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ZERO BIASING AND A DISCRETE CENTRAL LIMIT THEOREM

BY LARRY GOLDSTEIN AND AIHUA XIA

University of Southern California and University of Melbourne

We introduce a new family of distributions to approximate P(W ∈ A) for
A ⊂ {. . . ,−2,−1,0,1,2, . . .} and W a sum of independent integer-valued
random variables ξ1, ξ2, . . . , ξn with finite second moments, where, with
large probability, W is not concentrated on a lattice of span greater than 1.
The well-known Berry–Esseen theorem states that, for Z a normal random
variable with mean E(W) and variance Var(W), P(Z ∈ A) provides a good
approximation to P(W ∈ A) for A of the form (−∞, x]. However, for more
general A, such as the set of all even numbers, the normal approximation be-
comes unsatisfactory and it is desirable to have an appropriate discrete, non-
normal distribution which approximates W in total variation, and a discrete
version of the Berry–Esseen theorem to bound the error. In this paper, using
the concept of zero biasing for discrete random variables (cf. Goldstein and
Reinert [J. Theoret. Probab. 18 (2005) 237–260]), we introduce a new family
of discrete distributions and provide a discrete version of the Berry–Esseen
theorem showing how members of the family approximate the distribution of
a sum W of integer-valued variables in total variation.

1. Introduction. We introduce a new family of distributions to approximate
P(W ∈ A) for A a subset of Z = {. . . ,−2,−1,0,1,2, . . .} and W a sum of in-
dependent integer-valued random variables ξ1, ξ2, . . . , ξn with finite second mo-
ments, where the probability that W is not concentrated on a lattice of span greater
than 1 is large. When A is of the form (−∞, x] and ξi ’s have finite third moments,
we can use the well-known Berry–Esseen theorem ([7] and [15]) which states that
there exists an absolute constant C such that

sup
z∈R

∣∣∣∣P
(

W − µ

σ
≤ z

)
− �(z)

∣∣∣∣ ≤ C

σ 3

n∑
i=1

E[|ξi − E(ξi)|3],

where µ = E(W), σ 2 = Var(W) and � is the cumulative distribution function of
the standard normal. If ξi ’s are identically distributed, then the bound is of the
order n−1/2, which is known to be the best possible. However, for more general A,
such as the set of all even numbers, the errors of normal approximation may be
large, or difficult to compute; for such cases, it is desirable to have a distribution
which approximates W in total variation, and a discrete version of the Berry–
Esseen theorem to evaluate the error. Moreover, approximations in total variation
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have the property that any function of W is approximated in total variation to the
same degree as W itself, an advantage not enjoyed by the Kolmogorov distance.

A few discrete distributions, such as signed compound Poisson measures and
translated Poisson distributions (see [6, 9] and references therein) have been pro-
posed to make very close approximations in total variation to the distribution of W .
These approximations can be viewed as modifications of Poisson approximation
and in applications, one often transforms the sum W into a form which can be
approximated reasonably well by a suitably chosen Poisson random variable. In
estimating the errors of approximation, besides the assumption that W has large
probability of not being concentrated on a lattice of span greater than 1, one also
needs other assumptions, such as existence of the third moments of the ξi ’s ([6],
Theorem 4.3), and may additionally introduce truncation. Another approach is to
define a discrete normal Y by

P(Y = j) = P(j − 1/2 < Z ≤ j + 1/2), Z ∼ N (µ,σ 2), j ∈ Z

(L. H. Y. Chen, personal communication), though it is not clear what quality of
approximation Y can achieve.

In this paper we propose a class of approximating distributions which have car-
rier space Z, thus avoiding truncation and integerization problems. These new dis-
tributions are uniquely determined by parameters µ and σ 2, similarly to how the
approximating normal distribution is determined in the classical central limit theo-
rem. It is expected that any such approximating family of discrete distributions be
related to the Poisson, a distribution characterized by the property of being equal
to its own reduced Palm distribution; see [23], page 93. As this property is in-
trinsic in the study of certain Poisson approximations [1, 11], and since the Palm
distribution involves only the first moment of the distribution, it is of interest to de-
termine whether there exists any counterpart to the Poisson also involving the sec-
ond moment, which gives additional flexibility in approximation. One appropriate
counterpart can be uncovered through the concept of zero biasing [20]. Based on
the continuous normal case, it is expected that the class of approximating distribu-
tions should arrive naturally as the unique candidates which equal their zero-biased
distribution. However, because of the discrete setting, some adjustments are first
needed to make the idea work. In Section 2, we provide some background on zero
biasing in both the continuous and discrete settings, and define our approximating
family of distributions through a modified zero biasing form. In particular, our dis-
tributions are related to the operator (2.11), connected to discrete zero biasing, and
are the stationary laws of the processes with corresponding generator (3.3), simi-
larly to how normal laws are related to an operator connected to continuous zero
biasing, and are the stationary distributions of the Ornstein–Uhlenbeck processes.
Next, in Section 3 we establish the Stein equation and employ the bilateral birth
and death processes ([28], Chapter 8) to estimate the Stein factors, in a similar
fashion to that in [8]. In Section 4 a general approximation theorem is given which
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provides a bound in total variation between an integer-valued random variable Y

and a member of the family of our approximating distributions, in terms of the dis-
tance between Y and its zero-biased distribution, paralleling Lemma 2.1 in [17] for
the continuous case. The bound is of the same order as the normal approximation
when the weaker Komogorov metric is used. The general theorem is then applied
to obtain a bound for the approximation of a sum W of independent integer-valued
random variables under (only) second moment conditions, yielding a form which
simplifies further under the assumption of finite third moments.

2. Zero biasing and characterization of the approximating distribution.
For any nonnegative random variable X with mean E(X) = µ ∈ (0,∞) and distri-
bution dF(x), the X-size biased distribution is given by

dF s(x) = x dF(x)

µ
, x ≥ 0,(2.1)

or, equivalently, by the characterizing equation

E[Xf (X)] = µEf (Xs) for all f with E|Xf (X)| < ∞.

It is often helpful to think of size biasing as a transformation defined on non-
negative distributions with finite mean. Size biasing can appear (unwanted and
sometimes unnoticed) in various sampling contexts [13]; for example, in random
digit dialing, where F in (2.1) is the uniform distribution on telephone numbers,
it is twice as likely to dial a household with x = 2 telephone lines than a house-
hold where x = 1. When X is a nonnegative integer-valued random variable with
positive finite mean µ, the X-size biased distribution (2.1) specializes to

P(Xs = k) = kP(X = k)

µ
, k = 0,1, . . . .(2.2)

The counterpart of size biasing in point process theory is the Palm distributions
(see [23], Chapter 10) introduced by Palm in 1943. It is easily verified that X has
a Poisson distribution if and only if L(Xs) = L(X + 1). This fact can be used
to study Poisson approximation and is part of the foundation of the well-known
Stein–Chen method (see [10] or [4]).

