the conductances of its individual components. Theorem 1.2, proved
in Section 6, provides an additional source of averaging functions to which Theorem 1.1 may
be applied by introducing the notion of strict averaging and showing that it is preserved
under certain compositions.

We say F is strictly averaging if strict inequality holds in Property 1 when mini xi <
maxi xi, and in Property 2 when xi < yi for some i. Property 3 is the least intuitive, but
is a consequence of a strict version of the first two properties, that is, a strictly averaging
function is averaging: if x < y and xii = x, xi2 = y, then any assignment of the values x, y
to the remaining coordinates gives x < F (x) < y by the strict form of Property 1, so F
satisfies Property 3.
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Theorem 1.2 Let k ≥ 1 and set I0 = {1, . . . , k}. Suppose subsets Ii ⊂ I0, i ∈ I0 satisfy⋃
i∈I0

Ii = I0. For x ∈ Rk and i ∈ I0 let xi = (xj1 , . . . , xj|Ii|
) where {j1, . . . , j|Ii|} = Ii and

j1 < · · · < j|Ii|. Let (Fi : [0,∞)|Ii| → [0,∞) or) Fi : R|Ii| → R, i = 0, . . . , k. If F0, F1, . . . , Fk

are strictly averaging and F0 is (positively) homogeneous, then the composition

Fs(x) = F0(s1F1(x1), . . . , skFk(xk))

is strictly averaging for any s for which F0(s) = 1 and si > 0 for all i. If F0, F1, . . . , Fk are
scaled, strictly averaging and F0 is (positively) homogeneous, then

F1(x) = F0(F1(x1), . . . , Fk(xk))

is a scaled strictly averaging function.

In particular, in the context of resistor networks, two components with conductances
x1, x2 in parallel is equivalent to one component with conductance

L1(x1, x2) = x1 + x2,

and in series to one component with conductance

L−1(x1, x2) = (x−1
1 + x−1

2 )−1.

These parallel and series combination rules are the p = 1 and p = −1 special cases, with
wi = 1, of the weighted Lp norm functions

Lw
p (x) =

(
k∑

i=1

(wixi)
p

)1/p

, w = (w1, . . . , wk)
T, wi ∈ (0,∞),

which are scaled, strictly averaging, and positively homogeneous on [0,∞)k for p > 0, and
on (0,∞]k for p < 0.

Though Theorem 1.2 cannot be invoked to subsume the result of [13] that every resistor
network is strictly averaging in its component conductances (e.g. consider the complete graph
K4), now suppressing the dependence of Lp on w, since F (x) in (2) can be represented as

F (x) = L1(L−1(x1, x2), L−1(x3, x4)),

Theorem 1.2 obtains to show that the diamond lattice conductivity function is a scaled,
strictly averaging function on (0,∞)4 for any choice of positive weights. Moreover, Theorem
1.2 shows the same conclusion holds when the resistor parallel L1 and series L−1 combination
rules in this network are replaced by, say, L2 and L−2 respectively.

2 Zero Bias and the Wasserstein Distance

The following Lemma, of separate interest, shows how the zero bias coupling of W upper
bounds the Wasserstein distance to normality.
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Lemma 2.1 Let W be a mean zero, finite variance random variable, and let W ∗ have the
W -zero bias distribution. Then with d the Wasserstein distance, and N a normal variable
with the same variance as W ,

d(W,N ) ≤ 2d(W, W ∗).

Proof: Since σ−1d(X, Y ) = d(σ−1X, σ−1Y ) and σ−1W ∗ = (σ−1W )∗, we may assume
Var(W ) = 1. The dual form of the Wasserstein distance gives that

inf
(Y,X)

E|Y −X| = d(Y,X), (15)

where the infimum, achieved for random variables on R, is taken over all pairs (Y, X) on
a common space with the given marginals (see [6]). Take W, W ∗ to achieve the infimum
d(W, W ∗).

For a differentiable test function h and σ2 = 1, Stein [10] shows the solution f of (8) is
twice differentiable with ||f ′′|| ≤ 2||h′||, where || · || represents the supremum norm. Now
going from right to left in (10), applying this bound and using (15) we have

|Eh(W )−Nh| ≤ ||f ′′||E|W −W ∗| ≤ 2||h′||E|W −W ∗| = 2||h′||d(W, W ∗).

