Exercise set 2

1. Let $\theta(F) = \operatorname{Var}_F(X)$ and let \widehat{BIAS} be the Jackknife estimate of the bias of $\theta(\widehat{F}_n)$. Prove or disprove that

$$E_F[\widehat{BIAS}] = \mathrm{BIAS}$$

where BIAS is the true bias of $\theta(\widehat{F}_n)$. That is, show that in this case the Jackknife estimate of bias is unbiased for the true bias.

2. Let $\theta(F) = E_F(X)$ and show that

$$\widehat{VAR} = \frac{1}{n}S^2$$

where \widehat{VAR} is the Jackknife estimate of the variance of $\theta(\widehat{F}_n)$, and

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}.$$

In particular, show that

$$E_F[\widehat{VAR}] = \operatorname{Var}(\theta(\widehat{F}_n)),$$

That is, show in this case that the Jackknife estimate of variance is unbiased for the true variance.

3. Let $\theta(F)$ be the median of the distribution F, and consider a sample X_1, \ldots, X_{2m} from a continuous distribution, and the order statistics of the sample

$$X_{(1)} < X_{(2)} < \dots < X_{(2m)}.$$

a) Compute \widehat{BIAS} , the Jackknife estimate of bias of $\theta(\widehat{F}_n)$.

b) Show that the Jackknife estimate \widehat{VAR} of the variance of $\theta(\widehat{F}_n)$ is given by

$$\widehat{VAR} = \frac{n-1}{4} \left(X_{(m)} - X_{(m+1)} \right)^2$$

In the following parts, assume that F is the Uniform distribution on [0, 1].

c) (*) Prove that

$$n\widehat{VAR} \to_d \left(\frac{Y}{2}\right)^2,$$

where \rightarrow_d denotes convergence in distribution, and $Y \sim \chi_2^2$, a chi squared distribution on 2 degrees of freedom.

d) (*) We say the Jackknife estimate \widehat{VAR} of variance is consistent for the variance of $\theta(\widehat{F}_n)$ when

$$\frac{\widehat{VAR}}{\operatorname{Var}_F(\theta(\widehat{F}_n))} \to_p 1.$$

Compute the limit of the ratio above. Is the Jackknife estimate of variance consistent for the median?

e) (**) What if F is a continuous distribution, not necessarily $\mathcal{U}[0,1]$.