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Stein’s method for Distributional Approximation

Goal is to approximate a given (perhaps complicated) L(W ) by (a
simpler) L(Z )

Works in a variety of dependent situations.

Provides non-asymptotic bounds in many metrics.
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Distributional Approximation

Stein’s Lemma: A random variable Z has law N (0, 1) if and only if

E [f ′(Z )] = E [Zf (Z )] for all f ∈ F ,

the collection of bounded, absolutely continuous functions. Say.

Stein 1972, 1986.
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The Stein Equation

If W is such that

E [f ′(W )−Wf (W )]

is ‘small’ for many functions f , then W must be close to N (0, 1).

Given a test function h : R→ R, evaluate Eh(W )− Eh(Z ) for
Z ∼ N (0, 1) by solving for f in

f ′(w)− wf (w) = h(w)− Eh(Z )

and then evaluating the expectation of the left hand side at W .

At first glance it looks like proceeding this way makes the problem
more difficult than before.
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Bounding Solutions of the Stein Equation

Given a test function h : R→ R, and Z ∼ N (0, 1) the magnitude
of the solution f to

f ′(w)− wf (w) = h(w)− Eh(Z )

and its derivatives can be given in terms of h.

For instance, if h is absolutely continuous then

||f ′′|| ≤ 2||h′||.
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Manipulating the Stein Equation

Evaluate

E [f ′(W )−Wf (W )]

using coupling, and non-coupling methods.

With Coupling: Zero Bias, Exchangeable Pair, Size Bias, Stein
Couplings.

Without Coupling: 2nd order Poincaré inequalities, Malliavin
Calculus.
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Zero Bias Distribution

Stein Identity:

E [Zf (Z )] = E [f ′(Z )] for all f ∈ F

if and only if Z ∼ N (0, 1).

For every mean zero variance 1 random variable W , there exists
L(W ∗) such that

E [Wf (W )] = E [f ′(W ∗)] for all f ∈ F .

The variable W ∗ is said to have the W -zero biased distribution (G.
and Reinert, 1997).

Restatement of Stein’s Characterization: W ∼ N (0, 1) if and only
if W ∗ =d W .
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Coupling in the Stein equation
Let (W ,W ∗) be given on the same space, and let f be the
solution to the Stein equation

h(w)− Eh(Z ) = f ′(w)− wf (w).

Then if ||h′|| ≤ 1 we have

|Eh(W )− Eh(Z )| = |E [f ′(W )−Wf (W )]|
= |E [f ′(W )− f ′(W ∗)]| ≤ ||f ′′||E |W −W ∗| ≤ 2E |W −W ∗|.

Upper bound in terms of distance between W and its image under
a transformation that leaves Z fixed. Supremum over all such
functions h is so bounded, and with d1 the Wasserstein distance,
we obtain, without any assumptions on ‘the dependence structure’
of W ,

d1(W ,Z ) ≤ 2d1(W ∗,W ).
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Zero Bias Coupling

If X1, . . . ,Xn are independent, mean zero random variables with
variances σ21, . . . , σ

2
n and let W be their sum, then for I an

independent random index with distribution P(I = i) = σ2i ,

W ∗ = W − XI + X ∗I .

Then

d1(W ,Z ) ≤ 2d1(W ∗,W ) ≤ 1

σ3

n∑
i=1

E |Xi |3,

an L1 Berry-Esseen theorem with correct rate, and, by judiciously
coupling XI and X ∗I , with best known constant. (G. 2010, Tyurin
2010)
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Exchangeable Pair Coupling

For λ ∈ (0, 1) suppose (W ,W ′) is an exchangeable pair of
variance 1 variables that satisfies

E [W ′|W ] = (1− λ)W .

Then (without any independence conditions) the Kolmogorov (L∞)
distance between W and N (0, 1) is bounded by

2

λ

√
Var (E ((W ′ −W )2|W )) +

1

(2π)1/4

√
1

λ
E |W ′ −W |3

We call (W ,W ′) a Stein pair. Stein, (1986).
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Hoeffding’s Statistic: Exchangeable Pair
Let A ∈ Rn×n satisfy

∑
i ,j aij = 0, and let π ∈ Sn be a random

permutation. Set

Wπ =
n∑

i=1

aiπ(i).

