# Stein's Method: Distributional Approximation and Concentration of Measure 

Larry Goldstein<br>University of Southern California

$36^{\text {th }}$ Midwest Probability Colloquium, 2014


## Stein's method for Distributional Approximation

Goal is to approximate a given (perhaps complicated) $\mathcal{L}(W)$ by (a simpler) $\mathcal{L}(Z)$

Works in a variety of dependent situations.

Provides non-asymptotic bounds in many metrics.

## Distributional Approximation

Stein's Lemma: A random variable $Z$ has law $\mathcal{N}(0,1)$ if and only if

$$
E\left[f^{\prime}(Z)\right]=E[Z f(Z)] \quad \text { for all } f \in \mathcal{F}
$$

the collection of bounded, absolutely continuous functions.

Stein 1972, 1986.

## Distributional Approximation

Stein's Lemma: A random variable $Z$ has law $\mathcal{N}(0,1)$ if and only if

$$
E\left[f^{\prime}(Z)\right]=E[Z f(Z)] \quad \text { for all } f \in \mathcal{F}
$$

the collection of bounded, absolutely continuous functions. Say.

## Distributional Approximation

Stein's Lemma: A random variable $Z$ has law $\mathcal{N}(0,1)$ if and only if

$$
E\left[f^{\prime}(Z)\right]=E[Z f(Z)] \quad \text { for all } f \in \mathcal{F}
$$

the collection of bounded, absolutely continuous functions. Say.

Stein 1972, 1986.

## The Stein Equation

If $W$ is such that

$$
E\left[f^{\prime}(W)-W f(W)\right]
$$

is 'small' for many functions $f$, then $W$ must be close to $\mathcal{N}(0,1)$.

Given a test function $h: \mathbb{R} \rightarrow \mathbb{R}$, evaluate $\operatorname{Eh}(W)-E h(Z)$ for $Z \sim \mathcal{N}(0,1)$ by solving for $f$ in

$$
f^{\prime}(w)-w f(w)=h(w)-E h(Z)
$$

and then evaluating the expectation of the left hand side at $W$.
more difficult than before.

## The Stein Equation

If $W$ is such that

$$
E\left[f^{\prime}(W)-W f(W)\right]
$$

is 'small' for many functions $f$, then $W$ must be close to $\mathcal{N}(0,1)$.

Given a test function $h: \mathbb{R} \rightarrow \mathbb{R}$, evaluate $E h(W)-E h(Z)$ for $Z \sim \mathcal{N}(0,1)$ by solving for $f$ in

$$
f^{\prime}(w)-w f(w)=h(w)-E h(Z)
$$

and then evaluating the expectation of the left hand side at $W$.

At first glance it looks like proceeding this way makes the problem more difficult than before.

## Bounding Solutions of the Stein Equation

Given a test function $h: \mathbb{R} \rightarrow \mathbb{R}$, and $Z \sim \mathcal{N}(0,1)$ the magnitude of the solution $f$ to

$$
f^{\prime}(w)-w f(w)=h(w)-E h(Z)
$$

and its derivatives can be given in terms of $h$.

For instance, if $h$ is absolutely continuous then

## Bounding Solutions of the Stein Equation

Given a test function $h: \mathbb{R} \rightarrow \mathbb{R}$, and $Z \sim \mathcal{N}(0,1)$ the magnitude of the solution $f$ to

$$
f^{\prime}(w)-w f(w)=h(w)-E h(Z)
$$

and its derivatives can be given in terms of $h$.

For instance, if $h$ is absolutely continuous then

$$
\left\|f^{\prime \prime}\right\| \leq 2\left\|h^{\prime}\right\|
$$

## Manipulating the Stein Equation

Evaluate

$$
E\left[f^{\prime}(W)-W f(W)\right]
$$

using coupling, and non-coupling methods.
With Coupling: Zero Bias, Exchangeable Pair, Size Bias, Stein Couplings.

Without Coupling: $2^{\text {nd }}$ order Poincaré inequalities, Malliavin Calculus.

## Manipulating the Stein Equation

Evaluate

$$
E\left[f^{\prime}(W)-W f(W)\right]
$$

using coupling, and non-coupling methods.
With Coupling: Zero Bias, Exchangeable Pair, Size Bias, Stein Couplings.