Functions h ∈ L of (12) are absolutely continuous with ||h′|| ≤ 1, so taking supremum
over h ∈ L on the left side finishes the proof.

The following results in this Section give the prototype of the argument used in Section
3, and shows how the zero bias coupling can be used to obtain the exponential decay of the
Wasserstein distance to the normal.

Proposition 2.1 For α ∈ Rk with λ = ||α|| 6= 0, for all p > 2,

k∑
i=1

|αi|p

λp
≤ 1,

with equality if and only if α is a multiple of a standard basis vector. In the case p = 3,
yielding ϕ of (7),

1√
k
≤ ϕ ≤ 1, (16)

with equality to the upper bound if and only if α is a multiple of a standard basis vector, and
equality to the lower bound if and only if |αi| = |αj| for all i, j. In addition, when αi ≥ 0
with

∑n
i=1 αi = 1 then

λ ≤ ϕ, (17)

with equality if and only α is equal to a standard basis vector.

Proof: Since |αi|/λ ≤ 1 we have |αi|p−2/λp−2 ≤ 1, yielding

k∑
i=1

|αi|p

λp
=

k∑
i=1

(
|αi|p−2

λp−2

)
|αi|2

λ2
≤

k∑
i=1

α2
i

λ2
= 1,
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with equality if and only if for some i we have |αi| = λ, and αj = 0 for all j 6= i. By Hölder’s
inequality with p = 3, q = 3/2, we have(

k∑
i=1

1 · α2
i

)3/2

≤
√

k

k∑
i=1

|αi|3,

giving the lower bound (16), with equality if and only if α2
i is proportional to 1 for all i. For

the claim (17), by considering the inequality between the squared mean and variance of a
random variable which takes the value αi with probability αi, we have (

∑
i α

2
i )

2 ≤
∑

i α
3
i ,

with equality if and only if the variable is constant.
Lemma 2.2 shows how zero biasing an independent sum behaves like a contraction map-

ping.

Lemma 2.2 For α ∈ Rk with λ = ||α|| 6= 0, let

Y =
k∑

i=1

αi

λ
Wi,

where Wi are mean zero, variance one, independent random variables distributed as W . Then

d(Y, Y ∗) ≤ ϕ d(W, W ∗)

with ϕ as in (7), and ϕ < 1 if and only if α is not a multiple of a standard basis vector.

Proof: By [1], for any collection W ∗
i with the Wi zero biased distribution independent of

Wj, j 6= i, and I a random index independent of all other variables with distribution

P (I = i) =
α2

i

λ2
,

the variable

Y ∗ = Y − αI

λ
(WI −W ∗

I ) (18)

has the Y zero biased distribution. Since Wi =d W , we may take (Wi, W
∗
i ) =d (W, W ∗),

with W, W ∗ achieving the infimum in (15). Then

|Y − Y ∗| =
k∑

i=1

|αi|
λ
|Wi −W ∗

i |1(I = i),

and

E|Y − Y ∗| =
k∑

i=1

|αi|3

λ3
E|Wi −W ∗

i | =

(
k∑

i=1

|αi|3

λ3

)
E|W −W ∗|.

Now using (15) to upper bound d(Y, Y ∗) by the particular coupling in (18) we obtain

d(Y, Y ∗) ≤ E|Y − Y ∗| = ϕE|W −W ∗| = ϕ d(W, W ∗).

8



The final claim was shown in Proposition 2.1.
In the classical case, when Y = n−1/2

∑n
i=1 Wi, the normalized sum of independent,

identically distributed random variables, applying Lemma 2.1 and Lemma 2.2 with αi =
1/
√

n gives d(Y,N ) ≤ 2d(Y, Y ∗) ≤ 2n−1/2d(W, W ∗) → 0 as n → ∞, yielding a streamlined
proof of the central limit theorem, complete with a bound in d.

When the sequence Xn is given by the recursion (6) with Zn = 0, setting λn = ||αn|| and
σ2

n = Var(Xn) we have σn+1 = λnσn, and we can write (6) as

Wn+1 =
k∑

i=1

αn,i

λn

Wn,i with Wn =
Xn − cn

σn

.

