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Optimal Stopping

Independent random variables X1, . . . , Xn with known
distributions are to be presented one at a time. You can
either choose a variable, or pass it up forever. Your goal is
to stop on a variables with as large a value as possible.

What strategy, which cannot depend on future, so
expressed by a stopping time t, maximizes EXt?

Chow, Robbins, and Siegmund 1971
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Optimal Rule

Let V n
i+1 be the optimal value for stopping on

Xi+1, . . . , Xn, with finite expectations.

If Xi < V n
i+1, pass up this variable.

If Xi ≥ V n
i+1, take it.

Getting the better of Xi and Vi+1 yields that

V n
i = E[Xi ∨ V n

i+1]; setting V n
n+1 = −∞,

we have

t∗n = min{i : Xi ≥ V n
i+1} satisfies P (t∗n ≤ n) = 1.
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Branching Process

Let the offspring distribution in generation n be that of the
integer valued variable Yn, and the population size Zn, with
Z1 = 1, given by

Zn+1 =
Zn∑
i=1

Yni for n ≥ 1,

where Yni are independent and distributed as Yn.

Harris 1963, Jagers 1975
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Generating Function

For a non-negative integer valued random variable
Y ∈ {0, 1 . . . , } with distribution P (Y = k) = pk, consider
the generating function

g(s) = EsY =
∞∑

k=0

pksk, 0 ≤ s ≤ 1,

for which
g(0) = p0, g(1) = 1, g ↑

and g is convex; in fact, derivatives of all order exist and
are non-nonegative. Note also that g′(1) = EY .
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Generating Function Relation

Let
gn(s) = EsYn and g(n)(s) = EsZn .

Then

g(n+1)(s) = EsZn+1

= E{E[sZn+1 |Zn]}

= E{E[s
∑Zn

i=1 Yni |Zn]}
= E{gn(s)Zn}
= g(n)(gn(s))
= g(n−1)(gn−1(gn(s)))
= g1(g2(· · · gn(s)))
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Extinction Probability

By

g(n)(s) =
∞∑

k=0

P (Zn = k)sk,

we know
q̃n = P (Zn = 0) = g(n)(0).

Since Zn = 0 implies Zn+1 = 0 we have

0 ≤ q̃1 ≤ q̃2 ≤ · · · and lim
n→∞

q̃n = π̃.

We exclude trivial cases by assuming 0 < P (Y = 0) < 1
and P (Y = 0) + P (Y = 1) < 1.

Nuclear Interactions, Polymerase Chain Reaction (PCR)
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Extinction Probability: Common Offspring
Distribution

If Yn =d Y for all n, having generating function g, then
qn = P (Zn = 0) is given by

g(n)(0) = g(g(· · · g(0))),

and
lim

n→∞
qn = π

is the smallest root of the equation

g(s) = s.
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Behavior Determined by EY

Supercritical case: EY > 1 then π < 1

Critical and Subcritical case: EY ≤ 1 then π = 1
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Optimal Value

Recall that V n
i = E[Xi ∨ V n

i+1], or

V n
i = hi(V n

i+1) where hi(x) = E[Xi ∨ x].

When Xi ≥ 0 we may take V n
n+1 = 0, so iteration gives

V n
1 = h1(V n

2 ) = h1(h2(V n
3 )) = · · · = h1(h2(· · ·hn(0))).

Note the similarity to the recursion for extinction in
branching!
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Homogeneous Case

Branching: Common offspring distribution Y so

gi(s) = g(s).

Stopping: iid sequence with distribution X so

hi(s) = h(s).

Then
qn = g(n)(0) and V n

1 = h(n)(0).

Do these ever agree?
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Example

Branching process with offspring distribution

P (Y = 0) =
1
2

= P (Y = 2)

has generating function

g(a) = EaY =
1
2
a0 +

1
2
a2 =

1
2

+
1
2
a2.

Stopping X1, . . . , Xn independent U [0, 1] variables, we
have V n

i = E[Xi ∨ V n
i+1] = h(V n

i+1) where

h(a) = E[X ∨ a] = aP (X ≤ a) +
∫ 1

a

xdx =
1
2

+
1
2
a2.
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Curious Conclusion

The probability that the branching process with offspring
distribution

P (Y = 0) =
1
2

= P (Y = 2)

is extinct in generation n equals the value for stopping
optimally on the sequence

X1, . . . , Xn independent U [0, 1] variables,

Is this case special?
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Y → X Correspondence

Theorem 1 Let Y be a non-negative integer valued
random variable with generating function g, and let π be
the smallest root of g(s) = s. Then the function F (x)
given by

F (x) =

 0 x < 0
g′(x) 0 ≤ x < π
1 π ≤ x,

is a distribution function, and for h(a) = E[X ∨ a] with
X ∼ F we have

h(a) = g(a) for 0 ≤ a ≤ π.
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Identities following the Correspondence

h(a) = E[X ∨ a] so that h(0) = EX.