One notable property of the size-biased transformation is that a sum of indepen-
dent nonnegative random variables can be size-biased by replacing a single sum-
mand, chosen with probability proportional to its mean, with one independent of
the remaining variables and having that summand’s size-biased distribution; that is,
with ξi independent nonnegative variables with finite mean Eξi = µi, i = 1, . . . , n,
and

W =
n∑

i=1

ξi, we have Ws = W − ξI + ξ s
I ,
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where I is a random index, independent of ξ1, . . . , ξn, with distribution

P(I = i) = µi∑n
j=1 µj

.

For ξ a nontrivial indicator variable, (2.2) shows that ξ s = 1. Hence, a sum of inde-
pendent indicators ξi , i = 1, . . . , n, can be size-biased by setting a single indicator,
chosen with probability proportional to Eξi , to one.

The zero bias transformation was introduced in [20], based both on its similarity
to the size-biased transformation and the following characterization of the mean
zero normal distribution given in [26], which forms the basis of Stein’s celebrated
method for normal approximation [27]: Z is a mean zero, variance σ 2 normal
variable if and only if, for all absolutely continuous f with E|Zf (Z)| < ∞,

E[Zf (Z)] = σ 2
Ef ′(Z).

For any Y with EY = 0 and Var(Y ) = σ 2, Goldstein and Reinert [20] prove that
there exists Y ∗, called the Y -zero biased distribution, such that, for all absolutely
continuous f with E|Yf (Y )| < ∞,

E[Yf (Y )] = σ 2
Ef ′(Y ∗).(2.3)

By the Stein (if and only if ) characterization, it is clear that Y has the mean
zero normal distribution if and only if L(Y ) = L(Y ∗). In other words, the mean
zero normal distribution is the unique fixed point of the zero bias transformation.
Heuristically, then, one can show that Y is close to normal by showing that Y is
close to Y ∗; for in this case, Y itself is close to being a fixed point and, therefore,
should be close to the unique fixed point, the normal. For this reason, it is key that
zero biasing enjoys a property similar to the one mentioned above which holds for
size biasing. A sum Y of independent mean zero variables ξ1, . . . , ξn with finite
variances σ 2

1 , . . . , σ 2
n can be zero-biased by choosing a variable using an indepen-

dent index I with distribution

P(I = i) = σ 2
i∑n

j=1 σ 2
j

,

which takes values with probability proportional to variance, and replacing the
selected variable with one from that summand’s zero-biased distribution which is
independent of the remaining variables, that is,

Y ∗ = Y − ξI + ξ∗
I .(2.4)

Hence, a sum of roughly comparable independent mean zero variables with finite
variances is close in distribution to normal, since its zero bias distribution differs
from its original one by only one comparable summand of many. For applications
of the zero bias transformation to simple random sampling (see [20]) to hierar-
chical structures (see [17]) to combinatorial central limit theorems [18] and to the
computation of L1 bounds to the normal [20].
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Goldstein and Reinert [21] show that both size biasing and zero biasing are
special cases of distributional transformations specified by a biasing function P

and an order m; both size biasing and zero biasing have P(x) = x, and orders
m = 0 and m = 1, respectively; such transformations are often related to families
of orthogonal polynomials. To approximate by a given distribution, one can often
construct a transformation for which it is a fixed point. The transformations for
which discrete distributions will be fixed points have derivative replaced by differ-
ence, in particular, with �f (i) := f (i + 1) − f (i), the Poisson distribution with
mean λ is a fixed point of the transformation characterized by

E[(Y − λ)f (Y )] = λE�f (Y �).

However, one obtains additional flexibility by not insisting that the mean and vari-
ance be equal. Therefore, parallel to (2.3), we give the following definition:

DEFINITION 2.1. For an integer-valued random variable Y with mean µ and
finite variance σ 2, we say that Y � has the discrete Y -zero biased distribution if, for
all bounded functions f : Z → R,

E[(Y − µ)f (Y )] = σ 2
E�f (Y �).(2.5)

It is easily verified that (2.4) holds for the discrete zero bias transformation,
that is, that a sum of independent discrete random variables can be discrete zero-
biased by replacing one variable, chosen with probability proportional to variance,
by a variable from that summand’s discrete zero bias distribution, independent of
the remaining variables. When no confusion between the discrete and continuous
cases can arise, we simply say that Y � has the Y -zero biased distribution.

For Y an integer-valued random variable with finite mean and variance, the
existence and uniqueness of L(Y �) can be proved as follows. For each j ∈ Z, let
fj (i) = 1[j,∞)(i), so that

�fj (i) =
{

1, for i = j − 1,
0, for i 
= j − 1,

giving

P(Y � = j − 1) = E[(Y − µ)1(Y≥j)]
σ 2

(2.6)

= E[Y1[j,∞)(Y )] − µP(Y ≥ j)

σ 2 .

For j ≥ µ, (2.6) is clearly nonnegative, and the identity E[(Y − µ)1(Y≥j)] =
−E[(Y − µ)1(Y<j)] implies (2.6) is also nonnegative for j < µ. Using this iden-
tity and the fact that

∑∞
j=1 1(Y≥j) = Y1(Y≥1) and

∑0
j=−∞ 1(Y<j) = −Y1(Y≤0), we
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have the probabilities in (2.6) summing to one, since

E

[ ∞∑
j=1

(Y − µ)1(Y≥j) +
0∑

j=−∞
(Y − µ)1(Y≥j)

]

= E

[ ∞∑
j=1

(Y − µ)1(Y≥j) −
0∑

j=−∞
(Y − µ)1(Y<j)

]

= E
[
(Y − µ)Y1(Y≥1) + (Y − µ)Y1(Y≤0)

]
= E[(Y − µ)Y ] = σ 2.

For η an indicator variable with Var(η) = θ2 = (1 − Eη)Eη > 0, (2.6) shows
that η� = 0:

P(η� = 0) = E[(η − Eη)1(η≥1)]
θ2 = E[(η − Eη)1(η=1)]

θ2
(2.7)

= (1 − Eη)P(η = 1)

θ2 = 1.

Though true in this particular case, it is incorrect to conclude from this example
that η� = ηs − 1, that is, that the discrete zero bias operation is the same as the
reduced Palm. For an independent sum, the Palm distribution is obtained by re-
placing a summand chosen proportional to its mean, but to achieve the zero bias
distribution, one chooses proportional to variance.