Without Coupling: $2^{\text {nd }}$ order Poincaré inequalities, Malliavin Calculus

## Manipulating the Stein Equation

Evaluate

$$
E\left[f^{\prime}(W)-W f(W)\right]
$$

using coupling, and non-coupling methods.
With Coupling: Zero Bias, Exchangeable Pair, Size Bias, Stein Couplings.

Without Coupling: $2^{\text {nd }}$ order Poincaré inequalities, Malliavin Calculus.

## Zero Bias Distribution

Stein Identity:

$$
E[Z f(Z)]=E\left[f^{\prime}(Z)\right] \quad \text { for all } f \in \mathcal{F}
$$

if and only if $Z \sim \mathcal{N}(0,1)$.

For every mean zero variance 1 random variable $W$, there exists $\mathcal{L}\left(W^{*}\right)$ such that


## Zero Bias Distribution

Stein Identity:

$$
E[Z f(Z)]=E\left[f^{\prime}(Z)\right] \quad \text { for all } f \in \mathcal{F}
$$

if and only if $Z \sim \mathcal{N}(0,1)$.

For every mean zero variance 1 random variable $W$, there exists $\mathcal{L}\left(W^{*}\right)$ such that

$$
E[W f(W)]=E\left[f^{\prime}\left(W^{*}\right)\right] \quad \text { for all } f \in \mathcal{F}
$$

The variable $W^{*}$ is said to have the $W$-zero biased distribution ( $G$. and Reinert, 1997).

## Zero Bias Distribution

Stein Identity:

$$
E[Z f(Z)]=E\left[f^{\prime}(Z)\right] \quad \text { for all } f \in \mathcal{F}
$$

if and only if $Z \sim \mathcal{N}(0,1)$.

For every mean zero variance 1 random variable $W$, there exists $\mathcal{L}\left(W^{*}\right)$ such that

$$
E[W f(W)]=E\left[f^{\prime}\left(W^{*}\right)\right] \quad \text { for all } f \in \mathcal{F}
$$

The variable $W^{*}$ is said to have the $W$-zero biased distribution (G. and Reinert, 1997).

Restatement of Stein's Characterization: $W \sim \mathcal{N}(0,1)$ if and only if $W^{*}={ }_{d} W$.

## Coupling in the Stein equation

Let $\left(W, W^{*}\right)$ be given on the same space, and let $f$ be the solution to the Stein equation

$$
h(w)-E h(Z)=f^{\prime}(w)-w f(w)
$$

Then if $\left\|h^{\prime}\right\| \leq 1$ we have

$$
\begin{aligned}
& |E h(W)-E h(Z)|=\left|E\left[f^{\prime}(W)-W f(W)\right]\right| \\
& \quad=\left|E\left[f^{\prime}(W)-f^{\prime}\left(W^{*}\right)\right]\right| \leq\left|\left|f^{\prime \prime}\right|\right| E\left|W-W^{*}\right| \leq 2 E\left|W-W^{*}\right|
\end{aligned}
$$

## Coupling in the Stein equation

Let ( $W, W^{*}$ ) be given on the same space, and let $f$ be the solution to the Stein equation

$$
h(w)-E h(Z)=f^{\prime}(w)-w f(w) .
$$

Then if $\left\|h^{\prime}\right\| \leq 1$ we have

$$
\begin{aligned}
& |E h(W)-E h(Z)|=\left|E\left[f^{\prime}(W)-W f(W)\right]\right| \\
& \quad=\left|E\left[f^{\prime}(W)-f^{\prime}\left(W^{*}\right)\right]\right| \leq\left|\left|f^{\prime \prime}\right|\right| E\left|W-W^{*}\right| \leq 2 E\left|W-W^{*}\right| .
\end{aligned}
$$

Upper bound in terms of distance between $W$ and its image under a transformation that leaves $Z$ fixed.

