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Abstract

A new class of distributional transformations is introduced, char-
acterized by equations relating function weighted expectations of test
functions on a given distribution to expectations of the transformed
distribution on the test function’s higher order derivatives. The class
includes the size and zero bias transformations, and when specializing
to weighting by polynomial functions, relates distributional families
closed under independent addition, and in particular the infinitely di-
visible distributions, to the family of transformations induced by their
associated orthogonal polynomial systems. For these families, gen-
eralizing a well known property of size biasing, sums of independent
variables are transformed by replacing summands chosen according to
a multivariate distribution on its index set by independent variables
whose distributions are transformed by members of that same family.
A variety of the transformations associated with the classical orthogo-
nal polynomial systems have as fixed points the original distribution,
or a member of the same family with different parameter.

1 Introduction

The zero bias transformation was introduced in [13]. This mapping enjoys
properties similar to those of the well known size biased transformation (see
e.g. [15]) on non-negative variables, but can be applied to mean zero random
variables. One main feature of the zero bias transformation is that its unique
fixed point is the mean zero normal distribution, and for this reason it has
been applied in Stein’s method for the purpose of normal approximation
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([13], [11], [12], and [14]). The zero bias transformation is also related to the
Ki function in the work [16], [5], [22], and [6] and others; for a good overview
see [8].

We place the classical size bias transformation and the zero bias trans-
formation in a broader context, showing that both are a particular case of
transforming a given distribution X into X(P ) through the use of a mea-
surable ‘biasing’ function P . To be more precise, for the given X and P
let Cm denote the collection of functions whose mth derivative exists and is
measurable on R, and suppressing X on the left hand side, set

Fm(P ) = {F ∈ Cm : E|P (X)F (X)| < ∞}.

We consider transformations characterized by

EP (X)F (X) = αEF (m)(X(P )) for all F ∈ Fm(P ), (1)

where necessarily α = (m!)−1EP (X)Xm when Xm ∈ F(P ); we insist α >
0. We coin this distribution the X − P biased distribution. For discrete
distributions the differential operator is replaced by the difference operator;
see Sections 4.3 and 4.4.

Theorem 2.1 provides our most general conditions on the existence of
transformations characterized by (1), where the ‘biasing’ function P is only
required to have m sign changes and satisfy certain orthogonality and posi-
tivity conditions; we call m the order of the resulting transformation. In the
particular case where P is a polynomial, the sign change condition can be
expressed in terms of the roots and order of the polynomial P , and the orthog-
onality properties in terms of moments. For example, for each m = 0, 1, . . .
there exists a distributional transformation which is defined using the Her-
mite polynomial of order m as the biasing function, and whose domain are
those distributions whose first 2m moments match those of the mean zero
normal; the case m = 1 corresponds to the zero bias transformation of [13].

Theorem 2.1 in Section 2 shows distributional transformations exist in
great generality. In Section 3 we find that there is considerable additional
structure for the families of transformations induced by orthogonal poly-
nomial systems, especially those corresponding to families of distributions
which are closed under addition of independent variables. Corresponding
to the Normal, Gamma, Poisson, Binomial and Beta-type distributions, in
Section 4 we study the family of transformations defined using the Hermite,
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Laguerre, Charlier, Krawtchouk, and Gegenbauer polynomials, and obtain
high order Stein type characterizing equations.

Our work here is in the spirit of [9], where other fundamental connections
between Stein equations and orthogonal polynomials were first described.
The approach in [9] is iterated in [24], combining it with well-known connec-
tions between orthogonal polynomials and birth and death processes, and
used as in [17] to describe solutions of Stein equations.

We first review some well known facts regarding the size bias transfor-
mation, which is the simplest and best known of all these distributional
transformations. For non-negative X with 0 < EX = µ < ∞, the X-size
biased distribution Xs is defined by the characterizing equation

EXF (X) = µEF (Xs) for all F ∈ F0(X). (2)

One key feature of the sized bias transformation is the following. If X1, . . . , Xn

are independent non-negative variables with finite positive expectations EXi =
µi and

W =
n∑

i=1

Xi,

then a variable with the W -size biased distribution can be constructed by
replacing a variable Xi, chosen with probability proportional to µi, by an
independent variable Xs

i having the Xi-size biased distribution. In other
words, letting

P (I = i) =
µi∑n

j=1 µj

be independent of X1, . . . , Xn, the variable

W s = W −XI + Xs
I (3)

has the W -size biased distribution. Letting x+ = max(0, x), size biasing is
the case of (1) with biasing function P (x) = x+. This transformation is of
order zero, as there are m = 0 sign changes of x+ on R, and has α = EX+;
when X ≥ 0 we have X+ = X resulting in the usual characterization (2).

The zero bias transformation [13] was motivated by the similarity between
the size bias transformation and the Stein equation [21] for the mean zero
normal distribution. In particular, Stein’s identity says that Z ∼ N (0, λ) if
and only if

EZF (Z) = λEF ′(Z) for all F ∈ F1(Z). (4)
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Comparing (4) to (2), for a mean zero, positive variance λ variable X, we
say that Xz has the X-zero biased distribution if

EXF (X) = λEF ′(Xz) for all F ∈ F1(X). (5)

Note that (5) for zero biasing is the same as (2) for size biasing, but with
variance replacing mean, and F ′ replacing F . That the normal distribution
with variance λ is the unique fixed point of the zero bias transformation
follows immediately from the characterization (4). It was shown in [13] that
the zero bias distribution Xz exists for all X that have mean zero and finite
positive variance. Its existence follows also from Theorem 2.1, as the special
case of (1) for the function P (x) = x, having m = 1 sign changes on R, and
α equal to the variance λ of X.