Simple random sampling, permutation tests.
Let τij transpose i and j , (I , J) uniform over all unequal pairs,
independent of π, and π′ = πτIJ . Then (Wπ,Wπ′) is a Stein pair.
(Stein, Ho and Chen 1978, Chen 2013)

May consider other permutation distributions, e.g. π is chosen
randomly from all fixed point free involutions. (G. and Rinott
2003)

We may write Wπ = tr(AP) for P a permutation matrix. Can
apply same technique for traces of random matrices on classical
groups, group characters. Meckes 2008, Fulman 2006.
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Size Bias Coupling

For W ≥ 0 with EW = µ finite and positive, we say W s has the
W -size bias distribution when

E [Wf (W )] = µE [f (W s)] for all f ∈ F .

If W is the sum of indicators X1, . . . ,Xn, choose one proportional
to its mean P(I = i) = EXi/EW , independently of W . Set XI to
be equal to one, sample the remaining indicators from their joint
conditional distribution on this event.
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Size Bias Wasserstein Bound

Let Y be a nonnegative random variable with non zero mean µ and
positive, finite variance σ2. If Y s on the same space as Y has the
Y -size bias distribution, then for the standardized version W of Y ,

d1(W ,Z ) ≤ µ

σ2

√
Var (E (Y s − Y |Y )) +

µ

σ3
E |Y s − Y |2.

Chen and Röllin (2010).

E.g. vertex degree in random graphs, occupancy models. With
more work, can also achieve optimal rate L∞ bounds.
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Second Order Poincaré Inequality

Stein identity for N (0, 1),

E [Zf (Z )] = E [f ′(Z )].

Zero bias distribution for mean zero, variance one variable W ,

E [Wf (W )] = E [f ′(W ∗)].

Might also hope to modify right hand side by finding T (W ) such
that

E [Wf (W )] = E [T (W )f ′(W )].

Cacoullos and Papathanasiou, 1992.
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Stein identity for N (0, 1),

E [Zf (Z )] = E [f ′(Z )].

Zero bias distribution for mean zero, variance one variable W ,

E [Wf (W )] = E [f ′(W ∗)].

Might also hope to modify right hand side by finding T (W ) such
that

E [Wf (W )] = E [T (W )f ′(W )].

Cacoullos and Papathanasiou, 1992.



Method Coupling Without Coupling Non Normal

Second Order Poincaré Inequality
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Stein Coefficient

For mean zero, variance 1 W , given T (W ) such that

E [Wf (W )] = E [T (W )f ′(W )], which hence satisfies E [T ] = 1,

use in the Stein equation as

Eh(W )− Eh(Z ) = E [f ′(W )−Wf (W )]

= E [(1− T (W ))f ′(W )] ≤ ||f ′||E |1− T (W )|.

For instance, taking 0 ≤ h ≤ 1, we obtain

dTV(W ,Z ) ≤ 2E |1− T (W )| ≤ 2
√

Var(T ).
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Gaussian Inequalities

Let f : Rn → R be a continuously differentiable function, and
g ∼ N (0, In).

Poincaré Inequality:

Var(f (g)) ≤ E
[
||∇f (g)||2

]
.

Logarithmic Sobolev Inequality

Ent(f (g)2) ≤ 2E
[
||∇f (g)||2

]
,

where

Ent(f (g)) = E [f (g) log f (g)]− E [f (g)] log[Ef (g)].
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Gaussian Inequalities

Can prove the Poincaré Inequality by showing that

Var(f (g)) = E [T ] where T =

∫ ∞
0

e−t〈∇f (g), Ê∇f (ĝt)〉dt

with

ĝt = e−tg +
√

1− e−2t ĝ,

and ĝ an independent copy of g, and Ê expectation with respect
to ĝ. Applying the Cauchy-Schwarz inequality one obtains
E [T ] ≤ E‖∇f (g)‖2.
Equality to variance hints that T may be a Stein coefficient.
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Second Order Poincaré Inequality

Let f (g) have mean µ and variance σ2, and N ∼ N (µ, σ2). Then

dTV(f (g),N) ≤ 2

σ2

√
Var

(∫ ∞
0

e−t〈∇f (g), Ê∇f (ĝt)〉dt
)

Chatterjee (2009), Nourdin, Peccati and Reinert (2009).

E.g. Let f (x) = d2(x,C ), the shortest squared distance between x
and a closed convex set C . Then ∇f (x) = 2(x− ΠC (x)), and

Var(f (g)) ≤ 4Ed2(g,C ) and dTV(f (g),N) ≤
16
√
Ed2(g,C )

σ2
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Stein’s method and Malliavin Calculus

For a mean zero function F of a Gaussian isonormal process
{X (h) : h ∈ H} in D1,2 (derivative, moment), using
F = LL−1F , L = −δD, we have the expression

T = 〈DF ,−DL−1F 〉H

where D is the Malliavin derivative, δ its adjoint, and L is the
Ornstein-Uhlenbeck generator.
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Stein’s method and Malliavin Calculus

Mean zero L2 functions F of X have an orthogonal Wiener-Ito
Chaos expansion

F =
∞∑
q=1

Jq.