## Coupling in the Stein equation

Let $\left(W, W^{*}\right)$ be given on the same space, and let $f$ be the solution to the Stein equation

$$
h(w)-E h(Z)=f^{\prime}(w)-w f(w)
$$

Then if $\left\|h^{\prime}\right\| \leq 1$ we have

$$
\begin{aligned}
& |E h(W)-E h(Z)|=\left|E\left[f^{\prime}(W)-W f(W)\right]\right| \\
& \quad=\left|E\left[f^{\prime}(W)-f^{\prime}\left(W^{*}\right)\right]\right| \leq\left|\left|f^{\prime \prime}\right|\right| E\left|W-W^{*}\right| \leq 2 E\left|W-W^{*}\right|
\end{aligned}
$$

Upper bound in terms of distance between $W$ and its image under a transformation that leaves $Z$ fixed. Supremum over all such functions $h$ is so bounded, and with $d_{1}$ the Wasserstein distance, we obtain, without any assumptions on 'the dependence structure' of $W$,

$$
d_{1}(W, Z) \leq 2 d_{1}\left(W^{*}, W\right)
$$

## Zero Bias Coupling

If $X_{1}, \ldots, X_{n}$ are independent, mean zero random variables with variances $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$ and let $W$ be their sum, then for $I$ an independent random index with distribution $P(I=i)=\sigma_{i}^{2}$,

$$
W^{*}=W-X_{I}+X_{I}^{*}
$$

## Zero Bias Coupling

If $X_{1}, \ldots, X_{n}$ are independent, mean zero random variables with variances $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$ and let $W$ be their sum, then for $I$ an independent random index with distribution $P(I=i)=\sigma_{i}^{2}$,

$$
W^{*}=W-X_{I}+X_{I}^{*}
$$

Then

$$
d_{1}(W, Z) \leq 2 d_{1}\left(W^{*}, W\right) \leq \frac{1}{\sigma^{3}} \sum_{i=1}^{n} E\left|X_{i}\right|^{3}
$$

an $L^{1}$ Berry-Esseen theorem with correct rate, and, by judiciously coupling $X_{I}$ and $X_{I}^{*}$, with best known constant. (G. 2010, Tyurin 2010)

## Exchangeable Pair Coupling

For $\lambda \in(0,1)$ suppose $\left(W, W^{\prime}\right)$ is an exchangeable pair of variance 1 variables that satisfies

$$
E\left[W^{\prime} \mid W\right]=(1-\lambda) W .
$$

Then (without any independence conditions) the Kolmogorov ( $L^{\infty}$ ) distance between $W$ and $\mathcal{N}(0,1)$ is bounded by

$$
\frac{2}{\lambda} \sqrt{\operatorname{Var}\left(E\left(\left(W^{\prime}-W\right)^{2} \mid W\right)\right)}+\frac{1}{(2 \pi)^{1 / 4}} \sqrt{\frac{1}{\lambda} E\left|W^{\prime}-W\right|^{3}}
$$

We call ( $W, W^{\prime}$ ) a Stein pair. Stein, (1986).

## Hoeffding's Statistic: Exchangeable Pair

 Let $A \in \mathbb{R}^{n \times n}$ satisfy $\sum_{i, j} a_{i j}=0$, and let $\pi \in \mathcal{S}_{n}$ be a random permutation. Set$$
W_{\pi}=\sum_{i=1}^{n} a_{i \pi(i)}
$$

Simple random sampling, permutation tests.

## Hoeffding's Statistic: Exchangeable Pair

Let $A \in \mathbb{R}^{n \times n}$ satisfy $\sum_{i, j} a_{i j}=0$, and let $\pi \in \mathcal{S}_{n}$ be a random permutation. Set

$$
W_{\pi}=\sum_{i=1}^{n} a_{i \pi(i)}
$$

Simple random sampling, permutation tests.
Let $\tau_{i j}$ transpose $i$ and $j,(I, J)$ uniform over all unequal pairs, independent of $\pi$, and $\pi^{\prime}=\pi \tau_{I J}$. Then $\left(W_{\pi}, W_{\pi^{\prime}}\right)$ is a Stein pair. (Stein, Ho and Chen 1978, Chen 2013)