The zero bias transformation was introduced and used in [13] to obtain
bounds of order n−1 in normal approximations for smooth test functions
under third order moment conditions, in the presence of dependence induced
by simple random sampling. In [11] it is used to provide bounds to the normal
distribution for hierarchical sequences generated by the iteration of a so called
averaging function, in [12] for normal approximation in combinatorial central
limit theorems with random permutations having distribution constant over
cycle type, and in [14] the extension of the zero bias transformation to higher
dimension is considered.

The zero bias transformation enjoys a property similar to (3) for size bias-
ing. In particular, it was shown in [13] that a sum of independent mean zero
variables with finite variances can be zero biased by replacing one variable
chosen with probability proportional to its variance by an independent vari-
able from that summands zero biased distribution. Precisely, let X1, . . . , Xn

be independent mean zero variables with variance λi = EX2
i > 0,

W = X1 + · · ·+ Xn,

and I a random index, independent of X1, . . . , Xn with distribution

P (I = i) =
λi∑n

j=1 λj

. (6)

Then
W z = W −XI + Xz

I (7)
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has the W -zero biased distribution, where Xz
i is a variable independent of

Xj, j 6= i having the Xi zero biased distribution. This construction is ex-
tended to the families of transformations associated with orthogonal polyno-
mial in Theorem 3.1. In particular, in Section 3 we see that for higher order
transformations sums of independent variables are transformed by replacing
multiple variables chosen according to some distribution (e.g. multinomial,
multivariate hypergeometric) with independent variables possessing distribu-
tions transformed by the same family.

In Section 2 we give the moment and sign change conditions on P which
guarantee the existence of the X − P distribution and provide an explicit
construction. In Section 3 we treat the special case where P is a member
of a family of orthogonal polynomials. The generalization to higher order
of the ‘replace one variable’ zero and size bias constructions is based on the
identity (25) expressing an orthogonal polynomial of a sum as a sum of like
polynomials with summands having no larger order, and is given in Section
3. In Sections 4.1, 4.2, 4.3, 4.4 and 4.5 we treat the Hermite, Laguerre,
Charlier, Krawtchouk and Gegenbauer polynomials, corresponding to the
Normal, Gamma, Poisson, Binomial and Beta-type distributions respectively.
Special instances of the Beta-type distributions we consider are the uniform
U [−1, 1], the arcsine, and the semi-circle distribution.

2 Transformations in General

We begin our study with the following existence and uniqueness theorem
for the types of distributional transformations under consideration. We say
the measurable function P on R is positive on an interval I if P (x) ≥ 0
for all x ∈ I with strict inequality for at least one x, and similarly for
P negative on I. We say P has exactly m = 0, 1, . . . sign changes if R
can be partitioned into m + 1 disjoint subintervals with non-empty interior
such that P alternates sign on successive intervals. Though the choices for
the endpoints of such intervals may be somewhat arbitrary when there are
intervals where P is zero, we will nevertheless say that a sign change occurs
at the interval boundaries; the uniqueness guaranteed by Theorem 2.1 shows
that the X − P biased distribution constructed in the proof of Theorem 2.1
is the same for all interval boundary choices, and Example 2.1 gives some
additional explanation of this phenomenon in the context of a particular
example. We note that for existence in general, regarding boundedness,
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the orthogonality conditions required by Theorem 2.1 are only relative to
P and required only up to a finite order; such conditions may not impose
boundedness on any of the power moments of X, as illustrated in Example
2.1.

Theorem 2.1 Let X be a random variable, m ∈ {0, 1, 2, . . .} and P a mea-
surable function with exactly m sign changes, positive on its rightmost inter-
val and

1

m!
EXkP (X) = αδk,m k = 0, . . . ,m, (8)

with α > 0. Then there exists a unique distribution for a random variable
X(P ) such that

EP (X)F (X) = αEF (m)(X(P )) for all F ∈ Fm(P ). (9)

Theorem 2.1 says that X is in the domain of the distributional transformation
of order m defined using the ‘biasing’ function P having m sign changes when
the powers of X smaller than m are orthogonal to P (X) in the L2(X) sense,
that is, when P (X) ∈ {1, X, . . . , Xm−1}⊥, and EXmP (X) > 0. As noted
above, the existence of both the size and zero bias transformations are both
special cases.
Proof of Theorem 2.1. We give an explicit construction of the variate
X(P ). By replacing P by P/α, it suffices to prove the theorem for α = 1.
Label the points where the m sign changes of P occur as r1, . . . , rm, and let

Q(x) =
m∏

i=1

(x− ri), (10)

adopting the usual convention that an empty product is 1. By construction
Q and P have the same sign, so letting µX denote the distribution of X,

dµY (y) =
1

m!
Q(y)P (y)dµX(y) (11)

is therefore a measure, and since (8) with k = m implies that EQ(X)P (X) =
m!, a probability measure. Now with Y and {Ui}i≥1 mutually independent
with Y having distribution µY and Uj having distribution function ui on
[0, 1], with r0 = Y and rm+1 = 0, we claim that

X(P ) =
m+1∑
k=1

(
m∏

i=k

Ui

)
(rk−1 − rk) (12)
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satisfies (9), thus proving the existence of the X − P biased distribution.
We begin by noting that for any F for which either side below exists,

EF (Y ) =
1

m!
EF (X)Q(X)P (X), (13)

and so for k = 0, . . . ,m, letting

Rk(x) =
m∏

i=k+1

(x− ri),

a polynomial of degree m− k, by (13) and (8) we have

E(1/
k∏

i=1

(Y − ri)) =
1

m!
ERk(X)P (X) = δm−k,m. (14)

We show the claim by induction. In particular, for k ≥ 1 letting

Vk =
m∏

i=k

Ui, Wk =
m+1∑
j=k

Vj(rj−1 − rj), (15)

and taking X(P ) as in (12), we show that for all F ∈ C∞c , the collection of
infinitely differentiable functions with compact support, and k = 0, . . . ,m

EF (m)(X(P )) = k! E

{
F (m−k)(Vk+1(Y − rk+1) + Wk+2)

V k
k+1

∏k
i=1(Y − ri)

}
. (16)

We see the expectation on the right hand exists since F and all its derivatives
are bounded, Vk+1 is independent of Y for all k, EU−k

i < ∞ for i ≥ k + 1,
and use of (14).