Since the fixed points of the continuous zero bias transformation (2.3) are the
mean zero normal distributions, it is of immediate interest to determine which
distributions, if any, are fixed points of the discrete zero bias transformation (2.5),
that is, to find which S̃ satisfy

E[(S̃ − µ)f (S̃)] = σ 2
E�f (S̃)(2.8)

for all bounded functions f on Z. We show now that, unlike the situation in the
continuous case, distributional fixed points do not exist for all choices of µ and
σ 2. It is for this reason that we introduce the family of distributions given in
Lemma 2.2. Using fj (i) = 1(i=j) for j ∈ Z in (2.8), we have

(σ 2 + j − µ)P(S̃ = j) = σ 2
P(S̃ = j − 1), j ∈ Z.(2.9)

There are two cases to check for (2.9), depending on whether or not µ − σ 2 is an
integer. Let κ̃ := min{i : i ≥ µ − σ 2}. When µ − σ 2 is an integer, (2.9) gives that
P(S̃ = j) = 0 for j < κ̃ . However, when µ − σ 2 is not an integer, then, unless
L(S̃) is the null measure on Z, the values P(S̃ = κ̃ − 1) and P(S̃ = κ̃ − 2) strictly
alternate in sign, that is, L(S̃) is a signed measure which takes on both positive and
negative values. To avoid such a signed measure when µ − σ 2 is not an integer,
we truncate the distribution at, for example, κ̃ , so that P(S̃ = j) = 0 for j < κ̃ ,
in which case (2.9) fails for j = κ̃ and S̃ is only approximately a fixed point of
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the discrete zero bias transformation. In either of these cases, where µ − σ 2 is an
integer or where µ − σ 2 is not an integer and we truncate at κ̃ , iteration of (2.9)
yields

P(S̃ = κ̃) =
{ ∞∑

j=κ̃+1

( j∏
κ̃+1

σ 2

σ 2 + i − µ

)
+ 1

}−1

,

P(S̃ = j) =
( j∏

i=κ̃+1

σ 2

σ 2 + i − µ

)
P(S̃ = κ̃), j ≥ κ̃ + 1.

If µ − σ 2 is an integer we now see that S̃ corresponds to a translated Poisson ([6],
page 131); that is, the distribution of S̃ equals that of Y +µ−σ 2 with Y a Poisson
random variable with mean σ 2. Further, elementary calculations using (2.9) yield

ES̃ = µP(S̃ ≥ κ̃ + 1) + (σ 2 + κ̃)P(S̃ = κ̃),(2.10)

so ES̃ = µ if and only if µ − σ 2 is an integer; since (2.10) will not be used later
on, we omit the details.

Using a truncated approximating distribution, such as S̃ above, leaves P(W < κ̃)

in the upper bound when we estimate the error caused by approximating W by S̃,
and can become quite inconvenient in applications ([4], Section 9.2 and [2]). To
avoid truncation, we introduce a two-parameter family of distributions which have
carrier space Z, similar to the two-parameter normal distributions which have car-
rier space R. For an integer κ with µ − σ 2 ≤ κ < µ + σ 2 + 1, define the operator

Bf (i) =




σ 2f (i + 1) − (σ 2 + i − µ)f (i)

= σ 2�f (i) − (i − µ)f (i), i ≥ κ ,
(σ 2 + µ − i)f (i + 1) − σ 2f (i)

= σ 2�f (i) − (i − µ)f (i + 1), i ≤ κ − 1,

(2.11)

for all bounded functions f on Z. Note that σ 2 + i −µ and σ 2 +µ− i are nonneg-
ative over their respective ranges i ≥ κ and i ≤ κ − 1, and strictly positive except
when µ−σ 2 is an integer and i = κ = µ−σ 2. The following lemmas are devoted
to the properties of L(S) := 
κ(µ,σ 2), the distribution characterized by B:

LEMMA 2.2. There exists a unique distribution L(S) = 
κ(µ,σ 2), charac-
terized by EBf (S) = 0 for all bounded functions f on Z, whose distribution
πi = P(S = i), i ∈ Z, satisfies

πκ =
{ ∞∑

j=κ+1

( j∏
κ+1

σ 2

σ 2 + i − µ

)
+ 1 + σ 2 + κ − µ

σ 2 + µ − κ + 1
(2.12)

+
κ−2∑

j=−∞

(
κ−2∏
i=j

σ 2

σ 2 + µ − i

)
σ 2 + κ − µ

σ 2 + µ − κ + 1

}−1
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and

πj =




( j∏
i=κ+1

σ 2

σ 2 + i − µ

)
πκ, j ≥ κ + 1,

σ 2 + κ − µ

σ 2 + µ − κ + 1
πκ, j = κ − 1,

(
κ−2∏
i=j

σ 2

σ 2 + µ − i

)(
σ 2 + κ − µ

σ 2 + µ − κ + 1

)
πκ, j ≤ κ − 2.

Moreover, E(|S|l) < ∞ for 0 ≤ l < ∞ and EBf (S) = 0 for all f such that
E{|S|[|f (S)| + |f (S + 1)|]} < ∞.

REMARK. When µ − σ 2 is an integer and κ = µ − σ 2, the distribution of S

reduces to that of S̃ when κ̃ = κ .

PROOF OF LEMMA 2.2. Since, for each fixed j and 1j (i) = 1(i=j),

0 = E[B1j (S)] = ∑
i

B1j (i)πi = B1j (j − 1)πj−1 + B1j (j)πj ,

we obtain recursive formulæ as follows:

−(σ 2 + j − µ)πj + σ 2πj−1 = 0, j ≥ κ + 1,(2.13)

−(σ 2 + j − µ)πj + (σ 2 + µ − j + 1)πj−1 = 0, j = κ,(2.14)

−σ 2πj + (σ 2 + µ − j + 1)πj−1 = 0, j ≤ κ − 1.(2.15)

Hence,

πj =
( j∏

i=κ+1

σ 2

σ 2 + i − µ

)
πκ, j ≥ κ + 1,

πκ−1 = σ 2 + κ − µ

σ 2 + µ − κ + 1
πκ(2.16)

and

πj−1 = σ 2

σ 2 + µ − j + 1
πj =

(
κ−2∏

i=j−1

σ 2

σ 2 + µ − i

)
πκ−1, j ≤ κ − 1,

so, replacing j by j + 1 in the last identity, it follows from (2.16) that

πj =
(

κ−2∏
i=j

σ 2

σ 2 + µ − i

)(
σ 2 + κ − µ

σ 2 + µ − κ + 1

)
πκ, j ≤ κ − 2.
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Summing the probabilities to one yields (2.12). Convergence is guaranteed, for the
sum in (2.12) over j ≥ κ + 1, say, by the fact that σ 2/(σ 2 + i − µ) ≤ σ 2/(i − κ)

for all i ≥ κ + 1 and the fact that
∑∞

j=κ+1 σ 2(j−κ)/(j − κ)! < ∞. Hence, the
distribution of S exists and is uniquely determined by the specified distribution.

The claim E(|S|l) < ∞ follows from the fact that

∑
j≥κ+1

|j |lπj ≤ πκ

∑
j≥κ+1

|j |l σ 2(j−κ)

(j − κ)! < ∞

and

∑
j≤κ−2

|j |lπj ≤ πκ−1
∑

j≤κ−2

|j |l σ 2(κ−j−1)

(κ − j − 1)! < ∞.