## Hoeffding's Statistic: Exchangeable Pair

Let $A \in \mathbb{R}^{n \times n}$ satisfy $\sum_{i, j} a_{i j}=0$, and let $\pi \in \mathcal{S}_{n}$ be a random permutation. Set

$$
W_{\pi}=\sum_{i=1}^{n} a_{i \pi(i)}
$$

Simple random sampling, permutation tests.
Let $\tau_{i j}$ transpose $i$ and $j,(I, J)$ uniform over all unequal pairs, independent of $\pi$, and $\pi^{\prime}=\pi \tau_{I J}$. Then ( $W_{\pi}, W_{\pi^{\prime}}$ ) is a Stein pair. (Stein, Ho and Chen 1978, Chen 2013)
May consider other permutation distributions, e.g. $\pi$ is chosen randomly from all fixed point free involutions. (G. and Rinott 2003)

## Hoeffding's Statistic: Exchangeable Pair

Let $A \in \mathbb{R}^{n \times n}$ satisfy $\sum_{i, j} a_{i j}=0$, and let $\pi \in \mathcal{S}_{n}$ be a random permutation. Set

$$
W_{\pi}=\sum_{i=1}^{n} a_{i \pi(i)}
$$

Simple random sampling, permutation tests.
Let $\tau_{i j}$ transpose $i$ and $j,(I, J)$ uniform over all unequal pairs, independent of $\pi$, and $\pi^{\prime}=\pi \tau_{I J}$. Then ( $W_{\pi}, W_{\pi^{\prime}}$ ) is a Stein pair.
(Stein, Ho and Chen 1978, Chen 2013)
May consider other permutation distributions, e.g. $\pi$ is chosen randomly from all fixed point free involutions. (G. and Rinott 2003)

We may write $W_{\pi}=\operatorname{tr}(A P)$ for $P$ a permutation matrix. Can apply same technique for traces of random matrices on classical groups, group characters. Meckes 2008, Fulman 2006.

## Size Bias Coupling

For $W \geq 0$ with $E W=\mu$ finite and positive, we say $W^{s}$ has the $W$-size bias distribution when

$$
E[W f(W)]=\mu E\left[f\left(W^{s}\right)\right] \quad \text { for all } f \in \mathcal{F}
$$

## Size Bias Coupling

For $W \geq 0$ with $E W=\mu$ finite and positive, we say $W^{s}$ has the $W$-size bias distribution when

$$
E[W f(W)]=\mu E\left[f\left(W^{s}\right)\right] \quad \text { for all } f \in \mathcal{F}
$$

If $W$ is the sum of indicators $X_{1}, \ldots, X_{n}$, choose one proportional to its mean $P(I=i)=E X_{i} / E W$, independently of $W$. Set $X_{I}$ to be equal to one, sample the remaining indicators from their joint conditional distribution on this event.

## Size Bias Wasserstein Bound

Let $Y$ be a nonnegative random variable with non zero mean $\mu$ and positive, finite variance $\sigma^{2}$. If $Y^{s}$ on the same space as $Y$ has the $Y$-size bias distribution, then for the standardized version $W$ of $Y$,

$$
d_{1}(W, Z) \leq \frac{\mu}{\sigma^{2}} \sqrt{\operatorname{Var}\left(E\left(Y^{s}-Y \mid Y\right)\right)}+\frac{\mu}{\sigma^{3}} E\left|Y^{s}-Y\right|^{2} .
$$

Chen and Röllin (2010).

## Size Bias Wasserstein Bound

Let $Y$ be a nonnegative random variable with non zero mean $\mu$ and positive, finite variance $\sigma^{2}$. If $Y^{s}$ on the same space as $Y$ has the $Y$-size bias distribution, then for the standardized version $W$ of $Y$,

$$
d_{1}(W, Z) \leq \frac{\mu}{\sigma^{2}} \sqrt{\operatorname{Var}\left(E\left(Y^{s}-Y \mid Y\right)\right)}+\frac{\mu}{\sigma^{3}} E\left|Y^{s}-Y\right|^{2} .
$$

Chen and Röllin (2010).
E.g. vertex degree in random graphs, occupancy models. With more work, can also achieve optimal rate $L^{\infty}$ bounds.