The case k = 0 is the statement that X(P ) = V1(Y−r1)+W2, which follows
from definitions (12) and (15). Assume (16) holds for some 0 ≤ k < m. Using
Vk+1 = Uk+1Vk+2 in (16) and taking expectation over Uk+1, with density
(k + 1)uk

k+1, we obtain

EF (m)(X(P ))

= (k + 1)!E
∫ 1

0

{
F (m−k)(uk+1Vk+2(Y − rk+1) + Wk+2)

uk
k+1V

k
k+2

∏k
i=1(Y − ri)

}
uk

k+1duk+1.

Cancelling uk
k+1 and integrating, we obtain

(k +1)!E

{
F (m−(k+1))(Vk+2(Y − rk+1) + Wk+2)− F (m−(k+1))(Wk+2)

V k+1
k+2

∏k+1
i=1 (Y − ri)

}
. (17)
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Using the independence of Vk+2 and Y for any k, and that Wk+2 is inde-
pendent of Y for all k ≥ 0, the second term in the expectation (17) vanishes
by (14), since k+1 ≥ 1. The induction is completed by noting that definitions
(15) give that Vk+2(Y − rk+1) + Wk+2 = Vk+2(Y − rk+2) + Wk+3.

Now applying (16) for k = m and using Vm+1 = 1, Wm+2 = 0 and rm+1 =
0 we obtain

EF (m)(X(P )) = m!E

{
F (Y )

Q(Y )

}
= EP (X)F (X)

by (13). That is, the equality in (9) holds for all F ∈ C∞c .
For F ∈ Fm(X), by replacing F by

F (x)−
m−1∑
j=0

F (j)(0)

j!
xj

if necessary, we may assume, in light of (8), that F (j)(0) = 0 for j =
0, . . . ,m− 1, and hence,

with If =
∫ x

0
f, F (x) = Imf for some measurable function f .

Since F = F1 − F2 where F1(x) = Imf+ and F2(x) = Imf−, it suffices by
linearity to consider f ≥ 0. Letting 0 ≤ fn ↑ f we have Imfn = Fn ↑ F ,
and hence the equality in (9) holds for F ∈ Fm(X) using the monotone and
dominated convergence theorems on the right and left sides of (9), respec-
tively.

The distribution X(P ) is unique since (9) holds for all F ∈ C∞c , which is
separating.

The existence of the X(P ) distribution also follows from the Riesz repre-
sentation theorem upon demonstrating the positivity of the linear operator
T defined by

Tf = EP (X)F (X) with F (x) = Imf

over f ∈ C0
c , the space of continuous functions with compact support. The

signed measure dµ = PdµX has the property
∫

xjdµ = EXjP (X) = 0 for
j = 0, 1, . . . ,m− 1, and now the sign change property of P allows us, when
on the finite interval [a, b], to invoke Theorem 5.4 in Chapter XI of [19]
(see also Example 1.4 in Chapter XI) to conclude T is positive and hence
Tf =

∫ b
a fdµ(m) for some measure µ(m), which is a probability measure since
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EXmP (X) = m!. This argument is similar to the one used in [13] to prove
the existence of the zero bias distribution for a mean zero, finite variance X
by noting that when f ≥ 0 the function F = If is non-decreasing, and hence
X and F (X) are positively correlated, and so the operator

Tf = EXF (X) ≥ EXEF (X) = 0

is positive.

Example 2.1 Consider the application of Theorem 2.1 where P (x) has ex-
actly m = 1 sign change at r1 = 0. Then for the non constant X to be in the
domain of the transformation characterized by

EP (X)F (X) = αEF ′(X(P )) (18)

we require EP (X) = 0 and α = EXP (X) > 0. We have Q(x) = x in (10)
and, recalling the X variable in the proof was rescaled to have α = 1, the Y
distribution in (11) is

dµY (y) = xP (x)dµX(y)/α.

From (12) with m = 1, r0 = Y, r2 = 0 and Uj with distribution function uj

on [0, 1]

X(P ) =
m+1∑
k=1

(
m∏

i=k

Ui

)
(rk−1 − rk) = U1(r0 − r1) + (r1 − r2) = U1Y.

Hence X(P ) is absolutely continuous, and one can directly verify that its den-
sity is given by

f (P )(x) = α−1E[P (X); X > x]. (19)

When
∫ x
0 P (u)du is finite for all x and c =

∫
exp(−α−1

∫ x
0 P (u)du)dx < ∞,

the transformation (18) has a fixed point at the distribution with density

f(x) = c−1 exp
(
− 1

α

∫ x

0
P (u)du

)
;

for instance, when P (x) = x, f is the mean zero normal density with variance
α.
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Taking P to be the sign function

P (x) = 1(x > 0)− 1(x < 0)

provides an example of a transformation given by a discontinuous P , and
shows that generally the orthogonality conditions may not reduce to restric-
tions on the moments of X, in particular, (8) for k = 0 requires X to have
median 0. If in addition α = E|X| is finite, imposed by (8) for k = 1, The-
orem 2.1 gives that X is in domain of the transformation characterized by
(18). The density of the transformed variables are, by (19),

f (P )(x) =

{
P (X > x)/E|X| x > 0
P (X < x)/E|X| x < 0.

(20)

For this choice of P the Y distribution in (11) becomes

dµY (y) = |y|dµX(y)/E|X|,

which is the |X| size biased distribution. Hence, the X−P biased distribution
is obtain by multiplying Y ∼ µY by an independent U [0, 1] variable. The
transformation has a fixed point at the Laplace distribution with density

f(x) =
1

2α
exp

(
− 1

α
|x|
)

.