The Stein coefficient

T = 〈DF ,−DL−1F 〉H

is particularly tractable when F is an element Jq of a fixed Wiener
Chaos for q ≥ 1.
Hence, can obtain bounds to the normal in total variation for, say,
multiple stochastic integrals of Brownian Motion.



Method Coupling Without Coupling Non Normal

Stein’s method and Malliavin Calculus

Mean zero L2 functions F of X have an orthogonal Wiener-Ito
Chaos expansion

F =
∞∑
q=1

Jq.

The Stein coefficient

T = 〈DF ,−DL−1F 〉H

is particularly tractable when F is an element Jq of a fixed Wiener
Chaos for q ≥ 1.
Hence, can obtain bounds to the normal in total variation for, say,
multiple stochastic integrals of Brownian Motion.



Method Coupling Without Coupling Non Normal

Stein’s method and Malliavin Calculus

Nourdin and Peccati 2009:

Theorem
Let F belong to the qth Wiener chaos of a Brownian motion for
some q ≥ 2. Then

dTV(F ,Z ) ≤ 2|1− EF 2|+ 2

√
q − 1

3q

√
EF 4 − 3(EF 2)2.
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Stein’s method for non Normal distributions

Poisson Z ∼ P(λ) , characterizing equation

E [Zf (Z )] = λE [f (Z + 1)].

Recalling the size bias transformation, W ∼ P(λ) for some λ > 0
if and only if W satisfies the distributional fixed point equation

W =d W s − 1.

If W s has the W -size biased distribution, and is defined on the
same space as W , then (Chen 1975)

dTV(W ,Z ) ≤ (1− e−λ)E |W − (W s − 1)|

Applications to head runs, DNA sequence matching, etc. (Arratia,
G., Gordon 1989, Barbour et at. 1992)
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Poisson Subset Numbers

Let n be an integer and A0, . . . ,Ak be uniformly and independently
chosen random subsets of fixed sizes a0, . . . , ak of {1, . . . , n}.
Compute a bound to the Poisson for

W = |
k⋂

j=0

Aj | =
n∑

α=1

1(α ∈
k⋂

j=0

Aj)

Size bias by choosing α uniformly and independently, and for all j
such that Aj 63 α, swap α into Aj by kicking out a uniformly and
independently chosen element of Aj , forming W α. Now

W − (W α − 1) = Xα +
∑
β 6=α

(Xβ − Xα
β ) ≥ 0,

so absolute value in bound can be removed. Simple moment
calculation results.
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independently chosen element of Aj , forming W α. Now

W − (W α − 1) = Xα +
∑
β 6=α

(Xβ − Xα
β ) ≥ 0,

so absolute value in bound can be removed. Simple moment
calculation results.
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Exponential

For a non-negative random variable W with finite non zero mean
we say W e has the W -equilibrium transformation when
W e =d UW s , where U and W s are independent, U ∼ U [0, 1] and
W s has the W -size biased distribution.

The variable W is exponential if and only if W =d W e .

Bounds (one example) from Peköz and Röellin (2011), if
EW 2 <∞ then with Z ∼ Exp(1),

d1(W ,Z ) ≤ 2E |W e −W |.
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Exponential Approximation

Bounds in theorem of Yaglom on exponential limit for population
size Zn of generation n of critical Galton-Watson branching process
GW conditioned on non-extinction, offspring distribution ν. Peköz
and Röellin (2011), Z ∼ Exp(1), offspring distribution variance σ2,

d1(L(2Zn/(σ2n))|Zn > 0),Z ) = O

(
log n

n

)
.
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Exponential Approximation

Galton Watson Tree GW population Zn generating n, size biased
GWs , from Lyons, Pemantle and Peres (1995). Start with single
individual v0 at time 0. In generation n ≥ 0, pick an individual vn
uniformly to have offspring according νs , all others with ν, gives
‘spine’ v0, v1, . . . of tree that never dies out.

Number Sn of individuals in generation n of GWs is Z s
n , where Zn

is corresponding number in GW. Individual vn is uniform over all
individuals in generation n, and

L(GWs |vn is left most individual) = L(GW|Zn > 0)

Distribution of Rn, number of Zn to the right of vn is both
approximately L(Zn|Zn > 0) and UZ s

n , hence exponential.
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Next Stop

Second floor of the Stein Mart: Concentration inequalities.
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