Iterating the bound provided by Lemma 2.2 gives

d(Wn, W
∗
n) ≤

(
n−1∏
i=0

ϕi

)
d(W0, W

∗
0 )

where

ϕn =

(∑k
i=1 |αi,n|3

λ3
n

)
. (19)

When lim supn ϕn = ϕ < 1, for any γ ∈ (ϕ, 1) there exists C such that for all n we have
d(Wn,N ) ≤ 2d(Wn, W

∗
n) ≤ Cγn. In Section 3 we study the situation when Zn is not

necessarily zero.

3 Bounds to the Normal for Approximately Linear Re-

cursions

In this Section we study sequences {Xn}n≥0 generated by the approximate linear recursion
(6), and present Theorem 3.1 which shows the exponential bound (5) holds when the pertur-
bation term Zn is small as reflected in the term βn of (24), and holds in particular under the
moment bounds in Conditions 3.1 and 3.2. When Zn is small, Xn+1 will be approximately
equal to αn · Xn, and therefore its variance σ2

n+1 will be close to σ2
nλ

2
n where λn = ||αn||,

and the ratio (λnσn)/σn+1 will be close to 1. Iterating, the variance of Xn will grow like a
constant C times λ2

n−1 · · ·λ2
0, so when cn → c and αn → α, like C2λ2n. Condition 3.1 assures

that Zn is small relative to Xn in that its variance grows at a slower rate. This condition was
assumed in [13] for deriving a normal limiting law for the standardized sequence generated
by (6).

Condition 3.1 The non-zero sequence of vectors αn ∈ Rk, k ≥ 2, converges to α, not equal
to any multiple of a standard basis vector. For λ = ||α||, there exists 0 < δ1 < δ2 < 1 and
constants CZ,2, CX,2 such that for all n,

Var(Zn) ≤ C2
Z,2λ

2n(1− δ2)
2n

Var(Xn) ≥ C2
X,2λ

2n(1− δ1)
2n.
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Bounds on the distance between Xn and the normal can be provided under the following
conditions on the fourth order moments of Xn and Zn.

Condition 3.2 There exists δ3 and δ4 ∈ (δ1, 1), and constants CZ,4, CX,4 such that

E (Zn − EZn)4 ≤ C4
Z,4λ

4n(1− δ4)
4n

E (Xn − EXn)4 ≤ C4
X,4λ

4n(1 + δ3)
4n,

and

β = max{φ1, φ2} < 1, where φ1 =
(1− δ2)(1 + δ3)

3

(1− δ1)4
and φ2 =

(
1− δ4

1− δ1

)2

. (20)

Using Hölder’s inequality and Condition 3.2 we may take

1− δ2 ≤ 1− δ4 < 1− δ1 ≤ 1 + δ3. (21)

In particular β ≤ η for

η =
(1− δ4)(1 + δ3)

3

(1− δ1)4
. (22)

Theorem 3.1 Let Xn+1 = αn ·Xn + Zn with λn = ||αn|| 6= 0 and Xn a vector in Rk with
i.i.d. components distributed as Xn with mean cn and non-zero variance σ2

n. Set

Wn =
Xn − cn

σn

, Yn =
k∑

i=1

αn,i

λn

Wn,i, (23)

and

βn = E|Wn+1 − Yn|+
1

2
E|W 3

n+1 − Y 3
n |. (24)

If there exist (β, ϕ) ∈ (0, 1)2 such that

lim sup
n→∞

βn

βn
< ∞ (25)

and ϕn in (19) satisfies

lim sup
n→∞

ϕn = ϕ, (26)

then with γ = β when ϕ < β, and for any γ ∈ (ϕ, 1) when β ≤ ϕ, there exists C such that

d(Wn,N ) ≤ Cγn. (27)

Under Conditions 3.1 and 3.2, (27) holds for all γ ∈ (max(β, ϕ), 1), with β as in (20), and
ϕ =

∑k
i=1 |αi|3/λ3 < 1.
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Proof: By Lemma 2.1, it suffices to prove the bound (27) holds for d(Wn, W
∗
n). Let f ∈ F

with F given by (13). Then |f ′′(x)| ≤ 1, |f ′(x)| ≤ |x|, |f(x)| ≤ x2/2, and for h given by (8)
with σ2 = 1 and the chosen f , differentiation of (8) yields

h′(w) = f ′′(w)− wf ′(w)− f(w),

and therefore

|h′(w)| ≤
(

1 +
3

2
w2

)
. (28)

Letting rn = (λnσn)/σn+1 and using (23), write Xn+1 = αn ·Xn + Zn as

Wn+1 = rnYn + Tn where Tn =
σn

σn+1

(
Zn − EZn

σn

)
. (29)

Now by (28) and the definition of βn in (24),

E|h(Wn+1)− h(Yn)| = E|
∫ Wn+1

Yn

h′(u)du| ≤ βn.

