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Example: Colorado Uranimum Miners Cohort

3,347 miners who worked underground for at least
one month.

258 lung cancer deaths between 1950 and 1982.

Determine the relation between radon exposure,
smoking, and lung cancer.

Cohort is large, not feasible to obtain accurate
exposure and smoking information on all members.

2



Survival Model

Failure rate at time t for individual i ∈ {1, . . . , η} with
covariate Zi(t) is given by

λi(t) = Yi(t)λ0(t)e
θ0Zi(t)

where θ0 is the unknown parameter expressing the strength
of the relationship between the covariate and the chance of
failure, and λ0(t) is an (unknown) baseline hazard rate. The
exponential relative risk form is common, but not necessary.

The function Yi(t) is a censoring indicator, equal to 1 if i is
observable at time t, and 0 otherwise.
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Semi-parametric model

Primary interest is in θ0, often in testing θ0 = 0. The
function λ0(t) is a ‘nuisance’ parameter. Generality is
obtained by leaving it unspecified, leading to the
semi-parametric model with unknowns (θ0, λ0).

Would like to estimate θ0 efficiently.
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Partial Likelihood Estimator: Cox 1972

Suppose we observe individuals i1, . . . , in fail at times
t1 < t2 < · · · < tn. Let

R(t) = {i : Yi(t) = 1} and Rj = R(tj).

The MPLE is a value θ̂ maximizing

L(θ) =

n∏
j=1

eθZij (tj)∑
k∈Rj e

θZk(tj)
,

a product of conditional probabilities. The unknown, and
unspecified, baseline hazard conveniently drops out.

Requires covariate data on all cohort members.
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Cohort Sampling Schemes

May consider sampling schemes (BGL 1995) specified by

πt(r|i), r ⊂ {1, 2, . . . , η}

the probability of using the set r as the ‘sampled risk set’
should i fail at time t. May absorb Yi(t) into πt(r|i), no
sampling for i failing when not at risk.

Simple example: ‘nested case-control sampling’ (Thomas
1977) of m− 1 controls, with η(t) = |R(t)|,

πt(r|i) =
(
η(t)− 1

m− 1

)−1
i ∈ r ⊂ R(t) with |r| = m.

6



One to One Counter Matching

Suppose we sample one control per case when forming our
risk sets.

A control with the same radon exposure as the case is
uninformative for inference on the relation between lung
cancer and radon exposure. Such a control may be selected
in a simple random sample.

In some instances, we may have an easily available ‘proxy’
for the covariate which may help us avoid uninformative
pairs.
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One to One Counter Matching

Study of the relation between EMF exposure and leukemia,
easily obtainable house ‘wire code’ information is correlated
with (expensive to measure) house radiation level. Based
on wire code information, one can sample a control
‘counter’ to the case, who is more likely to be informative
than one chosen by simple random sampling.

Can counter match more generally, m groups with targets
ml in group l. (BL 1995)
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Estimation under sampling

Partial likelihood may be formed using same principle as
before, take product of conditional probabilities that i failed
and r was sampled at time t, given a failure at t.

Nested case control sampling under null θ0 = 0,

√
n(θ̂ − θ0)→d N

(
0,

m

m− 1
σ2

Full

)
,

so Asymptotic Relative Efficiency of sampling is

ARE =
m− 1

m
.
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Efficiency Concerns

There is a price to pay for the generality gained by leaving
the baseline unspecified: we are not maximizing a true
likelihood. We are taking a product when events are not
independent. In addition, all information between failure
times is ignored.

Is the resulting estimator, nevertheless, still efficient?

Semiparametric Efficiency: Stein (1956), Hajek
(1970,1972), LeCam (1972).
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Efficiency: Full Cohort Case

Begun, Hall, Huang, Wellner (1983): MPLE is efficient,
covariates constant over time.

Greenwood Wefelmeyer (1990): MPLE is efficient,
covariates are random processes.
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Efficiency and the MPLE under Sampling

The MPLE is not efficient in the constant covariate case
under nested case-control sampling (Robins et al. (1994)).
A covariate sampled for a control at time t may contain
information available but not used by the MPLE at some
later time.

Such reuse results in biases, as controls that are able to
survive to be used for repeated failures are no longer
representative of the population to whom the failure should
be compared.
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Efficiency and the MPLE under Sampling

Modified estimators have additional complexity and their
efficiency gains may be small.

They may also require additional modeling assumptions,
such as assumed parametric forms to model the
dependence of informative censoring (Chen (2004)).
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Efficiency: Sampling

Having some idea of when the MPLE is efficient for
sampling

a. Informs the search for estimators which might
improve the MPLE

b. Mandates the use of the MPLE in situations which
approximate ones where it is efficient. Thus avoids
the use of modified estimators which may only have
efficiency gains under conditions not satisfied in
general.
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Guessing when the MPLE might be efficient

Under conditions and modeling assumptions, the modified
estimators take advantage of the use of predicted values of
unsampled covariates. When covariates fluctuate rapidly
(highly stratified situations) one cannot predict well the
values of the covariates at some future time given their
values at the present time.

Leads us to consider situations where sets sampled at each
failure time are independent.

Is the MPLE efficient again upon ruling out such situations?
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Efficiency: Sampling

For simplicity, consider the case where there is no censoring.
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Application

Study of occupational exposure to EMF and leukemia
(Floderus et al. 1993) in adult male population in
mid-Sweden over 1983-1987. 250 cases of Leukemia.

Nested case-control sampling with two controls sampled
based on the age of the case, no censoring.
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Efficiency: Parametric Model

Information inequality for p(x; θ); θ ∈ Rp,

I(θ) = Var

(
∂ log p(x; θ)

∂θ

)
,

variance of the (mean zero) ‘score function’ U(θ). In
particular

Ijk(θ) = Cov(Uj(θ), Uk(θ)).