Taking P (x) = 1(x > 1) − 1(x < −1) gives a transformation having
domain those variables X with α = E(|X|1(|X| > 1)) < ∞ and satisfying

P (X > 1) = P (X < −1). (21)

Since P (x) = 0 in the set [−1, 1] the sign change can be said to occur at point
in (−1, 1) and the polynomial Q in the proof of Theorem 2.1 can be taken to
be

Q(x) = x− r1 for any r1 ∈ (−1, 1).

As assured by uniqueness, the distribution constructed in the proof of The-
orem 2.1 does not depend on choice of r1; in fact, in this case (21) implies
that the dmuY distribution in (11) is the same for all r1 ∈ (−1, 1).
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3 Transformations using orthogonal polyno-

mials

We consider a system of polynominals orthogonal with respect to a non-trivial
family of distributions Zλ ∼ Lλ indexed by a real parameter λ.

Condition 3.1 For some m ≥ 0, the polynomials {P k
λ (x)}0≤k≤m are monic,

have degree k, are orthogonal with respect to the distributional family Zλ ∼
Lλ, and satisfy E[P k

λ (Zλ)]
2 > 0.

Note that since P k
λ is monic and orthogonal it has k distinct roots and is

positive as x →∞ (e.g. [1]); furthermore, we have

EZk
λP k

λ (Zλ) = E[P k
λ (Zλ)]

2, k = 0, . . . ,m.

When studying transformations using an implicit family of orthogonal poly-
nomials, we index the transformed distribution by say, X

(k)
λ , that is, by the

parameter λ and order k of the polynomial.
Applying Theorem 2.1 in this framework, we obtain the following

Corollary 3.1 Let Condition 3.1 be satisfied with EZ2m
λ < ∞, and for 0 ≤

k ≤ m set

α
(k)
λ =

1

k!
EZk

λP k
λ (Zλ). (22)

Then for all X ∈Mk
λ, where

Mk
λ = {X : EXj = EZj

λ, 0 ≤ j ≤ 2k},

there exists a random variable X
(k)
λ such that for all F ∈ Fk(P k

λ )

EP k
λ (X)F (X) = α

(k)
λ EF (k)(X

(k)
λ ). (23)

Proof: By Condition 3.1 and orthogonality we have for 0 ≤ j ≤ k ≤ m,

1

k!
EXjP k

λ (X) =
1

k!
EZj

λP
k
λ (Zλ) =

1

k!
EP j

λ(Zλ)P
k
λ (Zλ) = α

(k)
λ δj,k

using X ∈Mk
λ. Now invoke Theorem 2.1.
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We say the family of distributions Zλ is closed under independent addi-
tion if for independent Zλi

∼ Lλi
, i = 1, 2 we have Zλ1 +Zλ2 ∼ Lλ1+λ2 . There

is special structure when the transformation function in Theorem 2.1 is a
member of an orthogonal polynomial system corresponding to such a family.
In particular, the following Theorem 3.1 generalizes (3) and (7) in showing
how a sum of independent variables can be Pm

λ transformed by replacing a
randomly chosen collection in the sum by variables with distributions trans-
formed using the same orthogonal polynomial system.

For n = 1, 2, . . ., consider a multi-index m = (m1, . . . ,mn), and with
λ = (λ1, . . . , λn) and x = (x1, . . . , xn) let

m = |m| =
n∑

i=1

mi, λ =
n∑

i=1

λi

and set

α
(m)

λ =
n∏

i=1

α
(mi)
λi

and Pm
λ (x) =

n∏
i=1

Pmi
λi

(xi). (24)

Theorem 3.1 Let Zλ, λ > 0 be a family of random variables closed under
independent addition with EZ2m

λ < ∞, and suppose the associated orthogonal
polynomials {P k

λ (x)}0≤k≤m satisfies Condition 3.1 and, for some weights cm,
the identity

Pm
λ (w) =

∑
m:|m|=m

cmPm
λ (x), (25)

where Pm
λ (x) is given in (24) and w = x1 + · · · + xn. Then α

(m)
λ and α

(m)

λ
defined in (22) and (24) respectively, satisfy

α
(m)
λ =

∑
m:|m|=m

cmα
(m)

λ , (26)

and we may consider the variable I, independent of all other variables, with
distribution

P (I = m) = cm
α

(m)

λ
α

(m)
λ

, |m| = m. (27)
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Furthermore, for any positive λ1, . . . , λn and independent variables X1, · · · , Xn

with

Xi ∈Mm
λi

and W =
n∑

i=1

Xi,

the variable

W
(m)
λ =

∑
m:|m|=m

(Xi)
(Ii)
λi

has the W − Pm
λ distribution.

Proof. Since Xi ∈Mm
λi

, we have for 0 ≤ k ≤ 2m, and independent Zλi
∼ Lλi

and Zλ ∼ Lλ, that

EW k = E(
n∑

i=1

Xi)
k = E(

n∑
i=1

Zλi
)k = EZk

λ .

Hence W ∈Mm
λ , and the W (m) distribution exists by Corollary 3.1. Equality

(26) follows by multiplying (25) by Wm = (
∑

i Xi)
m taking expectation, and

using independence and orthogonality.
By (26), for any F ∈ C∞c ,

α
(m)
λ EF (m)(W

(m)
λ ) = E

∑
m

cmα
(m)

λ F (m)(W
(m)
λ ). (28)

Using independence and successively applying the identity

α
(mi)
λi

EF (q)((Xi)
(mi)
λi

+ y) = EPmi
λi

(Xi)F
(q−mi)(Xi + y), (29)

we see that the right hand side of (28) is equal to

E
∑
m

cmPm
λ (X)F (W ) = EPm

λ (W )F (W ), (30)

by (25). Comparing (28) to (30) we have

α
(m)
λ EF (m)(W

(m)
λ ) = EPm

λ (W )F (W ),

for all F ∈ C∞c , and hence W
(m)
λ has the W -Pm

λ biased distribution.
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For the possibly infinite system of monic polynomials {Pm
λ (x)} orthogonal

with respect to Lλ, define the generating function

φt(x, λ) =
∑
m≥0

Pm
λ (x)

tm

m!
. (31)

Though the constants α
(m)
λ can be found using F (x) = xm in (23), squaring

(31) and taking expectation using orthogonality gives the alternative method

E[φt(Zλ, λ)]2 =
∑
m≥0

α
(m)
λ

t2m

m!
. (32)

Theorem 3.2 applies in the special cases considered in Sections 4.1 through
4.4.