Finally, taking fn = (f ∧ n) ∨ (−n), n = 1,2, . . . , we have EBfn(S) = 0 and

|Bfn(i)| ≤ (|i| + |µ| + 2σ 2)[|f (i)| + |f (i + 1)|].
Hence, the dominated convergence theorem ensures that EBf (S) = 0 by letting
n → ∞. �

LEMMA 2.3. E(S) = µ and Var(S) = σ 2 + (σ 2 + κ − µ)πκ.

PROOF. Letting f (i) ≡ 1, since Bf (i) = µ − i for all i, EBf (S) = 0 yields
ES = µ. Next, letting f (i) = i in (2.11), for i ≥ κ we have Bf (i) = σ 2 − i2 +µi,
while for i ≤ κ − 1 we have Bf (i) = σ 2 − i2 + µi + µ − i, which can be written
as

Bf (i) = σ 2 − i2 + µi + (µ − i)1(i≤κ−1).

It follows from Lemma 2.2 that EBf (S) = 0, which yields

0 = σ 2 − Var(S) + E(µ − S)1(S≤κ−1)

so that Var(S) = σ 2 + E(µ − S)1(S≤κ−1).

Now, using E(S − µ) = 0, and (2.13) for the fourth equality, it follows that

E(µ − S)1(S≤κ−1) = E(S − µ)1(S≥κ) = ∑
i≥κ

(i − µ)πi

= ∑
i≥κ+1

(σ 2 + i − µ)πi − σ 2
∑

i≥κ+1

πi + (κ − µ)πκ

= ∑
i≥κ+1

σ 2πi−1 − σ 2
∑

i≥κ+1

πi + (κ − µ)πκ

= (σ 2 + κ − µ)πκ.
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Hence,

Var(S) = σ 2 + (σ 2 + κ − µ)πκ. �

Note that if we choose κ = min{i : i ≥ µ − σ 2}, then |Var(S) − σ 2| ≤ πκ . The
following lemma shows in what sense S is close to a fixed point of the zero bias
transformation when Var(S) is close to σ 2:

LEMMA 2.4. The S-zero biased distribution S�, given in Definition 2.1, satis-
fies

P(S� = j) =



σ 2
P(S = j)/Var(S), j ≥ κ ,

1 − σ 2/Var(S), j = κ − 1,
σ 2

P(S = j + 1)/Var(S), j ≤ κ − 2.

PROOF. Fixing j ≥ κ and letting fj (i) = 1[j+1,∞)(i), we have Bfj (i) =
σ 2�fj (i) − (i − µ)fj (i),∀ i ∈ Z. Using the characterization equation
EBfj (S) = 0 and Definition 2.1,

0 = E
(
σ 2�fj(S) − (S − µ)fj (S)

) = E
(
σ 2�fj (S) − Var(S)�fj (S

�)
)

which, along with �fj(i) = 1(i=j), gives the claim for j ≥ κ .
Likewise, fixing j ≤ κ −2 and letting fj (i) = 1(−∞,j+1](i), we have Bfj (i) =

σ 2�fj (i) − (i − µ)fj (i + 1),∀ i ∈ Z, and

0 = E
(
σ 2�fj (S) − (S − µ)fj (S + 1)

)
= E

(
σ 2�fj (S) − Var(S)�fj (S

� + 1)
)
,

which, with �fj (i) = −1(i=j+1), gives the claim for j ≤ κ − 2. Finally, the value
P(S� = κ − 1) can be obtained from

∑∞
i=−∞ P(S� = i) = 1. �

3. Stein’s method and Stein’s factors. Brown and Xia [8] introduced a class
of approximating distributions π , determined by parameters αi, βi, i ∈ Z+ :=
{0,1,2, . . .}, satisfying

πiαi = πi+1βi+1, i ∈ Z+.(3.1)

Equation (3.1) enabled the authors of that work to view π as the stationary distri-
bution of a birth–death process and to give a neat probabilistic derivation of Stein
magic factors, essentially under the condition that for each k = 1,2, . . . ,

αk − αk−1 ≤ βk − βk−1,(3.2)

letting β0 = 0. A key point in that derivation is that the solution to the Stein equa-
tion is an explicit linear combination of mean upward and downward transition
times of the birth–death process ([8], Lemma 2.1). Under condition (3.2), all dif-
ferences of the solution of the Stein equation are negative except one—an essential
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structure for the neat derivation of Stein magic factors for polynomial birth–death
approximations, which include Poisson, binomial, negative binomial and hyperge-
ometric approximations [8].

In this section we consider approximating distributions π on Z (instead of Z+)
which are determined by two parameters µ and σ 2 and which satisfy the bal-
ance equation (3.4). Analogously to the context in [8], we define a generator
(3.3) of a bilateral birth–death process such that π is its stationary distribution.
In Lemma 3.4, we prove that all differences of the solution of the Stein equation
are negative except one and derive the Stein magic factors.

For each bounded function g on Z, writing f (x + 1) = g(x + 1) − g(x), we
have

Bf (i) =




σ 2(
g(i + 1) − g(i)

)
+ (σ 2 + i − µ)

(
g(i − 1) − g(i)

)
, i ≥ κ ,

(σ 2 + µ − i)
(
g(i + 1) − g(i)

)
+ σ 2(

g(i − 1) − g(i)
)
, i ≤ κ − 1,

(3.3)
:= Ag(i) = αi

(
g(i + 1) − g(i)

) + βi

(
g(i − 1) − g(i)

)
,

where

αi =
{

σ 2, i ≥ κ ,
σ 2 + µ − i, i ≤ κ − 1,

and

βi =
{

σ 2 + i − µ, i ≥ κ ,
σ 2, i ≤ κ − 1.

A is the generator of bilateral birth and death processes ([28], Chapter 8) with
“birth rates” specified by {αi : i ∈ Z} and “death rates” by {βi : i ∈ Z}. When µ −
σ 2 < κ < µ + σ 2 + 1 so that all αi’s and βi ’s are positive, the bilateral birth and
death processes are always nonexplosive and ergodic ([28], Chapter 8 and [12]).
However, when µ − σ 2 is an integer and κ = µ − σ 2, we get βκ = 0 (the only
possible zero of all the transition rates), which means that all states in (−∞, κ −1]
are transient. In other words, when the Markov chain is at a state in (−∞, κ − 1],
it will move quickly into states in [κ,∞), while if the Markov chain is at a state
in [κ,∞), it will never visit states in (−∞, κ − 1]. In this case, the approximating
distribution is the same as a translated Poisson; it has been well treated in various
papers (see [6, 9] and references therein).

Čekanavičius and Vaitkus [9] studied the translated Poisson (referred to as cen-
tered Poisson in the paper) approximation to the sum W of independent indica-
tor random variables with λ = E(W) and λ2 = λ − Var(W). Their approximating
translated Poisson is the sum of �λ2�, the integer part of λ2, and a Poisson ran-
dom variable with mean λ − �λ2�. This distribution is a slight variation of our S̃,
and a straightforward modification of the Stein–Chen method is used to estimate
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the approximation errors. Hence, from now on, we concentrate on the case where
µ − σ 2 < κ < µ + σ 2 + 1.