From (10) with σ2 = 1, using Var(Yn) = 1,

|Ef ′(Wn+1)− Ef ′(W ∗
n+1)| = |Eh(Wn+1)−Nh|

= |E (h(Wn+1)− h(Yn) + h(Yn)−Nh) |
≤ βn + |Eh(Yn)−Nh|
≤ βn + |E(f ′(Yn)− f ′(Y ∗

n ))|
≤ βn + d(Yn, Y

∗
n ) by (14)

≤ βn + ϕnd(Wn, W
∗
n) by Lemma 2.2.

Taking supremum over f ∈ F on the left hand side, using (14) again and letting dn =
d(Wn, W

∗
n) we obtain, for all n ≥ 0,

dn+1 ≤ βn + ϕndn.

Iteration yields that for all n, n0 ≥ 0,

dn0+n ≤
n0+n−1∑

j=n0

(
n0+n−1∏
i=j+1

ϕi

)
βj +

(
n0+n−1∏

i=n0

ϕi

)
dn0 . (30)

Now suppose the bounds (25) and (26) hold and recall the choice of γ. When ϕ < β take
ϕ ∈ (ϕ, β) so that ϕ < ϕ < β = γ; when β ≤ ϕ set ϕ ∈ (ϕ, γ) so that β ≤ ϕ < ϕ < γ. Then
for any B greater than the limsup in (25) there exists n0 such that for all n ≥ n0

βn ≤ Bβn and ϕn ≤ ϕ.

Applying these inequalities in (30) and summing yields, for all n ≥ 0,

dn+n0 ≤ Bβn0

(
βn − ϕn

β − ϕ

)
+ ϕndn0 ;

11



since max(β, ϕ) ≤ γ, (27) follows.
To prove the final claim it suffices to show that under Conditions 3.1 and 3.2, (25) and

(26) holds with β < 1 as defined in (20), and with ϕ =
∑k

i=1 |αi|3/λ3 < 1. Lemma 6 of [13]
gives that the limit as n →∞ of σn/(λ0 · · ·λn−1) exists in (0,∞), and therefore

lim
n→∞

rn = 1 and lim
n→∞

σn+1

σn

= λ. (31)

Referring to the definition of Tn in (29) and using (31) and Conditions 3.1 and 3.2, there
exists Ct,2, Ct,4 such that

(E|Tn|)2 ≤ ET 2
n = Var(Tn) =

(
σn

σn+1

)2
Var(Zn)

Var(Xn)
≤ C2

t,2

(
1− δ2

1− δ1

)2n

,

ET 4
n =

(
σn

σn+1

)4

E

(
Zn − EZn

σn

)4

≤ C4
t,4

(
1− δ4

1− δ1

)4n

.

By independence, a simple bound and Condition 3.2 for the inequality,

(E|Yn|)2 ≤ EY 2
n = Var(Yn) = 1, and

EY 4
n ≤ 6E

(
Xn − cn

σn

)4

≤ 6C4
X,4

(
1 + δ3

1− δ1

)4n

.

From (6), with σZn =
√

Var(Zn), σn+1 ≤ λnσn + σZn and λnσn ≤ σn+1 + σZn , hence with
Cr,1 = Ct,2 we have

|λnσn − σn+1| ≤ σZn so |rn − 1| ≤ Cr,1

(
1− δ2

1− δ1

)n

.

Since |rp
n − 1| ≤

∑
j≥1

(
p
j

)
|rn − 1|j, using (21) there are Cr,p such that

|rp
n − 1| ≤ Cr,p

(
1− δ2

1− δ1

)n

, p = 1, 2, . . . .

