Exercise 5

1. Find the maximum likelihood estimate $\widehat{\theta}$ of the location parameter $\theta \in \mathbb{R}$ when observing X_{1}, \ldots, X_{n} iid with Cauchy distribution

$$
f(x ; \theta)=\frac{1}{\pi} \frac{1}{1+(x-\theta)^{2}}
$$

2. Let w_{1}, \ldots, w_{n} be iid from the mixture distribution

$$
f(w ; \psi)=\sum_{i=1}^{g} \pi_{i} f_{i}(w)
$$

where $\psi=\left(\pi_{1}, \ldots, \pi_{g}\right)$ is a vector of unknown probabilities, summing to one, and f_{1}, \ldots, f_{g} are known density functions.
a) Construct a moment estimator of ψ.
b) Describe the E step of the EM algorithm when taking the missing data to be

$$
Z_{i j}=\mathbf{1}(\text { observation } j \text { comes from group } i)
$$

3. Let $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$ be iid with a bivariate normal distribution, and all (five) parameters unknown.
a) Find the MLE of the unknown parameters.
b) With $n=m+m_{1}+m_{2}$, describe the steps of the EM algorithm when m of the pairs are observed completely, m_{1} are missing the first coordinate, and m_{2} are missing the second coordinate. You may assume the data has been labeled so that the first m indices correspond to the first group, and so forth.
4. Let Y_{1}, \ldots, Y_{n} be independent random variables distributed as

$$
Y_{i} \sim \mathcal{P}\left(\mu_{i}\right) \quad \text { where } \quad \mu_{i}=\sum_{j=1}^{d} p_{i j} \lambda_{j}
$$

where for each i the vector $\left(p_{i 1}, \ldots, p_{i d}\right)$ is of known probabilities summing to no more than one, and $\psi=\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ is a vector of uknown, nonnegative intensities. Describe the steps of the EM algorithm for the estimation of ψ.