It is a routine exercise to check that 
κ(µ,σ 2) is the equilibrium distribution
of the Markov chain with generator A, and that it satisfies the following balance
equation:

αiπi = βi+1πi+1 ∀ i ∈ Z.(3.4)

Denote by Zi(t), t ≥ 0, the Markov chain generated by A with initial value i, and
define stopping times

τi = inf{t :Zi(t) 
= i},
τ+
i = inf{t :Zi(t) = i + 1},(3.5)

τ−
i = inf{t :Zi(t) = i − 1}, i ∈ Z.

LEMMA 3.1. For every bounded function h on Z, the integral

g(i) := −
∫ ∞

0
{E[h(Zi(t))] − E[h(S)]}dt

is well defined and satisfies the Stein identity

Ag(i) = h(i) − Eh(S).

PROOF. Split the bilateral birth–death process Zi at κ into two ordinary birth–
death processes. Each of the two processes is a standard linear model, hence expo-
nentially ergodic, implying that the process Zi is also exponentially ergodic (see
[12], Theorem 4.1, or [14], page 1679). More precisely, taking Ṽ (i) = 1 + |i − κ|,
c0 = 1 and b0 sufficiently large, we can see that the condition (D̃) (see the remark
after the statement of the condition) in page 1679 of [14] is satisfied, meaning that,
by the second paragraph of [14], page 1681, there is some 0 < ρ < 1 such that, for
all i ∈ Z, there exists a finite constant Mi with∑

j∈Z

∣∣P(
Zi(t) = j

) − πj

∣∣ ≤ Miρ
t for all t ≥ 0.

Hence, ∫ ∞
0

|E[h(Zi(t))] − E[h(S)]|dt ≤ sup
j∈Z

|h(j)|
∫ ∞

0
Miρ

t dt < ∞,

which ensures that g is well defined.
Next, the general theory of Markov processes ensures that, for a > 0,

(a − A)−1(
h − Eh(S)

)
(i) =

∫ ∞
0

e−at [Eh(Zi(t)) − Eh(S)]dt,
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(see [16], page 10), and the Stein identity corresponds to the above equation when
a = 0. A sketch of the proof of the Stein identity is as follows. Since τi ∼ exp(αi +
βi) and

P(τi = τ+
i ) = αi

αi + βi

and P(τi = τ−
i ) = βi

αi + βi

,

by invoking the strong Markov property and momentarily ignoring integrability
issues, we get

g(i) = −E

∫ ∞
0

[h(Zi(t)) − Eh(S)]dt

= −E

{∫ τi

0
[h(Zi(t)) − Eh(S)]dt +

∫ ∞
τi

[h(Zi(t)) − Eh(S)]dt

}

= −h(i) − Eh(S)

αi + βi

− E

∫ ∞
0

[
h
(
Zi(t + τi)

) − Eh(S)
]
dt

(3.6)

= −h(i) − Eh(S)

αi + βi

− αi

αi + βi

E

∫ ∞
0

[h(Zi+1(t)) − Eh(S)]dt

− βi

αi + βi

E

∫ ∞
0

[h(Zi−1(t)) − Eh(S)]dt

= −h(i) − Eh(S)

αi + βi

+ αi

αi + βi

g(i + 1) + βi

αi + βi

g(i − 1),

which, after reorganizing the terms, implies

h(i) − Eh(S) = αi

(
g(i + 1) − g(i)

) + βi

(
g(i − 1) − g(i)

) = Ag(i),

as desired. To prove (3.6) rigorously, by the strong Markov property, we have, for
each 0 < u < ∞,

−
∫ u

0
E[h(Zi(t)) − h(S)]dt

= −E

∫ u

0
[h(Zi(t)) − Eh(S)]dt

= −E

∫ τi∧u

0
[h(Zi(t)) − Eh(S)]dt − E

∫ u

τi∧u
[h(Zi(t)) − Eh(S)]dt

= [Eh(S) − h(i)]E(τi ∧ u)

−
∫ u

0
E

{∫ u

s
[h(Zi(t)) − Eh(S)]dt

∣∣∣τi = s

}
P(τi ∈ ds)

= [Eh(S) − h(i)]E(τi ∧ u)

−
∫ u

0
E

{∫ u−s

0

[
h
(
Zi(s + v)

) − Eh(S)
]
dv

∣∣∣τi = s

}
P(τi ∈ ds)
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= [Eh(S) − h(i)]E(τi ∧ u)

− αi

αi + βi

∫ u

0

{∫ u−s

0
E[h(Zi+1(v)) − h(S)]dv

}
P(τi ∈ ds)

− βi

αi + βi

∫ u

0

{∫ u−s

0
E[h(Zi−1(v)) − h(S)]dv

}
P(τi ∈ ds)

= [Eh(S) − h(i)]E(τi ∧ u)

− αi

αi + βi

∫ u

0
E[h(Zi+1(v)) − h(S)]P(τi ≤ u − v) dv

− βi

αi + βi

∫ u

0
E[h(Zi−1(v)) − h(S)]P(τi ≤ u − v) dv.

Letting u → ∞ and applying the bounded convergence theorem yields (3.6). �

For fixed k1, k2 ∈ Z with k1 ≤ k2, define

e−
i (k1, k2) = E

∫ τ−
i

0
1[k1,k2](Zi(t)) dt

and

e+
i (k1, k2) = E

∫ τ+
i

0
1[k1,k2](Zi(t)) dt,

the expected time that the Markov chain Zi(t) spends in [k1, k2] before it reaches
i − 1 and i + 1, respectively. We note that e−

i (−∞,∞) = Eτ−
i := τ−

i and

e+
i (−∞,∞) = Eτ+

i := τ+
i , as introduced in [8], page 1378. Hence, the follow-

ing lemma generalizes Lemma 2.2 in [8]:

LEMMA 3.2.

e−
i (k1, k2) =




∑k2
l=i∨k1

πl

βiπi

, if i ≤ k2,

0, if i > k2,

and

e+
i (k1, k2) =




∑i∧k2
l=k1

πl

αiπi

, if i ≥ k1,

0, if i < k1.

PROOF. Since τi ∼ exp(αi + βi), and τi ≤ τ−
i by (3.5), we have

e−
i (k1, k2) = E

∫ τi

0
1[k1,k2](Zi(t)) dt + E

∫ τ−
i

τi

1[k1,k2](Zi(t)) dt
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= 1{k1≤i≤k2}
1

αi + βi

+ E

(∫ τ−
i

τi

1[k1,k2](Zi(t)) dt
∣∣∣τi = τ−

i

)
P(τi = τ−

i )

+ E

(∫ τ−
i

τi

1[k1,k2](Zi(t)) dt
∣∣∣τi < τ−

i

)
P(τi < τ−

i ).