Now considering the first term of βn of (24), recalling (29),

E|Wn+1 − Yn| = E|(rn − 1)Yn + Tn| ≤ |rn − 1|E|Yn|+ E|Tn| ≤ (Cr,1 + Ct,2)

(
1− δ2

1− δ1

)n

,

which is upper bounded by a constant times φn
1 .

For the second term of (24) we have

E|W 3
n+1 − Y 3

n | = E|(r3
n − 1)Y 3

n + 3r2
nY

2
n Tn + 3rnYnT

2
n + T 3

n |.

Using the triangle inequality, the first term is bounded by a constant times φn
1 as

|r3
n − 1|E|Y 3

n | ≤ |r3
n − 1|(EY 4

n )3/4 ≤ 63/4Cr,3C
3
X,4

(
(1− δ2)(1 + δ3)

3

(1− δ1)4

)n

.

Since rn → 1 by (31), it suffices to bound the next two terms without the factor of rn. Thus,

E|Y 2
n Tn| ≤

√
EY 4

n ET 2
n ≤ 61/2C2

X,4Ct,2

(
(1− δ2)(1 + δ3)

2

(1− δ1)3

)n

,

12



which is less than a constant times φn
1 by (21), and lastly,

E|YnT
2
n | ≤

√
EY 2

n ET 4
n ≤ C2

t,4

(
1− δ4

1− δ1

)2n

≤ C2
t,4φ

n
2 , and

E|T 3
n | ≤ (ET 4

n)3/4 ≤ C3
t,4

(
1− δ4

1− δ1

)3n

≤ C3
t,4φ

3n/2
2 .

Hence (25) holds with the given β.
Since αn → α, we have ϕn → ϕ. Under Condition 3.1, α is not a scalar multiple of a

standard basis vector and ϕ < 1 by Lemma 2.2. We finish by invoking the first part of the
Theorem.

4 Normal Bounds for Hierarchical Sequences

The following result, extending Proposition 9 of [13] to higher orders, is used to show that
the moment bounds of Conditions 3.1 and 3.2 are satisfied under the hypotheses of Theorem
1.1, so that Theorem 3.1 may be invoked. The dependence of the constants in (33) and (34)
on ε is suppressed for notational simplicity.

Proposition 4.1 Let the hypotheses of Theorem 1.1 hold. Following (6), with cn = EXn

and αn = F ′(cn), define
Zn = F (Xn)−αn ·Xn, (32)

the difference between Xn+1 = F (Xn) and its linear approximation around the mean. Then
with α the limit of αn and λ = ||α||, for any p ≥ 1 and ε > 0, there exists constants
CX,p, CZ,p such that

E|Zn − EZn|p ≤ Cp
Z,p(λ + ε)2pn for all n ≥ 0, (33)

and
E|Xn − cn|p ≤ Cp

X,p(λ + ε)pn for all n ≥ 0. (34)

Proof: Expanding F (Xn) around cn, with αn = F ′(cn),

F (Xn) = F (cn) +
k∑

i=1

αn,i(Xn,i − cn) + R2(cn,Xn), (35)

where

R2(cn,Xn) =
k∑

i,j=1

∫ 1

0

(1− t)
∂2F

∂xi∂xj

(cn + t(Xn − cn))(Xn,i − cn)(Xn,j − cn)dt.

Since the second partials of F are continuous on D = [a, b]k, with || · || the supremum norm
on D, B = 2−1 maxi,j ||∂2F/∂xi∂xj|| < ∞, we have

|R2(cn,Xn)| ≤ B

k∑
i,j=1

|(Xn,i − cn)(Xn,j − cn)|. (36)

13



Using (32), (35) and (36), we have for all p ≥ 1

E|Zn − EZn|p = E

∣∣∣∣∣F (Xn)− cn+1 −
k∑

i=1

αn,i(Xn,i − cn)

∣∣∣∣∣
p

= E |F (cn)− cn+1 + R2(cn,Xn)|p

≤ 2p−1

(
|F (cn)− cn+1|p + BpE

(∑
i,j

|(Xn,i − cn)(Xn,j − cn)|

)p)
.(37)