But

g(0) = P (Y = 0) so that EX = P (Y = 0).

The jump of F (x) = g′(0) at zero is both

P (X = 0) = P (Y = 1).
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Reason h(s) = g(s), 0 ≤ s ≤ π

Notice that for 0 ≤ a ≤ π,

h(a) = E[X ∨ a]

=
∫ ∞

0

P ([X ∨ a] > x)dx

=
∫ π

0

P ([X ∨ a] > x)dx

=
∫ π

0

[1− P ([X ∨ a] ≤ x)]dx

= π −
∫ π

a

g′(x)dx

= π − g(π) + g(a)
= g(a).
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Branching Process → Stopping

Theorem 2 Let {Zn} be a branching process with
offspring distribution Y1, Y2, . . ., and let X1, X2, . . . be the
corresponding X variables. If π1 ≥ π2 ≥ · · · ≥ πn, then

h(n)(a) = g(n)(a) for 0 ≤ a ≤ πn,

and in particular
V n

1 = q̃n.

The optimal stopping value equals the extinction
probability.
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Y → X: Generalized Geometric

Y ∼ GG(b, c) with b, c non-negative and 0 < b + c < 1,

P (Y = 0) =
1− b− c

1− c
, P (Y = k) = bck−1, k = 1, 2, . . .

Usual Geometric is GG(pq, q). Generating function

g(s) =
α + βs

γ + δs

and corresponding X distribution

F (x) =

 0 x < 0
b/(1− cx)2 0 ≤ x < π
1 π ≤ x.
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Branching Analysis by Stopping

Stopping proof that limP (Zn = 0) = π, common offspring
distribution Y . Let X correspond to Y , and consider
stopping on the independent sequence X1, X2, . . .
distributed as X. Since P (Xi ≤ π) = 1 we have V n

1 ≤ π.
But for all ε > 0 we have

P (Xi > π − ε) = δ > 0,

so the suboptimal rule tn which stops at the first i for which
Xi exceed the threshold π − ε, and n otherwise, has value

π ≥ V n
1 ≥ EXtn

≥ (π − ε)(1− (1− δ)n) → π − ε.
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Prophet Value: Upper Bounds

A Prophet can pick the maximum:

Pn
1 = E(max(X1, . . . , Xn)) ↑ P∞1 .

Gives upper bounds

qn = V n
1 ≤ Pn

1 ≤ P∞1
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Prophet Inequalities, and Suboptimal Rules:
Lower Bounds

Prophet Inequality: for X1, . . . , Xn independent
non-negative

Pn
1 < 2V n

1 and P∞1 < 2V∞
1

gives lower bounds

Pn
1

2
< V n

1 = qn ≤ π̃, and
P∞1
2

< V∞
1 = π̃.

Any suboptimal Rule tn also gives lower bounds,

EXtn ≤ V n
1 = qn ≤ π̃.
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Upper Bound: Example

Consider offspring distributions Yi where for all i, πi = 1/2,

Yi =

 0 pi/3
1 1− pi

2 2pi/3.

Corresponding Xi satisfies

P (Xi = 0) = P (Yi = 1) = 1− pi,

so Xi ≤ X∗
i stochastically, where

P (X∗
i = 0) = 1− pi, P (X∗

i = 1/2) = pi,

and hence

P∞1 ≤ P∞∗1 =
1
2
P (X∗

i = 1/2 any i) =
1
2
[1−

∞∏
i=1

(1− pi)].
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Lower Bound: Example

We have

P (Xi ≤ 1/2) = 1, P (Xi = 1/2) = 1−g′(1/2) = 1−pi/3.

Considering the suboptimal rule

t = inf{i : Xi =
1
2
}

gives the complimentary lower bound

1
2
[1−

∞∏
i=1

(1− pi/3)] ≤ π̃ ≤ 1
2
[1−

∞∏
i=1

(1− pi)].
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Branching → Stopping

For every branching Y there is a stopping X, but not
conversely. Nevertheless, taking

Yi ∼ GG(bi, ci)

which according to Athreya and Ney (1972) is essentially
the only non-trivial example where g(n)(s) can be
computed explicitly, the corresponding sequence of
independent Xi variables, when bi = (1− ci)2, has a
permutation invariant optimal stopping value.
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Deep Connection, or Coincidence?

From ‘An Unexpected Connection Between Branching
Processes and Optimal Stopping’

... This correspondence is analytical, and in particular, we
are not able to present a probabilistic reason, such as a
coupling, which explains it...
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Connection or Coincidence: Yes or No?

No: Many mathematical objects are described by
composition, and they are not all therefore related.

Yes: Given Y , there is a unique X for which

h(s) = E[X ∨ s] = EsY = g(s), 0 ≤ s ≤ π.

And could it be merely coincidence that

q̃n = V n
1 for all n = 1, 2, . . .,

and that in both problems there can be termination, in one
by stopping, in the other extinction, at any stage
i = 1, . . . , n?

29