The second-to-last term is clearly zero. For the last term, given τi < τ−
i , we have

Zi(τi) = i + 1, so by the strong Markov property,

E

(∫ τ−
i

τi

1[k1,k2](Zi(t)) dt
∣∣∣τi < τ−

i

)
= E

∫ τi+1,i−1

0
1[k1,k2](Zi+1(t)) dt,

where τj1,j2 = inf{t : Zj1(t) = j2}. Now, again, by the strong Markov property,

E

∫ τi+1,i−1

0
1[k1,k2](Zi+1(t)) dt

= E

∫ τ−
i+1

0
1[k1,k2](Zi+1(t)) dt + E

∫ τi+1,i−1

τ−
i+1

1[k1,k2](Zi+1(t)) dt

= E

∫ τ−
i+1

0
1[k1,k2](Zi+1(t)) dt + E

∫ τ−
i

0
1[k1,k2](Zi(t)) dt.

Combining the equations above gives

e−
i (k1, k2) = 1{k1≤i≤k2}

1

αi + βi

+ (
e−
i+1(k1, k2) + e−

i (k1, k2)
) αi

αi + βi

,

which, using (3.4), implies

πiβie
−
i (k1, k2) = πi1{k1≤i≤k2} + πiαie

−
i+1(k1, k2)

= πi1{k1≤i≤k2} + βi+1πi+1e
−
i+1(k1, k2).

Clearly, e−
i (k1, k2) = 0 for i > k2, so

πiβie
−
i (k1, k2) =

k2∑
l=i

[πlβle
−
l (k1, k2) − πl+1βl+1e

−
l+1(k1, k2)] =

k2∑
l=i

πl1{k1≤l≤k2},

which implies

e−
i (k1, k2) =




∑k2
l=i πl

βiπi

, if k1 ≤ i ≤ k2,∑k2
l=k1

πl

βiπi

, if i < k1,

as desired.
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Likewise,

e+
i (k1, k2) = E

∫ τi

0
1[k1,k2](Zi(t)) dt + E

∫ τ+
i

τi

1[k1,k2](Zi(t)) dt

= 1{k1≤i≤k2}
1

αi + βi

+ (
e+
i−1(k1, k2) + e+

i (k1, k2)
) βi

αi + βi

,

which, together with (3.4), gives

πiαie
+
i (k1, k2) = πi1{k1≤i≤k2} + πiβie

+
i−1(k1, k2)

= πi1{k1≤i≤k2} + αi−1πi−1e
+
i−1(k1, k2).

We have that e+
i (k1, k2) = 0 for i < k1, so

πiαie
+
i (k1, k2) =

i∑
l=k1

[πlαle
+
l (k1, k2) − αl−1πl−1e

+
l−1(k1, k2)] =

i∑
l=k1

πl1{k1≤l≤k2},

again giving the claimed expression. �

Note that in the sequel, we will only need the quantities Eτ−
i = e−

i (−∞,∞)

and Eτ+
i = e+

i (−∞,∞), since we will focus on the choice κ = min{i : i ≥ µ}
and the total variation metric. For other cases, the general result in Lemma 3.2 is
needed.

Since

P(W ∈ A) − P(S ∈ A) = ∑
j∈A

[P(W = j) − P(S = j)]

= ∑
j∈A

[
E1{j}(W) − πj

]
,

we define

hj (x) = 1{j}(x) − πj ,

gj to be the solution of Agj = hj , and fj (i) = gj (i) − gj (i − 1).

LEMMA 3.3. For each j ∈ Z,

fj (i) =




−πj

∑i−1
l=−∞ πl

αi−1πi−1
, for i ≤ j ,

πj

∑∞
l=i πl

βiπi

, for i > j .
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PROOF. Using the strong Markov property, we have∫ u

0
Ehj (Zi−1(t)) dt = E

∫ u∧τ+
i−1

0
hj (Zi−1(t)) dt + E

∫ u

u∧τ+
i−1

hj (Zi−1(t)) dt

= E

∫ u∧τ+
i−1

0
hj (Zi−1(t)) dt

+
∫ u

0

{∫ u−s

0
Ehj (Zi(v)) dv

}
P(τ+

i−1 ∈ ds),

and letting u → ∞ yields∫ ∞
0

Ehj (Zi−1(t)) dt = E

∫ τ+
i−1

0
hj (Zi−1(t)) dt +

∫ ∞
0

Ehj (Zi(t)) dt.

Hence, for i ≤ j ,

fj (i) = gj (i) − gj (i − 1)

= −
∫ ∞

0
Ehj (Zi(t)) dt +

∫ ∞
0

Ehj (Zi−1(t)) dt

= E

∫ τ+
i−1

0
hj (Zi−1(t)) dt

= −πjEτ+
i−1 = −πj

∑i−1
l=−∞ πl

αi−1πi−1
,

the last equality following from Lemma 3.2. Likewise, using∫ ∞
0

Ehj (Zi(t)) dt = E

∫ τ−
i

0
hj (Zi(t)) dt +

∫ ∞
0

Ehj (Zi−1(t)) dt

and Lemma 3.2 again, it follows that, for i > j ,

fj (i) = −
∫ ∞

0
Ehj (Zi(t)) dt +

∫ ∞
0

Ehj (Zi−1(t)) dt

= −E

∫ τ−
i

0
hj (Zi(t)) dt = πjEτ−

i = πj

∑∞
l=i πl

βiπi

. �

LEMMA 3.4. For A ⊂ Z, let

hA(x) = 1A(x) − P(S ∈ A),

gA be the solution to

AgA = hA and fA(i) = gA(i) − gA(i − 1).

If κ = min{i : i ≥ µ}, then for all i and A,

|�fA(i)| ≤ 1 − πi

αi ∧ βi

∧ 1

αi

∧ 1

βi

≤ 1 − πi

σ 2 .
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REMARK. For approximating distributions on Z+ satisfying the balance equa-
tion (3.1) ([8], page 1382) proved that, if (3.2) is satisfied, then |�fA(i)| ≤ 1

αi
∧ 1

βi
,

and [22], Corollary 3.5.1, gives the bound |�fA(i)| ≤ �fi(i) under the assumption
of nonincreasing αi’s and nondecreasing βi ’s, derived similarly to the inequality
�fi(i) ≥ �fj(i) below. Lemma 3.4 is parallel to these types of estimates for the
new approximating distribution satisfying the version of condition (3.2) which has
been appropriately modified for its range.

PROOF OF LEMMA 3.4. It follows from Lemma 3.3 that

�fj (i) = fj (i + 1) − fj (i)

=




−πj

(∑i
l=−∞ πl

αiπi

−
∑i−1

l=−∞ πl

αi−1πi−1

)
, i < j ,

πj

(∑∞
l=i+1 πl

βi+1πi+1
+

∑i−1
l=−∞ πl

αi−1πi−1

)
, i = j ,

πj

(∑∞
l=i+1 πl

βi+1πi+1
−

∑∞
l=i πl

βiπi

)
, i > j .