Theorem 3.2 If the polynomial generating function φt(x, λ) in (31) satisfies

φt(w, λ) =
n∏

i=1

φt(xi, λi) (33)

for w = x1 + · · · + xn and λ = λ1 + · · · + λn, then (25), and hence (27), in
Theorem 3.1 are satisfied respectively by

cm =

(
m

m

)
and P (I = m) =

(
m

m

)
α

(m)

λ
α

(m)
λ

, |m| = m.

Proof: Rewriting (33) ,

∑
m≥0

tm

m!
Pm

λ (w) =
n∏

i=1

∑
mi≥0

Pmi
λi

(xi)
tmi

mi!

=
∑

m1,···,mn

Pm
λ (x)

tm1+···+mn

m1! · · ·mn!

=
∞∑

m≥0

tm

m!

∑
m=m

(
m

m

)
Pm
λ (x),

giving (25) with the values claimed.
We also note that squaring (25) and taking expectation, using indepen-

dence and orthogonality, results in

α
(m)
λ =

∑
|m|=m

(
m

m

)−1

c2
mαm

λ, (34)
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so that the conclusion of Theorem 3.2 can also be seen to hold by equating
coefficients of (26) and (34) when αm

λ takes on sufficiently many values.

We end this section with a result about the potential for iterated biasing.

Theorem 3.3 Let Condition 3.1 be satisfied, and suppose that the the dis-
tributional family at Zλ is closed under transformation with respect to P k

λ (x),
that is, there exists µ(λ, k) such that

(Zλ)
(k)
λ = Zµ(λ,k).

Then if X ∈ Mm
λ we have X

(k)
λ ∈ Mm−k

µ(k,λ) for k ≤ m. In particular for

non-negative j with 0 ≤ k + j ≤ m, the distribution (X
(k)
λ )

(j)
µ(λ,k) exists.

Proof. Let 0 ≤ j ≤ 2(m − k) and F (x) = xk+j/(k + j)k, where (x)k =
x(x− 1) · · · (x− k + 1). Then

α
(k)
λ E(X

(k)
λ )j = α

(k)
λ EF (k)(X

(k)
λ ) = EP k

λ (X)F (X)

= EP k
λ (Zλ)F (Zλ) = α

(k)
λ EF (k)((Zλ)

(k)
λ ) = α

(k)
λ E(Zµ(λ,k))

j.

Thus the first 2(m − k) moments of X
(k)
λ match those of Zµ(λ,k), and the

existence of the distribution (X
(k)
λ )

(j)
µ(λ,k) follows from Corollary 3.1.

4 Special Orthogonal Polynomial Systems

In Sections 4.1 - 4.5 we specialize to the classic Hermite, Laguerre, Charlier,
Krawtchouk and Gegenbauer orthogonal polynomial systems, corresponding
to the Normal, Gamma, Poisson, Binomial and a Beta like family, respec-
tively. All these families correspond to a collection of orthogonal polynomials
satisfying Condition 3.1, and except for the last case, have a generating func-
tion which satisfies (33). The Normal and Poisson distributions are fixed
points of their associated transformations. In the Gamma, Binomial and
Beta-type cases the transformations map to the same family, but with a
shifted parameter. For further connections between probability distributions
and such polynomial system generating functions, see [2] and [3].

15



4.1 Hermite Polynomials

For σ2 = λ > 0, define the collection of Hermite polynomials {Hm
λ (x)}m≥0

through the generating function

ext− 1
2
λt2 =

∞∑
m=0

Hm
λ (x)

tm

m!
, (35)

or equivalently, the Rodriguez formula

Hm
λ (x) = (−λ)me

x2

2λ
dm

dxm
e−

x2

2λ . (36)

These polynomials are orthogonal with respect to the normal distribution
N (0, λ) with density (2πλ)−1/2 exp(−x2/(2λ)).

For F ∈ C∞c and Zλ ∼ N (0, λ), applying the Rodriguez formula (36) we
have

EHm
λ (Zλ)F (Zλ) =

∫ ∞

−∞
(−λ)me

x2

2λ

(
dm

dxm
e−

x2

2λ

)
F (x)

e−
x2

2λ

√
λ2π

dx

=
∫ ∞

−∞
(−λ)m

(
dm

dxm
e−

x2

2λ

)
F (x)

1√
λ2π

dx

= λm
∫ ∞

−∞
F (m)(x)

e−
x2

2λ

√
λ2π

dx

= λmEF (m)(Zλ). (37)

Hence,
(Zλ)

(m)
λ = Zλ,

that is, for each m = 0, 1, . . . , the normal Zλ ∼ N (0, λ) is a fixed point of
the mth order transformation induced by Hm

λ (x).

From (37) we see that α
(m)
λ = λm, which we could find alternatively using

(32) and

E[eZλt− 1
2
λt2 ]2 = eλt2 =

∑
m≥0

λm t2m

m!
.

Now since the generating function (35) satisfies the conditions of Theorem
3.2, the distribution of the random index I in Theorem 3.1 is multinomial
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Mult(m,λ). For zero biasing and m = 1, this multinomial distribution re-
duces to the ‘pick an index proportional to variance’ as specified in (6).