For the first term of (37), again using (36),

|F (cn)− cn+1|p = |F (cn)− EF (Xn)|p = |ER2(cn,Xn)|p

≤ Bp

(
E
∑
i,j

|(Xn,i − cn)(Xn,j − cn)|

)p

≤ Bpkp

(
E

k∑
i=1

(Xn,i − cn)2

)p

≤ Bpk2p[E(Xn − cn)2]p ≤ Bpk2pE(Xn − cn)2p, (38)

using Hölder’s inequality for the final inequality.
Similarly, for the expectation in (37),

E

(∑
i,j

|(Xn,i − cn)(Xn,j − cn)|

)p

≤ kpE

(
k∑

i=1

(Xn,i − cn)2

)p

≤ k2p−1E

(
k∑

i=1

(Xn,i − cn)2p

)
= k2pE(Xn − cn)2p. (39)

Applying (38) and (39) in (37) we obtain for all p ≥ 1, with Cp = 2pBpk2p,

E|Zn − EZn|p ≤ CpE(Xn − cn)2p. (40)

It therefore suffices to prove (34) to demonstrate the Proposition.
In Lemma 8 of [13], it is shown that when F : [a, b]k → [a, b] is an averaging function and

there exists c ∈ [a, b] such that Xn →p c, then

for every ε ∈ (0, 1) there exists M such that for all n, P (|Xn − c| > ε) ≤ Mεn. (41)

Hence the large deviation estimate (41) holds under the given assumptions, and so also with
cn replacing c when cn → c. Since Xn ∈ [a, b] and Xn →p c, cn = EXn → c by the bounded
convergence theorem.

We now show that if an, n = 0, 1, . . . is a sequence such that for every ε > 0 there exists
M such that for all n ≥ n0,

an+1 ≤ (λ + ε)pan + M(λ + ε)p(n+1) (42)

14



then for all ε > 0 there exists C such that

an ≤ C(λ + ε)pn for all n. (43)

Let ε > 0 be given, and let M and n0 be such that (42) holds with ε replaced by ε/2. Setting

ρ = 1−
(

λ + ε/2

λ + ε

)p

and C = max

{
an0

(λ + ε)n0
,
M

ρ

[
λ + ε/2

λ + ε

]p(n0+1)
}

,

it is trivial that (43) holds for n = n0. Since the second quantity in the maximum decreases
when n0 is replaced by n ≥ n0, induction shows (43) holds for all n ≥ n0. By increasing C
if necessary, we have that (43) holds for all n.

Unqualified statements in the remainder of the proof below involving ε and M are to
be read to mean that for every ε > 0 there exists M , not necessarily the same at each
occurrence, such that the statement holds for all n. By (41),

E(Xn − cn)2p = E[(Xn − cn)2p; |Xn − cn| ≤ ε] + E[(Xn − cn)2p; |Xn − cn| > ε]

≤ εpE|Xn − cn|p + Mεn,

so from (40),

E|Zn − EZn|p ≤ εE|Xn − cn|p + Mεn. (44)

Since for all w, z
|w + z|p ≤ (1 + ε)|w|p + M |z|p,

definition (32) yields,

E|Xn+1 − cn+1|p ≤ (1 + ε)E

∣∣∣∣∣
k∑

i=1

αn,i(Xn − cn)

∣∣∣∣∣
p

+ ME|Zn − EZn|p. (45)

Specializing (45) to the case p = 2 gives, for all n sufficiently large,

E (Xn+1 − cn+1)
2 ≤ (λ + ε)2E (Xn − cn)2 + ME(Zn − EZn)2.

Applying (44) with p = 2 to this inequality yields, for all n sufficiently large,

E (Xn+1 − cn+1)
2 ≤ (λ + ε)2E (Xn − cn)2 + Mε2n+2

≤ (λ + ε)2E (Xn − cn)2 + M(λ + ε)2(n+1).

Hence, with p = 2, (42) and therefore (43) are true for an = E(Xn − cn)2, yielding (34) for
p = 2. Now apply Hölder’s inequality to prove the case p = 1.