## Second Order Poincaré Inequality

Stein identity for $\mathcal{N}(0,1)$,

$$
E[Z f(Z)]=E\left[f^{\prime}(Z)\right] .
$$

## Zero bias distribution for mean zero, variance one variable $W$,



Cacoullos and Papathanasiou, 1992.

## Second Order Poincaré Inequality

Stein identity for $\mathcal{N}(0,1)$,

$$
E[Z f(Z)]=E\left[f^{\prime}(Z)\right] .
$$

Zero bias distribution for mean zero, variance one variable $W$,

$$
E[W f(W)]=E\left[f^{\prime}\left(W^{*}\right)\right] .
$$



## Second Order Poincaré Inequality

Stein identity for $\mathcal{N}(0,1)$,

$$
E[Z f(Z)]=E\left[f^{\prime}(Z)\right]
$$

Zero bias distribution for mean zero, variance one variable $W$,

$$
E[W f(W)]=E\left[f^{\prime}\left(W^{*}\right)\right]
$$

Might also hope to modify right hand side by finding $T(W)$ such that

$$
E[W f(W)]=E\left[T(W) f^{\prime}(W)\right]
$$

Cacoullos and Papathanasiou, 1992.

## Stein Coefficient

For mean zero, variance $1 W$, given $T(W)$ such that $E[W f(W)]=E\left[T(W) f^{\prime}(W)\right], \quad$ which hence satisfies $\quad E[T]=1$, use in the Stein equation as

$$
\begin{aligned}
E h(W)-E h(Z) & =E\left[f^{\prime}(W)-W f(W)\right] \\
& =E\left[(1-T(W)) f^{\prime}(W)\right] \leq \| f^{\prime}| | E|1-T(W)|
\end{aligned}
$$

For instance, taking $0 \leq h \leq 1$, we obtain

$$
d_{\mathrm{TV}}(W, Z) \leq 2 E|1-T(W)| \leq 2 \sqrt{\operatorname{Var}(T)}
$$

## Gaussian Inequalities

> Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuously differentiable function, and $\mathbf{g} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{\mathbf{n}}\right)$

Poincaré Inequality:

Logarithmic Sobolev Inequality

$$
\begin{aligned}
& \operatorname{Ent}\left(f(\mathrm{~g})^{2}\right) \leq 2 E\left[\|\left.\nabla f(\mathrm{~g})\right|^{2}\right] \\
& =E[f(\mathrm{~g}) \log f(\mathrm{~g})]-E[f(\mathrm{~g})] \log [E f(\mathrm{~g})]
\end{aligned}
$$

## Gaussian Inequalities

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuously differentiable function, and $\mathbf{g} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{\mathbf{n}}\right)$.

Poincaré Inequality:

$$
\operatorname{Var}(f(\mathbf{g})) \leq E\left[\|\nabla f(\mathbf{g})\|^{2}\right] .
$$

## Gaussian Inequalities

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuously differentiable function, and $\mathbf{g} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{\mathbf{n}}\right)$.

Poincaré Inequality:

$$
\operatorname{Var}(f(\mathbf{g})) \leq E\left[\|\nabla f(\mathbf{g})\|^{2}\right] .
$$

Logarithmic Sobolev Inequality

$$
\operatorname{Ent}\left(f(\mathbf{g})^{2}\right) \leq 2 E\left[\|\nabla f(\mathbf{g})\|^{2}\right]
$$

where

$$
\operatorname{Ent}(f(\mathbf{g}))=E[f(\mathbf{g}) \log f(\mathbf{g})]-E[f(\mathbf{g})] \log [E f(\mathbf{g})]
$$

## Gaussian Inequalities

Can prove the Poincaré Inequality by showing that
$\operatorname{Var}(f(\mathbf{g}))=E[T] \quad$ where $\quad T=\int_{0}^{\infty} e^{-t}\left\langle\nabla f(\mathbf{g}), \widehat{E} \nabla f\left(\widehat{\mathbf{g}}_{t}\right)\right\rangle d t$
with

$$
\widehat{\mathbf{g}}_{t}=e^{-t} \mathbf{g}+\sqrt{1-e^{-2 t}} \widehat{\mathbf{g}},
$$

and $\widehat{\mathbf{g}}$ an independent copy of $\mathbf{g}$, and $\widehat{E}$ expectation with respect to $\widehat{\mathbf{g}}$. Applying the Cauchy-Schwarz inequality one obtains $E[T] \leq E\|\nabla f(\mathbf{g})\|^{2}$.