Lastly, we indicate two ways in which the classical Stein equation can be
generalized to the Hermite case. With Nh = Eh(Z), the standard normal
expectation of h, both the equations

f ′(x)Hm−1
1 (x)−Hm

1 (x)f(x) = h(x)−Nh (38)

and

f (m)(x)−Hm
1 (x)f(x) = h(x)−Nh (39)

reduce to the usual Stein equation when m = 1 (see [21], [22])

f ′(x)− xf(x) = h(x)−Nh, (40)

and in particular the expectations on the left hand sides of each evaluated
at a random variable W are zero for all f ∈ C∞

c if and only if W is standard
normal.

4.2 Laguerre Polynomials

For λ > 0, let {Lm
λ (x)}m≥0 be the collection of Laguerre polynomials defined

by the generating function

(1 + t)−λ exp
{

xt

1 + t

}
=

∞∑
m=0

Lm
λ (x)

tm

m!
, (41)

or equivalently, the Rodriguez formula

Lm
λ (x) = (−1)mx−λ+1ex dm

dxm
xλ+m−1e−x, (42)

which are orthogonal with respect to the Gamma distribution with parameter
λ, having density xλ−1e−x/Γ(λ), x > 0.

For F ∈ C∞c and Zλ with this density, applying the Rodriguez formula
(42) yields

ELm
λ (Zλ)F (Zλ) =

∫ ∞

0
(−1)mx−λ+1ex

(
dm

dxm
xλ+m−1e−x

)
F (x)

xλ−1e−x

Γ(λ)
dx

17



=
(−1)m

Γ(λ)

∫ ∞

0

(
dm

dxm
xλ+m−1e−x

)
F (x)dx

=
Γ(λ + m)

Γ(λ)

∫ ∞

0
F (m)(x)

xλ+m−1e−x

Γ(λ + m)
dx

= (λ)mEF (m)(Zλ+m), (43)

where (λ)m is the rising factorial,

(λ)m = λ(λ + 1) · · · (λ + m− 1) =
Γ(λ + m)

Γ(λ)
.

Hence
(Zλ)

(m)
λ = Zλ+m.

From (43) we see that α
(m)
λ = (λ)m, which we could find alternatively

using (32) and

E
[
(1 + t)−λ exp

(
Zλt

1 + t

)]2
= (1− t2)−λ =

∑
m≥0

(λ)m t2m

m!
.

Since the generating function (41) satisfies the conditions of Theorem 3.2,
the random index I in Theorem 3.1 has distribution

P (I = m) =

(
m

m

)∏n
i=1(λi)

mi

(λ)m
=

∏n
i=1

(
λi+m1−1

mi

)
(

λ+m−1
m

) ,

which we recognize as the multivariate hypergeometric distribution with pa-
rameters m and λ1 + m1 − 1, . . . , λn + mn − 1, see [18], p.301.

Though the Gamma is not a fixed point of the Laguerre transformations
as the normal is for the Hermites, nevertheless there exist Stein equations for
the Gamma paralleling (40) for the normal which can be used for studying
distributional approximations for the Gamma family; for details, see [20]. In
particular, we have the Stein characterization that X ∼ Γ(λ, 1) if and only if

E(X − λ)f(X) = EXf ′(X)

for all smoooth functions f . Using that L1
λ(x) = x − λ, the X(1) order one

Laguerre transformation is characterized by

E(X − λ)f(X) = λEf ′(X(1))

18



for all smooth functions f . Comparing these two equations we see that
X ∼ Γ(λ, 1) if and only if for all smooth functions f ,

EXf ′(X) = λEf ′(X(1));

in other words, X ∼ Γ(λ, 1) if and only if X(1), the first order Laguerre
transformation of X, equals its size bias transformation Xs.

4.3 Charlier Polynomials

For λ > 0, let {Cm
λ (x)}m≥0 be the collection of Charlier polynomials defined

by the generating function

e−λt (1 + t)x =
∞∑

m=0

Cm
λ (x)

tm

m!
, (44)

or, equivalently, with (x)k = x(x− 1) · · · (x− k + 1), the falling factorial,

Cm
λ (x) =

m∑
k=0

(
m

k

)
(x)k(−λ)m−k, (45)

giving a family orthogonal with respect to the Poisson distribution P(λ) with
mass function e−λλk/k!, k = 0, 1, . . .. From (45) one can derive the Rodriguez
formula

Cm
λ (x) = (−1)mΓ(x + 1)λm−x∇m

(
λx

Γ(x + 1)

)
, (46)

where ∇f(x) = f(x)− f(x− 1), the backward difference.
Since the transformations in Theorem 2.1 defined using derivatives of

test functions yield absolutely continuous distributions when m ≥ 1, no
discrete distribution will be a fixed point. However, parallel to (9), for an
integer valued random variable X we can define the discrete X − P biased
distribution via

EP (X)F (X) = αE∆mF (X(m)) for all F ∈ F∆(P ), (47)

where ∆f(x) = f(x + 1)− f(x), and again suppressing dependence on X,

F∆(P ) = {F : R → R : E|P (X)F (X)| < ∞}.
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That for all m = 0, 1 . . . the Poisson P(λ)-distribution is a fixed point

(Zλ)
(m)
λ = Zλ

of the discrete transformation (47) with P replaced by Cm
λ can be seen as

follows. For Zλ ∼ P(λ), by the Rodriguez formula (46) and

∞∑
k=0

∇mbk · ak = (−1)m
∞∑

k=0

bk∆
mak, (48)

we have

ECm
λ (Zλ)F (Zλ) =

∞∑
k=0

e−λ λk

k!
Cm

λ (k)F (k)

= λm(−1)m
∞∑

k=0

e−λ∇m

(
λk

k!

)
· F (k)

= λm
∞∑

k=0

e−λλk

k!
∆mF (k)

= λmE∆mF (Zλ). (49)

From (49) we see that α
(m)
λ = λm, which we could find alternatively using

(32) and

E[e−λt (1 + t)Zλ ]2 = eλt2 =
∑
m≥0

λm t2m

m!
.