Assume now that (34) is true for all 2 ≤ q < p in order to induct on p. Expand the first
term in (45), letting p = (p1, . . . , pk) and |p| =

∑
i pi. Use the induction hypotheses, and

Proposition 2.1 in (46), to obtain for all n sufficiently large, with AX,p = maxq<p CX,q and
Bp

X,p = kp−1Ap
X,p,

E

∣∣∣∣∣
k∑

i=1

αn,i(Xn − cn)

∣∣∣∣∣
p

≤
k∑

i=1

|αn,i|pE|Xn,i − cn|p +
∑

|p|=p,pi<p

(
p

p

)
E

k∏
i=1

|αn,i|pi|Xn,i − cn|pi
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≤ E|Xn − cn|p
k∑

i=1

|αn,i|p +
∑

|p|=p,pi<p

(
p

p

) k∏
i=1

|αn,i|piCpi

X,pi
(λ + ε)pin

≤ E|Xn − cn|p
k∑

i=1

|αn,i|p + Ap
X,p(λ + ε)pn

∑
|p|=p

(
p

p

) k∏
i=1

|αn,i|pi

= E|Xn − cn|p
k∑

i=1

|αn,i|p + Ap
X,p(λ + ε)pn

(
k∑

i=1

|αn,i|

)p

≤
k∑

i=1

|αn,i|p
(
E|Xn − cn|p + Bp

X,p(λ + ε)pn
)

≤ (λ + ε)pE|Xn − cn|p + Bp
X,p(λ + ε)p(n+1). (46)

Applying (44) and (46) in (45) gives

E |Xn+1 − cn+1|p ≤ (λ + ε)pE|Xn − cn|p + M(λ + ε)p(n+1),

from which we can conclude (43) for an = E|Xn − cn|p, completing the induction on p. We
conclude (34) holds for all p ≥ 1.
Proof of Theorem 1.1 By replacing Xn and F (x) by Xn/F (1k)

n and F (x)/F (1k) respec-
tively we may assume F is averaging. By Property 1 of averaging functions, F (c) = c,
and differentiation yields

∑n
i=1 αi = 1. By Property 2, monotonicity, αi ≥ 0, and (17) of

Proposition 2.1 yields 0 < λ ≤ ϕ < 1.
Inspection of (22) shows that for any η ∈ (λ, 1), there exists δ1 and δ3 in (0, 1) and δ4 in

(δ1, 1− λ) yielding η. For example, to achieve values arbitrarily close to λ from above, take
δ1 and δ3 close to zero and δ4 close to 1 − λ from below. Set δ2 = δ4. By Theorem 3.1 it
suffices to show that Conditions 3.1 and 3.2 are satisfied for these choices of δ.

Since δ4 < 1− λ we have λ2 < λ(1− δ4); hence we may pick ε > 0 such that (λ + ε)2 <
λ(1− δ4). By Proposition 4.1, for p = 2 and p = 4, for this ε there exists Cp

Z,p such that

E(Zn − EZn)p ≤ Cp
Z,p(λ + ε)4pn ≤ Cp

Z,pλ
2pn(1− δ4)

2pn.

Hence the fourth and second moment bounds on Zn are satisfied with δ4 and δ2 = δ4,
respectively.

Proposition 10 of [13] shows that under the assumptions of Theorem 1.1, for every ε > 0
there exists C2

X,2 such that

Var(Xn) ≥ C2
X,2(λ− ε)2n.

Taking ε = λδ1, we have Var(Xn) satisfies its lower bound condition. Lastly, applying
Proposition 4.1 with p = 4 and ε = λδ3 we see the fourth moment bound on Xn is satisfied,
and the proof is complete.

5 Convergence Rates for the Diamond Lattice

We now apply Theorem 1.1 to hierarchical sequences generated by the diamond lattice
conductivity function F in (2), for various choice of positive weights satisfying F (14) = 1.
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For all such F (x) the result of Shneiberg [8] quoted in Section 1 shows that Xn satisfies a
strong law if X0 ∈ [0, 1], say. The first partials of F have the form, for example

∂F (x)

∂x1

=
(w1x

2
1)
−1

((w1x1)−1 + (w2x2)−1)2
,

and therefore F ′(cn14) does not depend on cn. In particular, for all n,

αn = [
w−1

1

(w−1
1 + w−1

2 )2
,

w−1
2

(w−1
1 + w−1

2 )2
,

w−1
3

(w−1
3 + w−1

4 )2
,

w−1
4

(w−1
3 + w−1

4 )2
]T,

from which

ϕ = λ−3

(
w−3

1 + w−3
2

(w−1
1 + w−1

2 )6
+

w−3
3 + w−3

4

(w−1
3 + w−1

4 )6

)
, (47)

where

λ =

(
w−2

1 + w−2
2

(w−1
1 + w−1

2 )4
+

w−2
3 + w−2

4

(w−1
3 + w−1

4 )4

)1/2

.