## Gaussian Inequalities

Can prove the Poincaré Inequality by showing that
$\operatorname{Var}(f(\mathbf{g}))=E[T] \quad$ where $\quad T=\int_{0}^{\infty} e^{-t}\left\langle\nabla f(\mathbf{g}), \widehat{E} \nabla f\left(\widehat{\mathbf{g}}_{t}\right)\right\rangle d t$
with

$$
\widehat{\mathbf{g}}_{t}=e^{-t} \mathbf{g}+\sqrt{1-e^{-2 t}} \widehat{\mathbf{g}},
$$

and $\widehat{\mathbf{g}}$ an independent copy of $\mathbf{g}$, and $\widehat{E}$ expectation with respect to $\widehat{\mathbf{g}}$. Applying the Cauchy-Schwarz inequality one obtains $E[T] \leq E\|\nabla f(\mathbf{g})\|^{2}$.
Equality to variance hints that $T$ may be a Stein coefficient.

## Second Order Poincaré Inequality

Let $f(\mathbf{g})$ have mean $\mu$ and variance $\sigma^{2}$, and $N \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Then

$$
d_{\mathrm{TV}}(f(\mathbf{g}), N) \leq \frac{2}{\sigma^{2}} \sqrt{\operatorname{Var}\left(\int_{0}^{\infty} e^{-t}\left\langle\nabla f(\mathbf{g}), \hat{E} \nabla f\left(\widehat{\mathbf{g}}_{t}\right)\right\rangle d t\right)}
$$

Chatterjee (2009), Nourdin, Peccati and Reinert (2009).

## Second Order Poincaré Inequality

Let $f(\mathbf{g})$ have mean $\mu$ and variance $\sigma^{2}$, and $N \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Then

$$
d_{\mathrm{TV}}(f(\mathbf{g}), N) \leq \frac{2}{\sigma^{2}} \sqrt{\operatorname{Var}\left(\int_{0}^{\infty} e^{-t}\left\langle\nabla f(\mathbf{g}), \hat{E} \nabla f\left(\widehat{\mathbf{g}}_{t}\right)\right\rangle d t\right)}
$$

Chatterjee (2009), Nourdin, Peccati and Reinert (2009).
E.g. Let $f(\mathbf{x})=d^{2}(\mathbf{x}, C)$, the shortest squared distance between $\mathbf{x}$ and a closed convex set $C$. Then $\nabla f(\mathbf{x})=2\left(\mathbf{x}-\Pi_{C}(\mathbf{x})\right)$, and
$\operatorname{Var}(f(\mathbf{g})) \leq 4 E d^{2}(\mathbf{g}, C)$

## Second Order Poincaré Inequality

Let $f(\mathbf{g})$ have mean $\mu$ and variance $\sigma^{2}$, and $N \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Then

$$
d_{\mathrm{TV}}(f(\mathbf{g}), N) \leq \frac{2}{\sigma^{2}} \sqrt{\operatorname{Var}\left(\int_{0}^{\infty} e^{-t}\left\langle\nabla f(\mathbf{g}), \hat{E} \nabla f\left(\widehat{\mathbf{g}}_{t}\right)\right\rangle d t\right)}
$$

Chatterjee (2009), Nourdin, Peccati and Reinert (2009).
E.g. Let $f(\mathbf{x})=d^{2}(\mathbf{x}, C)$, the shortest squared distance between $\mathbf{x}$ and a closed convex set $C$. Then $\nabla f(\mathbf{x})=2\left(\mathbf{x}-\Pi_{C}(\mathbf{x})\right)$, and
$\operatorname{Var}(f(\mathbf{g})) \leq 4 E d^{2}(\mathbf{g}, C) \quad$ and $\quad d_{\mathrm{TV}}(f(\mathbf{g}), N) \leq \frac{16 \sqrt{E d^{2}(\mathbf{g}, C)}}{\sigma^{2}}$

## Stein's method and Malliavin Calculus

For a mean zero function $F$ of a Gaussian isonormal process $\{X(h): h \in \mathfrak{H}\}$ in $\mathbb{D}^{1,2}$ (derivative, moment), using $F=L L^{-1} F, L=-\delta D$, we have the expression

$$
T=\left\langle D F,-D L^{-1} F\right\rangle_{\mathfrak{H}}
$$

where $D$ is the Malliavin derivative, $\delta$ its adjoint, and $L$ is the Ornstein-Uhlenbeck generator.