Using the existence of the Charlier biased distributions and that (29)
holds with derivative replaced by difference, it is easy to see that the ar-
gument and hence conclusion of Theorem 3.1 holds in this discrete case.
Now since the generating function (44) satisfies the conditions of Theorem
3.2, the distribution of the random index I in Theorem 3.1 is multinomial
Mult(m,λ), as in the normal case.

As the order one Charlier polynomial is C1
λ(x) = x − λ, Stein charac-

terizations of the form (38) or (39), with Hermite replaced by Charlier and
derivatives replaced by differences, generalize the Stein equation for the Pois-
son distribution with parameter λ given in [7], and extensively studied for
example in [4].
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4.4 Krawtchouk Polynomials

With λ = 1, 2, . . . and p ∈ (0, 1) fixed, let {Km
λ (x)}0≤m≤λ be the collection of

Krawtchouk polynomials defined by the generating function

(1 + qt)x (1− pt)λ−x =
λ∑

m=0

tm

m!
Km

λ (x) (50)

where p+ q = 1, giving the family of polynomials orthogonal with respect to
the Binomial B(λ, p) distribution. In contrast to the previous examples, the
Binomial is not infinitely divisible and has support on a bounded set.

Following the approach set out in [3], the polynomials can also be given
by the Rodriguez formula

Km
λ (x) =

(−1)mm!
(

λ
m

)
pm−xqx(

λ
x

) ∇m

{(
λ−m

x

)(
p

q

)x}
,

and so for Zλ ∼ B(λ, p), 0 ≤ m ≤ λ and bounded F ,

EKm
λ (Zλ)F (Zλ)

= EF (Zλ)
(−1)mm!

(
λ
m

)
pm−ZλqZλ(

λ
Zλ

) ∇m


(
λ−m

Zλ

)(
p

q

)Zλ


=

λ∑
k=0

(
λ

k

)
pkqλ−kF (k)

(−1)mm!
(

λ
m

)
pm−kqk(

λ
k

) ∇m


(
λ−m

k

)(
p

q

)k


= m!

(
λ

m

)
pmqλ(−1)m

λ∑
k=0

F (k)∇m


(
λ−m

k

)(
p

q

)k
 .

Using (48) and letting (λ)m again be the falling factorial, we write the last
expression as

(λ)mpmqλ
λ∑

k=0

(
λ−m

k

)(
p

q

)k

∆mF (k)

= (λ)m(pq)m
λ∑

k=0

(
λ−m

k

)
pkqλ−m−k∆mF (k)

= α
(m)
λ E∆mF (Z

(m)
λ ),
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yielding
α

(m)
λ = (λ)m(pq)m and (Zλ)

(m)
λ = Zλ−m.

Hence, similar to the Gamma family, the Binomial distribution is not a fixed
point of its own transformational family, but the transformed distribution
is a member of the same family. One can calculate α

(m)
λ alternatively using

(32), (50), and series expansion of

E(1 + qt)2Zλ(1− pt)2λ−2Zλ = (1 + pqt2)λ.

As for Example 4.3, the conclusion of Theorem 3.1 holds, and since the
generating function (50) satisfies the conditions of Theorem 3.2 the distribu-
tion of the random index I in Theorem 3.1 is given by

P (I = m) =

(
m
m

)
(pq)

∑
mi
∏n

i=1(λi)mi

(λ)m(pq)m
=

(
m

m

)∏n
i=1(λi)mi

(λ)m

=

∏n
i=1

(
λi

mi

)
(

λ
m

) ,

which we recognize as the multivariate hypergeometric distribution with pa-
rameters m and λ1, . . . , λn, see [18], p.301.

From [10] we have the Stein characterization that X ∼ B(λ, p) if and only
if

pE(λ−X)f(X + 1) = qEXf(X),

for all functions f for which these expectations exist. Using the first Krawtchouk
polynomial is K1

λ(x) = qx−p(λ−x), we obtain that the first order Krawtchouk
transformation is characterized by

qEXf(X)− pE(λ−X)f(X) = λpqE∆f(X(1)).

Combining these equations yields that X ∼ B(λ, p) if and only if

pE(λ−X)∆f(X) = pE(λ−X)(f(X + 1)− f(X))

= qEXf(X)− pE(λ−X)f(X)

= λpqE∆f(X(1)).

Putting g(x) = ∆f(λ − x) we see that X ∼ B(λ, p) if and only if λ − X(1)

has the (λ−X)-size biased distribution, that is, if and only if

λ−X(1) ∼ B(λ− 1, q) + 1, which is equivalent to X(1) ∼ B(λ− 1, p).
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4.5 Gegenbauer Polynomials

In this last section, we consider a polynomial system orthogonal with respect
to a continuous distribution with compact support. For λ > −1

2
, let (see [3])

α
(m)
λ =

Γ(λ)Γ(2λ + m)Γ(λ + 1)

22mΓ(λ + m + 1)Γ(λ + m)Γ(2λ)
,

and the collection of Gegenbauer polynomials Gm
λ (x) be defined via the Ro-

driguez formula

Gm
λ (x) = (−1)mα

(m)
λ

Γ(λ + 1
2
)Γ(λ + m + 1)

Γ(λ + 1)Γ(λ + m + 1
2
)
(1− x2)

1
2
−λ dm

dxm
{(1− x2)λ+m− 1

2}.

Then Gm
λ (x) are monic, have degree m, and satisfy the orthogonality relation

1

m!
EGk

λ(Zλ)G
m
λ (Zλ) = α

(m)
λ δk,m k = 0, . . . ,m,

where Zλ ∼ gλ with

gλ(x) =
1√
π

Γ(λ + 1)

Γ(λ + 1
2
)
(1− x2)λ− 1

2 , |x| ≤ 1.