Since κ = min{i : i ≥ µ} and, therefore, µ ≤ κ ≤ µ + 1, one can verify directly
that {αi, i ∈ Z} are nonincreasing and {βi, i ∈ Z} are nondecreasing. Hence, for
i < j , ∑i

l=−∞ πl

αiπi

−
∑i−1

l=−∞ πl

αi−1πi−1
=

∑i
l=−∞ πl

αiπi

−
∑i−1

l=−∞ πl

βiπi

= 1

αiβiπi

(
βi

i∑
l=−∞

πl − αi

i−1∑
l=−∞

πl

)

≥ 1

αiβiπi

(
i∑

l=−∞
βlπl −

i−1∑
l=−∞

αlπl

)
= 0,

where for the first and last equalities we have applied the balance equation αlπl =
βl+1πl+1. Likewise, for i > j ,∑∞

l=i+1 πl

βi+1πi+1
−

∑∞
l=i πl

βiπi

=
∑∞

l=i+1 πl

αiπi

−
∑∞

l=i πl

βiπi

= 1

αiβiπi

(
βi

∞∑
l=i+1

πl − αi

∞∑
l=i

πl

)

≤ 1

αiβiπi

( ∞∑
l=i+1

βlπl −
∞∑
l=i

αlπl

)
= 0.
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Hence, �fj(i) ≤ 0 for j 
= i and �fj(i) > 0 for j = i, and for any A ⊂ Z,

�fA(i) = ∑
j∈A

�fj (i) ≤ �fi(i) = πi

(∑∞
l=i+1 πl

αiπi

+
∑i−1

l=−∞ πl

βiπi

)

=
∑∞

l=i+1 πl

αi

+
∑i−1

l=−∞ πl

βi

(3.7)

≤ 1

αi ∧ βi

( ∞∑
l=i+1

πl +
i−1∑

l=−∞
πl

)
= 1 − πi

αi ∧ βi

.

To obtain the other terms in the bound, note that, since {αi, i ∈ Z} are nonin-
creasing and {βi, i ∈ Z} are nondecreasing, for l ≥ i + 1, we have

πl = αl−1πl−1

βl

≤ αiπl−1

βi

,

and for l ≤ i − 1,

πl = βl+1πl+1

αl

≤ βiπl+1

αi

,

which in turn imply ∑∞
l=i+1 πl

αi

≤
∑∞

l=i+1 πl−1

βi

= 1

βi

∞∑
l=i

πl(3.8)

and ∑i−1
l=−∞ πl

βi

≤
∑i−1

l=−∞ πl+1

αi

=
∑i

l=−∞ πl

αi

.(3.9)

Now, it follows from (3.7) and (3.8) that �fA(i) ≤ 1/βi, while combining (3.7)
and (3.9) gives �fA(i) ≤ 1/αi .

On the other hand, since hZ = 1 − P(S ∈ Z) ≡ 0, we have

−�fA(i) = �fZ\A(i) ≤ 1 − πi

αi ∧ βi

∧ 1

αi

∧ 1

βi

.

Noting that αi and βi are both at least σ 2 for all i completes the proof. �

4. Zero biasing and approximation theorems. We define the total variation
distance between two probability measures Q1,Q2 on Z as follows:

dTV(Q1,Q2) = sup
A⊂Z

|Q1(A) − Q2(A)|.

Using Lemma 3.4, we prove the following general theorems, which parallel
results in the continuous case showing that Y is close to normal when Y and Y ∗
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are close. Throughout this section, we write 
(µ,σ 2) for 
κ(µ,σ 2) for κ chosen
as in Section 3, that is,

κ = min{i : i ≥ µ}.
THEOREM 4.1. Let Y be an integer-valued random variable with mean µ and

finite variance σ 2, and let Y � have the Y -zero biased distribution. Then

dTV
(
L(Y ),
(µ,σ 2)

) ≤
∞∑

i=κ

|P(Y = i) − P(Y � = i)|

+
κ−1∑

i=−∞
|P(Y = i) − P(Y � + 1 = i)|.

PROOF. With hA and fA as in Lemma 3.4, recalling the form of the operator
B in (2.11), we have, by the zero bias property (2.5),

|P(Y ∈ A) − P(S ∈ A)|
= |EhA(Y )| = |EAgA(Y )| = |EBfA(Y )|
= |σ 2

E�fA(Y ) − E{(Y − µ)fA(Y )1Y≥κ + (Y − µ)fA(Y + 1)1Y≤κ−1}|
= σ 2∣∣E{�fA(Y )} − E

{[�(fA(Y �)1Y �≥κ)] + [
�

(
fA(Y � + 1)1Y �≤κ−1

)]}∣∣.
However, note that, for any ρ,

�(f (i)1i≥ρ) = f (i + 1)1i+1≥ρ − f (i)1i≥ρ

= [�f (i)]1i≥ρ + f (ρ)1i=ρ−1

and

�
(
f (i + 1)1i≤ρ−1

) = f (i + 2)1i+1≤ρ−1 − f (i + 1)1i≤ρ−1

= [�f (i + 1)]1i≤ρ−2 − f (ρ)1i=ρ−1.

Hence, with the help of the cancellation of the term f (ρ)1i=ρ−1, the above expec-
tation equals

σ 2|E{�fA(Y )} − E{[�fA(Y �)]1Y �≥κ + [�fA(Y � + 1)]1Y �≤κ−2}|

= σ 2

∣∣∣∣∣
∞∑

i=−∞
�fA(i)P(Y = i)

−
∞∑

i=κ

�fA(i)P(Y � = i) −
κ−1∑

i=−∞
�fA(i)P(Y � + 1 = i)

∣∣∣∣∣
≤ σ 2

∞∑
i=κ

∣∣�fA(i)
(
P(Y = i) − P(Y � = i)

)∣∣
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+ σ 2
κ−1∑

i=−∞

∣∣�fA(i)
(
P(Y = i) − P(Y � + 1 = i)

)∣∣

≤
∞∑

i=κ

|P(Y = i) − P(Y � = i)| +
κ−1∑

i=−∞
|P(Y = i) − P(Y � + 1 = i)|,

where we have applied the bound |�fA(i)| ≤ 1/σ 2 shown in Lemma 3.4. �

Before applying Theorem 4.1 to the case where W is a sum, we note that the
existence of a finite first moment of Y � is equivalent to the existence of a finite
third moment of Y ; letting f (y) = y2 in (2.5),

E[Y 3 − µY 2] = σ 2
E[2Y � + 1].