Under some regularity, for unbiased θ̂,

Var(θ̂) ≥ I−1(θ).
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Example for R2

Variance bound,

I−1(θ) =
1

I11I22 − I212

[
I22 −I12
−I12 I11

]
.

Information bound for θ1 in the presence of unknown θ2 is

I11I22 − I212
I22

= I11 −
I212
I22

= I11(1−
Cov2(U1, U2)

I11I22
).

Effective information for θ1, with r = Corr(U1, U2) is,

I∗11 = I11(1− r2).
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Hellinger Derivative

For p = p(x; θ) a density function, letting p′ denote partial
with respect to θ,

∂

∂θ
p1/2 =

1

2
p−1/2p′

so in particular

4|| ∂
∂θ
p1/2||2 =

∫ (
(p′)2

p

)
= Var

(
p′

p

)
= Var

(
∂

∂θ
log p(x; θ)

)
= I(θ).

20



Hellinger Score Function

Four times the square of the L2 norm of the ‘Hellinger
Score’ function ρ = ∂p1/2/∂θ equals the information:

I(θ) = 4|| ∂
∂θ
p1/2||2 = 4||ρ||2.

Information for θ1 in the presence of θ2:

I∗11 = I11(1− r2) = 4||ρ1 −Aρ2||2.

In general, when there are more parameters, subtract the
projection on space spanned by score functions of the other
parameters.
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Convolution Theorem for Semiparametric
Models

The ‘effective information’ is given by

I∗ = 4||ρ0 −Aα∗||2,

where ρ0 is parametric score, and Aα∗ is the projection of
the non-parametric score onto the space spanned by ρ0.
Then under regularity,

√
n
(
θ̂ − θ

)
→ Z ? S where Z ∼ N (0, (I∗)−1).

Also asymptotically minimax.
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Hellinger Type Differentiability

Begun, Hall, Huang, Wellner (1983). Semiparametric
model (θ, g). Density of i.i.d observations with distribution
X is given by f(x; θ, g). Space of perturbations of (θ, g),
are {θn, gn}n≥0 such that there exists τ ∈ R such that

|
√
n(θn − θ)− τ | → 0,

and an α such that

||
√
n(g1/2n − g1/2)− α|| → 0 as n→∞.
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Hellinger Type Differentiability

There exists ρ0 and a linear operator A such that the
sequence of densities given by fn = f(·; θn, gn) for
n = 0, 1, . . . satisfies

||
√
n(f1/2n − f1/20 )− ζ|| → 0 as n→∞

for ζ = τρ0 +Aα.

Parametric score ρ0, nonparametric score operator A,
calculate α∗ using the normal equations

A∗Aα∗ = A∗ρ0.
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Apply Theory to the Cox Model

Relation between hazard and survival functions, at the null,

λ0(t) =
g(t)

1−G(t)
=

g(t)

G(t)
.

Cox model away from the null,

λ(t) = eθzλ0(t) =
eθzg(t)

G(t)
⇐⇒ Gθ(t; z) = G

eθz

(t).

Mix over covariate density h(z) when z unobserved,

Gθ(t) =

∫
Gθ(t; z)h(z)dz.
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Sampling

Density f(X; θ, g, h) of observation of failure, failure time,
and covariates of failure and m− 1 controls sampled from
the remaining η − 1 is(

η − 1

m− 1

)−1
eθzig(t)G(t)

∑
j∈r e

θzj−1Gθ(t)
η−mh(zr).

For m = η we obtain the case of BHHW without censoring.
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Covariate Density

Consider covariate density as unknown; makes no difference
in the full cohort case, as the covariates are observed. In
the sampling case it continues to be true that no covariate
distribution needs to be assumed in order to apply the
MPLE.

Semiparametric model with parameter (θ, g, h). We
consider the special case of the model of greatest interest,
the null θ0 = 0, and denote the null density of the
observations as f0.
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Score Operators

The nonparametric baseline and covariate density g and h
give rise to operators A and B, on perturbations α and β
in L2(ν+) and L2(ν), respectively,

Aα =

(
g−1/2(t)α(t) +

(η − 1)
∫∞
t
g1/2αdν

G(t)

)
f
1/2
0 ,

and

Bβ =

∑
j∈r

h−1/2(zj)β(zj)

 f
1/2
0 .
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Score and Solutions of Normal Equation

ρ0 =
1

2

zi + logG(t)
∑
j∈r

(zj − EZ) + ηEZ logG(t)

 f1/20 ,

α∗ =
EZ

2

[
1 + logG(t)

]
g1/2(t)

and

β∗ =
1

2
h1/2(z)

η −m
mη

(z − EZ)
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Solving Normal Equations: Result

Let η ≥ m ≥ 5. Then for the nested case control model the
effective information is

Iη∗ (θ0) = Var(Z)

(
m− 1

m
+
m

η2

)
.

Special case m = η recovers full cohort information BHHW
result. Taking the limit in η,

I∗(θ0) = lim
η→∞

Iη∗ (θ0) = IFull(θ0)

(
m− 1

m

)
.

Hence the Cox MPLE is again efficient.
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Baseline Hazard Estimator

Lower bound holds in both the distributional and minimax
senses for subconvex loss functions, ` : R→ R+ such that

{x : `(x) ≤ y}

is closed, convex and symmetric for all y ≥ 0.

Similar remarks apply to the Breslow estimator of the

baseline hazard, e.g. `(x) = supt |x(t)|,
∫ 1

0
x2(t)dt.
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Further Directions

1. Compute bound away from the null

2. Include censoring: the operator C for censoring
makes for three.

3. Explore other sampling models, such as counter
matching
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