In particular Corollary 3.1 obtains, proving the existence of the family of
Gegenbauer transformations. This family of distribution is a special case of
the centered Pearson Type I-distributions, sometimes also called Beta Type
I-distributions, see [23], p.150. We note that for λ = 1/2 we obtain the
uniform distribution U [−1, 1], for λ = 0 the arcsine law, and for λ = 1 the
semi-circle law [25], [26].

Considering the action of the Gm
λ transformation on Zλ ∼ gλ, for F ∈ C∞c

we have

EGm
λ (Zλ)F (Zλ)

=
1√
π

Γ(λ + 1)

Γ(λ + 1
2
)
(−1)mα

(m)
λ

Γ(λ + 1
2
)Γ(λ + m + 1)

Γ(λ + 1)Γ(λ + m + 1
2
)

∫ 1

−1
F (x)

dm

dxm
{(1− x2)λ+m− 1

2}

=
1√
π

α
(m)
λ

Γ(λ + m + 1)

Γ(λ + m + 1
2
)

∫ 1

−1
F (m)(x)(1− x2)λ+m− 1

2

= α
(m)
λ EF (m)(Zλ+m),
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yielding
(Zλ)

(m)
λ = Zλ+m.

Thus, for λ = 0 we obtain that the first order Gegenbauer transformation of
the arcsine distribution is the semi-circle law.

Lastly we note that since the above Beta-type distributions are not invari-
ant under addition, Theorem 3.1 and its construction do not apply. However,
as G1

λ(x) = x, we recognize the first order Gegenbauer transformation as the
zero-bias transformation, so that for sums of independent random variables
the construction given in (7) applies.

Acknowledgement. The authors would like to thank the organizers
of the program ‘Stein’s method and applications: A program in honor of
Charles Stein’ and the Institute of Mathematical Sciences in Singapore for
their most generous hospitality, and the excellent meeting where this work
was completed. Also we would like to thank an anonymous referee for very
helpful comments.

References

[1] Abramowitz and A.A. Stegun, eds. (1972) Handbook of Mathematical
Functions. M Dover, New York

[2] Asai, N., Kubo, I., and Kuo, H. (2003). Multiplicative renormalization
and generating functions I. Taiwanese Journal of Mathematics 7, 89–101.

[3] Asai, N., Kubo, I., and Kuo, H. (2004). Multiplicative renormalization
and generating functions II. To appear in Taiwanese Journal of Mathe-
matics.

[4] Barbour, A.D., Holst, L., and Janson, S. (1992). Poisson Approximation.
Oxford University Press.

[5] Bolthausen, E. (1984). An estimate of the remainder in a combinatorial
central limit theorem. Z. Wahrscheinlichkeitstheor. Verw. Geb. 66, 379–
386.

[6] Cacoullos, T., Papathanasiou, V., and Utev, S. (1994). Variational in-
equalities with examples and an application to the central limit theorem.
Ann. Probab. 22, 1607–1618.

24



[7] Chen, L.H.Y. (1975). Poisson approximation for dependent trials. Ann.
Probab. 3, 534–545.

[8] Chen, L.H.Y. and Shao, Q-M. (2003). Stein’s method and normal approx-
imation. Tutorial notes for the workshop on Stein’s method and Applica-
tions. http://www.ims.nus.edu.sg/Programs/stein/files/tut shao

[9] Diaconis, P., and Zabell, S. (1991). Closed form summation for classical
distributions: variations on a theme of de Moivre. Statistical Science 6,
284-302.

[10] Ehm, W. (1991). Binomial approximation to the Poisson binomial dis-
tribution. Statistics and Probability Letters 11, 7-16.

[11] Goldstein, L. (2003). Normal approximation for hierarchical sequences.
Annals of Applied Probability, In Press.

[12] Goldstein, L. (2004). Berry Esseen bounds for combinatorial central
limit theorems and pattern occurrences, using zero and size biasing.
Preprint.

[13] Goldstein, L., and Reinert, G. (1997) Stein’s method and the zero bias
transformation with application to simple random sampling. Ann. Appl.
Probab. 7, 935-952.

[14] Goldstein, L., and Reinert, G. (2004) Zero biasing in one and higher
dimensions, and applications. Preprint.

[15] Goldstein, L., and Rinott, Y. (1996). On multivariate normal approxi-
mations by Stein’s method and size bias couplings. J. Appl. Prob. 33,
1–17.

[16] Ho, S.-T., and Chen, L.H.Y. (1978). An Lp bound for the remainder in
a combinatorial central limit theorem. Ann. Probab. 6, 231–249.

[17] Holmes. S. (1998). Stein’s method for birth and death processes.
Preprint.

[18] Johnson, N.L., and Kotz, S. (1969). Discrete Distributions. Wiley, New
York etc.

25



[19] Karlin, S. and Studden, W.J. (1966). Tchebycheff Systems, with Appli-
cations in Analysis and Statistics. Interscience, New York.

[20] Luk, H.M. (1994). Stein’s method for the gamma distribution and re-
lated statistical applications. Ph.D. thesis. University of Southern Cali-
fornia, Los Angeles, USA.

[21] Stein, C. (1972). A bound for the error in the normal approximation to
the distribution of a sum of dependent random variables. Proc. Sixth
Berkeley Symp. Math. Statist. Probab. 2, 583–602. Univ. California
Press, Berkeley.

[22] Stein, C. (1986). Approximate Computation of Expectations. IMS, Hay-
ward, California.

[23] Kendall, M.G. amd Stuart, S. (1969). The Advanced Theory of Statis-
tics. Volume 1: Distribution Theory. Griffin, London.

[24] Schoutens, W. (2001). Orthogonal polynomials in Stein’s method. J.
Math. Anal. Appl. 253, 515-531.

[25] Wigner, E. P. (1955). Characteristic vectors of bordered matrices with
infinite dimension. Ann. Math. 62 548-564.

[26] Wigner, E. P. (1958). On the distribution of the roots of certain sym-
metric matrices. Ann. Math. 67 325-328.

26