## Stein's method and Malliavin Calculus

Mean zero $L^{2}$ functions $F$ of $X$ have an orthogonal Wiener-Ito Chaos expansion

$$
F=\sum_{q=1}^{\infty} J_{q}
$$

The Stein coefficient

$$
T=\left\langle D F,-D L^{-1} F\right\rangle_{\mathfrak{H}}
$$

is particularly tractable when $F$ is an element $J_{q}$ of a fixed Wiener Chaos for $q \geq 1$.
multiple stochastic integrals of Brownian Motion.

## Stein's method and Malliavin Calculus

Mean zero $L^{2}$ functions $F$ of $X$ have an orthogonal Wiener-Ito Chaos expansion

$$
F=\sum_{q=1}^{\infty} J_{q}
$$

The Stein coefficient

$$
T=\left\langle D F,-D L^{-1} F\right\rangle_{\mathfrak{H}}
$$

is particularly tractable when $F$ is an element $J_{q}$ of a fixed Wiener Chaos for $q \geq 1$. Hence, can obtain bounds to the normal in total variation for, say, multiple stochastic integrals of Brownian Motion.

## Stein's method and Malliavin Calculus

Nourdin and Peccati 2009:
Theorem
Let $F$ belong to the $q^{\text {th }}$ Wiener chaos of a Brownian motion for some $q \geq 2$. Then

$$
d_{\mathrm{TV}}(F, Z) \leq 2\left|1-E F^{2}\right|+2 \sqrt{\frac{q-1}{3 q}} \sqrt{E F^{4}-3\left(E F^{2}\right)^{2}}
$$

## Stein's method for non Normal distributions

Poisson $Z \sim \mathcal{P}(\lambda)$, characterizing equation

$$
E[Z f(Z)]=\lambda E[f(Z+1)]
$$

Recalling the size bias transformation, $W \sim \mathcal{P}(\lambda)$ for some $\lambda>0$ if and only if $W$ satisfies the distributional fixed point equation

$$
W={ }_{d} W^{s}-1
$$

If $W^{s}$ has the $W$-size biased distribution, and is defined on the same space as $W$, then (Chen 1975)

$$
d_{\mathrm{TV}}(W, Z) \leq\left(1-e^{-\lambda}\right) E\left|W-\left(W^{s}-1\right)\right|
$$

## Stein's method for non Normal distributions

Poisson $Z \sim \mathcal{P}(\lambda)$, characterizing equation

$$
E[Z f(Z)]=\lambda E[f(Z+1)] .
$$

Recalling the size bias transformation, $W \sim \mathcal{P}(\lambda)$ for some $\lambda>0$ if and only if $W$ satisfies the distributional fixed point equation

$$
W={ }_{d} W^{s}-1 .
$$

If $W^{s}$ has the $W$-size biased distribution, and is defined on the same space as $W$, then (Chen 1975)

$$
d_{\mathrm{TV}}(W, Z) \leq\left(1-e^{-\lambda}\right) E\left|W-\left(W^{s}-1\right)\right|
$$

Applications to head runs, DNA sequence matching, etc. (Arratia, G., Gordon 1989, Barbour et at. 1992)

## Poisson Subset Numbers

Let $n$ be an integer and $A_{0}, \ldots, A_{k}$ be uniformly and independently chosen random subsets of fixed sizes $a_{0}, \ldots, a_{k}$ of $\{1, \ldots, n\}$. Compute a bound to the Poisson for

$$
W=\left|\bigcap_{j=0}^{k} A_{j}\right|=\sum_{a=1}^{n} 1\left(a \in \bigcap_{j=0}^{k} A_{j}\right)
$$