As an illustration, define the ‘side equally weighted network’ to be the one with w =
(w, w, 2 − w, 2 − w)T for w ∈ [1, 2); such weights are positive and satisfy F (14) = 1. For
w = 1 all weights are equal, and we have α = 4−114, and hence ϕ achieves its minimum
value 1/2 = 1/

√
k with k = 4. By Theorem 1.1, for all γ ∈ (0, 1/2) there exists a constant

C such that d(Wn,N ) ≤ Cγn, with γ close to 1/2 corresponding to the rate N−1/2+ε for
small ε > 0 and N = 4n, the number of variables at stage n. As w increases from 1 to
2, ϕ increases continuously from 1/2 to 1/

√
2, with w close to 2 corresponding to the least

favorable rate for the side equally weighted network of N−1/4+ε for any ε > 0.
With only the restriction that the weights are positive and satisfy F (14) = 1 consider

w = (1 + 1/t, s, t, 1/t)T where s = [(1− (1/t + t)−1)−1 − (1 + 1/t)−1]−1 t > 0.

When t = 1 we have s = 2/3 and ϕ = 11
√

2/27. As t →∞, s/t → 1/2 and α tends to the
standard basis vector (1, 0, 0, 0), so ϕ → 1. Since 11

√
2/27 < 1/

√
2, the above two examples

show that the value of γ given by Theorem 1.1 for the diamond lattice can take any value
in the range (1/2, 1), corresponding to N−θ for any θ ∈ (0, 1/2).

6 Composition of Strict Averaging Functions

In this section, we prove Theorem 1.2, which shows when the composition of strictly aver-
aging functions is again strictly averaging.

Proof of Theorem 1.2: We first show Fs(x) satisfies the strict form of Property 1. If
x = t1k then Fs(x) = F0(s1t, . . . , skt) = F0(s)t = t and Property 1 is satisfied in this case.
Hence assume mini xi = x < y = maxi xi. For such x, if there is a t such that Fi(xi) = t for
all i = 1, . . . , k then for some i and j we have y = xj, j ∈ Ii, and hence x < Fi(xi) = t since
Fi is strictly averaging, and similarly, t < y. Hence x < F1(x) = t < y.

For x such that for all i ∈ I0, siFi(xi) = t for some t, we have

Fs(x) = F0(s1F1(x1), . . . , skFk(xk)) = F0(t1k) = t.
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For s = 1k we have just shown the strict inequality x < t < y holds. Otherwise s 6= 1k and
by F0(s) = 1 we have mini si < 1 < maxi si, and since t = Fi(xi)/si for all i there exists i1
and i2 such that

x ≤ Fi1(xi1) < t < Fi2(xi2) ≤ y,

yielding again the required strict inequality.
For x such that there are i1, i2 such that si1Fii(xi1) 6= si2Fi2(xi2), we have sjFj(xj) <

maxi siFi(xi) for some j. Since F0 is strictly monotone and homogeneous,

Fs(x) = F0(s1F1(x1), . . . , skFk(xk)) < F0(s1 max
i

Fi(xi), . . . , sk max
i

Fi(xi))

= max
i

Fi(xi)F0(s) = max
i

Fi(xi) ≤ y.

The argument for the minimum is the same, hence Fs(x) satisfies the strict form of Property
1.

Since the composition of strictly monotone increasing functions is strictly monotone, the
strict form of Property 2 is satisfied for Fs(x).

The claim for F1(x) now follows by setting

Gi(x) =
Fi(xi)

Fi(1|Ii|)
and si =

Fi(1|Ii|)F0(1k)

F0(F1(1|I1|), . . . , Fk(1|Ik|))
for i = 0, 1, . . . , k,

so that
F1(x)

F1(1k)
=

F0(F1(x1), . . . , Fk(xk))

F0(F1(1|I1|), . . . , Fk(1|Ik|))
= G0(s1G1(x1), . . . , skGk(xk))

where Gi(xi) is strictly averaging with G0 homogeneous, and G0(s) = 1.
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