THEOREM 4.2. Let ξi, i = 1, . . . , n, be independent integer-valued random
variables and let W = ∑n

i=1 ξi . Then, with Wi = W − ξi , Var(ξi) = σ 2
i and ξ�

i de-
fined on the same space as ξi , with the ξi zero-biased distribution for i = 1, . . . , n,
with µ = E(W) and σ 2 = Var(W), we have for any K > 0,

dTV
(
L(W),
(µ,σ 2)

)
≤ 2

σ 2

n∑
i=1

σ 2
i d

(i)
+

[
E(|ξi − ξ�

i | ∧ K) + E
(|ξi − (ξ�

i + 1)| ∧ K
)]

+ 2

σ 2

n∑
i=1

σ 2
i

{ ∑
|k1−k2|>K

P(ξi = k1, ξ
�
i = k2)

+ ∑
|k1−k2|>K

P(ξi = k1, ξ
�
i + 1 = k2)

}
,

where d
(i)
+ = dTV(L(Wi),L(Wi + 1)), i = 1, . . . , n. In particular, letting K ↑ ∞,

dTV
(
L(W),
(µ,σ 2)

) ≤ 2

σ 2

n∑
i=1

σ 2
i d

(i)
+ [E|ξi − ξ�

i | + E|ξi − (ξ�
i + 1)|],(4.1)

which will be finite when E|ξi |3 < ∞, i = 1, . . . , n.

PROOF. Considering the first sum in the bound of Theorem 4.1, by invoking
(2.4) we have
∞∑

j=κ

|P(W = j) − P(W� = j)|

≤
n∑

i=1

σ 2
i

σ 2

∞∑
j=κ

|P(Wi + ξi = j) − P(Wi + ξ�
i = j)|
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≤
n∑

i=1

σ 2
i

σ 2

∞∑
j=κ

∑
k1,k2

|P(Wi = j + k1) − P(Wi = j + k2)|P(ξi = −k1, ξ
�
i = −k2)

≤
n∑

i=1

σ 2
i

σ 2

∞∑
j=κ

∑
|k1−k2|≤K

k1∨k2−1∑
l=k1∧k2

|P(Wi = j + l)

− P(Wi = j + l + 1)|P(ξi = −k1, ξ
�
i = −k2)

+
n∑

i=1

σ 2
i

σ 2

∞∑
j=κ

∑
|k1−k2|>K

[P(Wi = j + k1)

+ P(Wi = j + k2)]P(ξi = −k1, ξ
�
i = −k2)

≤ 2
n∑

i=1

σ 2
i

σ 2

{
d

(i)
+

∑
|k1−k2|≤K

|k1 − k2|P(ξi = −k1, ξ
�
i = −k2)

+ ∑
|k1−k2|>K

P(ξi = −k1, ξ
�
i = −k2)

}

≤ 2

σ 2

n∑
i=1

σ 2
i

{
d

(i)
+ E(|ξi − ξ�

i | ∧ K) + ∑
|k1−k2|>K

P(ξi = −k1, ξ
�
i = −k2)

}
;

the bound on the remaining sum can be shown similarly. �

REMARK. When W is the sum of many terms of comparable order, the bound
in (4.1) is small when d

(i)
+ , i = 1, . . . , n, are small, which is ensured by the condi-

tion that, with large probability, W is not concentrated on a lattice of span greater
than 1; see Remark 4.5.

REMARK. Note that no signed measures, truncation or translation are re-
quired, in contrast to Barbour and Xia [6], Čekanavičius and Vaitkus [9] and Bar-
bour and Choi [3].

COROLLARY 4.3. Let Ii, i = 1, . . . , n, be independent indicator random
variables with

P(Ii = 1) = 1 − P(Ii = 0) = pi, i = 1, . . . , n,

W =
n∑

i=1

Ii, µ =
n∑

i=1

pi, σ 2 =
n∑

i=1

pi(1 − pi) and

ϑ2 = σ 2 − max
i

pi(1 − pi).
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Then

dTV
(
L(W),
(µ,σ 2)

) ≤ 1

ϑ
.

As for approximations using the central limit theorem, we do not expect the
pi’s to be small; the bound here has the same order as those in the classical central
limit theorem, polynomial birth–death approximation [8] and compound Poisson
signed measures approximation [6]. Moreover, there are no additional assumptions
required as in [8] or signed measures as in [6].

PROOF OF COROLLARY 4.3. Since Wi is unimodal in this case ([25],
page 1273), we have

dTV
(
L(Wi),L(Wi + 1)

) ≤ max
j

P(Wi = j) ≤ 1

2

(
σ 2 − pi(1 − pi)

)−1/2 ≤ 1

2ϑ
,

where the second inequality is due to Barbour and Jensen [5], page 78. Since
I �
i = 0 by (2.7), we have

E|Ii − I �
i | = pi, E|Ii − (I �

i + 1)| = 1 − pi,

and it follows from (4.1) that

dTV
(
L(W),
(µ,σ 2)

) ≤ 1

ϑσ 2

n∑
i=1

σ 2
i [E|Ii − I �

i | + E|Ii − (I �
i + 1)|]

= 1

ϑ
. �

REMARK. Note that the proofs do not depend on the order of the index set
{1, . . . , n} of the ξi ’s, so one may apply the approximation theorems to the sum of
independent integer-valued random variables on an arbitrary index set.

To estimate d
(i)
+ in general, one may apply Proposition 4.6 of [6], quoted below.

PROPOSITION 4.4. Suppose that ξi , 1 ≤ i ≤ n, are independent integer-
valued random variables, and set ui = 1 − dTV(L(ξi),L(ξi + 1)), U =∑n

i=1 min{ui,1/2}. Then, if W = ∑n
i=1 ξi , we have

dTV
(
L(W),L(W + 1)

) ≤ U−1/2.

Hence, with Wi = W − ξi ,

max
1≤i≤n

dTV
(
L(Wi),L(Wi + 1)

) ≤ (U − 1)−1/2.
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REMARK. As discussed in [24], Section II.12–14, dTV(L(W),L(W + 1)) is
of order n−1/2 when ξi, i = 1, . . . , n, are independent and identically distributed
with an aperiodic distribution.

REMARK 4.5. The assumption of aperiodicity is essential here, where the to-
tal variation metric is used. To see why, take ξi, i = 1, . . . , n, independent with
distribution P(ξi = 0) = P(ξi = 3) = 1/2. Then, with probability one, W is con-
centrated on {0,3,6, . . .}, a lattice of span greater than 1, and

dTV
(
L(W),
(µ,σ 2)

)
= 1

2

∑
j

|P(W = j) − P(S = j)| ≥ 1
2

∑
j /∈{0,3,...}

P(S = j) = O(1).

If one wants to lift the assumption of aperiodicity, it is essential to weaken
the metric to the Kolmogorov metric, in which case, unless higher moments of
ξi ’s (e.g., the third moments) do not exist, the Berry–Esseen theorem would be
sufficient.

REMARK. When κ = min{i : i ≥ µ}, the variance of S does not match that
of the sum W of n independent and identically distributed integer-valued random
variables; however, crude estimates show that Var(S)/Var(W) approaches 1 as
n → ∞. It is hoped that future research could address this issue and sharpen the
estimates of the approximation errors.
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