[^0]calculation results

## Poisson Subset Numbers

Let $n$ be an integer and $A_{0}, \ldots, A_{k}$ be uniformly and independently chosen random subsets of fixed sizes $a_{0}, \ldots, a_{k}$ of $\{1, \ldots, n\}$.
Compute a bound to the Poisson for

$$
W=\left|\bigcap_{j=0}^{k} A_{j}\right|=\sum_{\alpha=1}^{n} \mathbf{1}\left(\alpha \in \bigcap_{j=0}^{k} A_{j}\right)
$$

so absolute value in bound can be removed. Simple moment
calculation results

## Poisson Subset Numbers

Let $n$ be an integer and $A_{0}, \ldots, A_{k}$ be uniformly and independently chosen random subsets of fixed sizes $a_{0}, \ldots, a_{k}$ of $\{1, \ldots, n\}$. Compute a bound to the Poisson for

$$
W=\left|\bigcap_{j=0}^{k} A_{j}\right|=\sum_{\alpha=1}^{n} \mathbf{1}\left(\alpha \in \bigcap_{j=0}^{k} A_{j}\right)
$$

Size bias by choosing $\alpha$ uniformly and independently, and for all $j$ such that $A_{j} \not \supset \alpha$, swap $\alpha$ into $A_{j}$ by kicking out a uniformly and independently chosen element of $A_{j}$, forming $W^{\alpha}$. Now

$$
W-\left(W^{\alpha}-1\right)=X_{\alpha}+\sum_{\beta \neq \alpha}\left(X_{\beta}-X_{\beta}^{\alpha}\right) \geq 0
$$

so absolute value in bound can be removed. Simple moment calculation results.

## Exponential

For a non-negative random variable $W$ with finite non zero mean we say $W^{e}$ has the $W$-equilibrium transformation when $W^{e}={ }_{d} U W^{s}$, where $U$ and $W^{s}$ are independent, $U \sim \mathcal{U}[0,1]$ and $W^{s}$ has the $W$-size biased distribution.

The variable $W$ is exponential if and only if $W={ }_{d} W^{e}$.

Bounds (one example) from Peköz and Röellin (2011), if $E W^{2}<\infty$ then with $Z \sim \operatorname{Exp}(1)$,

$$
d_{1}(W, Z) \leq 2 E\left|W^{e}-W\right|
$$

## Exponential Approximation

Bounds in theorem of Yaglom on exponential limit for population size $Z_{n}$ of generation $n$ of critical Galton-Watson branching process GW conditioned on non-extinction, offspring distribution $\nu$. Peköz and Röellin (2011), $Z \sim \operatorname{Exp}(1)$, offspring distribution variance $\sigma^{2}$,

$$
\left.d_{1}\left(\mathcal{L}\left(2 Z_{n} /\left(\sigma^{2} n\right)\right) \mid Z_{n}>0\right), Z\right)=O\left(\frac{\log n}{n}\right)
$$

## Exponential Approximation

Galton Watson Tree GW population $Z_{n}$ generating $n$, size biased $\mathrm{GW}^{s}$, from Lyons, Pemantle and Peres (1995). Start with single individual $v_{0}$ at time 0 . In generation $n \geq 0$, pick an individual $v_{n}$ uniformly to have offspring according $\nu^{s}$, all others with $\nu$, gives 'spine' $v_{0}, v_{1}, \ldots$ of tree that never dies out.

Number $S_{n}$ of individuals in generation $n$ of $\mathrm{GW}^{s}$ is $Z_{n}^{s}$, where $Z_{n}$ is corresponding number in GW. Individual $v_{n}$ is uniform over all individuals in generation $n$, and

$$
\mathcal{L}\left(\mathrm{GW}^{s} \mid v_{n} \text { is left most individual }\right)=\mathcal{L}\left(\mathrm{GW} \mid Z_{n}>0\right)
$$

Distribution of $R_{n}$, number of $Z_{n}$ to the right of $v_{n}$ is both approximately $\mathcal{L}\left(Z_{n} \mid Z_{n}>0\right)$ and $U Z_{n}^{s}$, hence exponential.

## Next Stop

Second floor of the Stein Mart: Concentration inequalities.


[^0]:    so absolute value in bound can be removed. Simple moment

